Atmosphere-Ocean Interaction in Tropical Cyclones

Isaac Ginis University of Rhode Island

Collaborators: T. Hara, Y.Fan, I-J Moon, R. Yablonsky

ECMWF, November 10-12, 2008

Air-Sea Interaction in Tropical Cyclones

Two U.S. operational hurricane prediction models are coupled with ocean models: GFDL (since 2001) and HWRF (since 2007)

Critical Aspects of TC-Ocean Interaction

- Accurate initialization of ocean mesoscale features.
- Dynamical and microphysical processes near and at the sea surface that influence air-sea momentum and heat fluxes.

Accurate Ocean Initialization of Mesoscale Features

Hurricane Katrina GFDL Model Forecast: Initial time August 26, 00 UTC, 2005

SST and Surface Current

Temperature and Current at 75 m

Feature-based ocean initialization assimilates satellite altimeter, sea surface temperature and in situ data in the Gulf of Mexico (Yablonsky and Ginis 2008) implemented operationally

GFDL Hurricane Katrina Forecast: SST and Surface Current

72 h Forecast

96 h Forecast

Hurricane Katrina Forecast: Modified LC and No Warm-core Ring

SST and Surface Current

Temperature and Current at 75 m

Hurricane Katrina: Modified LC and no Warm-core Ring

72 h Forecast

Hurricane KATRINA-LOWLCNORING Simulation: 72-Hour Forecast SST and Surface Currents

96 h Forecast

Hurricane Katrina Intensity Forecasts

Maximum Winds

Central Pressure

2005 Tropical Cyclone Tracks 2005 Tropical Cyclone Tracks Storm: AL1205 (KATRINA) Storm: AL1205 (KATRINA) БÖ Forecasts: Beginning 2005082600 Forecasts: Beginning 2005082600 Observed: Beginning 2005082600, every 12 hours Observed: Beginning 2005082600, every 12 hours

Green– Real-time forecast Blue – Modified LC and no warm-core ring Black - Observations

3D vs. 1D Ocean Coupling

- Some recent studies (Emanuel et al. 2004; Lin et al. 2005, 2008; Bender et al. 2007; Davis et al. 2008) suggest that coupling a 1D ocean model to a TC model may be sufficient for capturing the storm-induced SST cooling in the region providing heat energy to the TC.
- If a 1D model is sufficient, valuable computational resources can be saved as compared to coupled models that employ a fully three-dimensional (3D) ocean component.

Difference in SST Response Underneath the TC Core Using a 1D and a 3D Version of the Same Ocean Model

Along-track temperature cross-sections

← 1.0 m s⁻¹

← 2.4 m s⁻¹

← 4.8 m s⁻¹

SST and currents 6 hrs after storm passes WCR center longitude: 3-D experiments

SST and currents 6 hrs after storm passes WCR center longitude: 1-D experiments

SST cooling within 60-km radius of storm center

Conventional coupling between TC models and ocean models

Waves Generated by Tropical Cyclones

Coupled Wind-Wave Model

- Near the peak : WAVEWATCH III (WW3) model.
- High frequency part : Equilibrium Spectrum model of Hara and Belcher (JFM, 2002)

Sea state dependence

Calculations are based on observed hurricane winds in the Atlantic basin.

At high wind speeds, C_d levels off and even decrease with wind speed

GPS sonde observation under various hurricanes (Powell et al., 2003).

Charnock Coefficient vs. Wind Speed and Input Wave Age

Red indicates the range of realizable input wave age for given wind speed

Input wave age is one of the output parameters of WW3 and is a measure of the development stage of locally wind forced waves, excluding the effects of long swell and waves that are misaligned with the local wind

Sea State Dependence in Coupled TC-Wave Model

Wind-Wave-Current Interaction

Energy and Momentum Flux Budget Across Air-sea Interface

Wind-wave-current interaction

Ocean response

Wind-wave-current interaction

Effect of Wind-Wave-Current Interaction on Drag Coefficient

Effect of Atmosphere-Wave-Ocean Interaction on TC forecasts (Idealized experiments)

Air-Sea Coupling Strategies for Tropical Models

- In the TC model, parameterizations of the airsea heat and momentum fluxes and sea spray source functions explicitly include *SST, sea state dependence*, and *ocean current effects*.
- The wave model is forced by a) *sea-state dependent momentum flux* and includes *ocean current effects*.
- The ocean model is forced by sea-state dependent momentum and kinetic energy fluxes calculated from the air-sea flux budget.

Summary

- Accurate initialization of ocean mesoscale features is critical for skillful coupled TC-Ocean forecasts.
- By neglecting upwelling 1D mixed layer models are inadequate for TCs translating at 5 m/s or less and misrepresent TC-induced SST cooling in the vicinity of oceanic fronts and eddies.
- Improved predictions of TC intensity, structure, and motion will require fully coupled ocean-waveatmospheric models that explicitly resolve the effects of sea state on air-sea fluxes and spray generation.