Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange

Ann-Sofi Smedman Uppsala University Uppsala, Sweden

Effect of transfer process on MABL Swell

Effect of MABL process on air-sea exchange UVCN regime

In models air-sea exchange is described through Monin-Obukhov similarity theory a theory which is well tested over land

but

is it valid over the ocean?

What are the differences ?

Large heat capacity

Small diurnal variation

Roughness (waves) increasing with increasing wind speed

Long term measurements in the Baltic Sea

2 buoys (temp, wave height, dir. and CO₂

100

Tower 30 m Temp and wind profiles 5 levels Turbulence 3 levels Humidity and CO₂ at 2 levels

Footprint area

 220°

Short term experiments with RV Aranda and ASIS buoy

Turbulence, wind speed, temperature and wave parameters

In the mean, excellent agreement between tower and ASIS

Data set from Agile experiment in lake Ontario 1994-95

- A 15- m research vessel Agile was equipped to measure waves and turbulence with
- Sonic R2A
- Thermocouple
- Licor
- Wave staff array

Measurements were performed at 7.8 m during two autumn periods

Growing sea (slow waves) Unstable stratification

 Monin-Obukhov similarity theory is valid but
 roughness length, z_o, is a function of wave age

Swell (long waves traveling faster than the wind) and unstable stratification

• A quite different type of boundary layer develops

The swell driven BL is characterized by

- Small or positive momentum flux
- Low level jet
- M-O scaling does not hold
- The vertical extent can be global
- Turbulence spectra resemble free convection conditions
- Swell represents reverse atmospheric-ocean coupling

Small momentum flux

Positive momentum flux

Tower measurements

LES simulations Peter Sullivan

Low level jet

The vertical extent is global

$\Phi_{\rm m}$ calculated for five swell cases

Turbulent kinetic energy budget

$$0 = \overline{u'w'} \cdot \frac{\partial U}{\partial z} - \frac{g}{T_o} \overline{w'\theta} + \frac{1}{\rho_o} \cdot \frac{\partial \overline{pw'}}{\partial z} + \frac{\partial \overline{w'e}}{\partial z} + \varepsilon$$

$$P \quad B \quad T_p \quad T_t \quad D$$

Turbulent energy budget c_p/U=4.7

Turbulent energy budget c_p/U=1.6

From the turbulence energy eq,

$$\frac{\partial U}{\partial z} = -\frac{1}{\overline{u'w'}} \left(-\frac{g}{T} \overline{w'\theta_{v'}} + \frac{\partial}{\partial z} \frac{\overline{w'q'^2}}{2} + T_p + \varepsilon\right)$$

The effect of T_p can be isolated

$$\left(\frac{\partial U}{\partial z}\right)_{Tp} = -\frac{T_p}{\overline{u'w'}}$$

$$U(z) - U(2.5m) = \int_{2.5m}^{z} \frac{T_{p}}{u_{*}^{2}} dz$$

Heat fluxes

All turbulent fluxes in models must be expressed as mean variables

Reduced to neutral stability

In the same way for latent heat, C_{EN}

Heat fluxes, unstable stratification $\Delta T > 3^{\circ}$

- Traditional parametrization (COARE algorithm) is valid
- No variation with wave age

Heat fluxes, stable stratification

• Low-level jets cause shear suppression leading to decreased fluxes

Heat fluxes, unstable stratification, very close to neutral

Wind speed > 10 m/s and $\Delta T < 3^{\circ}$

Fluxes are underestimated with COARE algorithm

Unstable stratification -- horizontal rolls

Unstable near neutral -- detached eddies

Normalized heat fluxes

Latent heat flux, Östergarnsholm

Agile heat flux

Agile latent heat flux

The unstable very close to neutral regime

- The UVCN regime is defined for $\Delta T < 3^{\circ}$ and U>10m/s
- It is found both over land and sea in the lowest region (z<15 m) of the surface layer
- Small scale heat flux is a result of detached eddies originating from the upper part of the surface.
 This is in contrast to a convective surface layer ruled by horizontal rolls.

Frequency (%) of occurrence of UVCN conditions

Relative frequence of occurence of UVCN conditions, 1979–2001, (%)

ERA-40 reanalysis

Increase (W/m²) in latent heat flux with UVCN regime included

Mean difference in latent heat flux, uvcn-no uvcn, RCS07 param. (W/m²), 1979-2001

ERA-40 reanalysis

Global mean values of the increase of heat fluxes with UVCN regime included

- Sensible heat flux= 0.8 W/m²
- Latent heat flux (evaporation)= 2.4 W/m²
- The effect of increased anthropogenic greenhouse gases (2006) on net radiation = 2.63±0.26 W/m²

Conclusions

Unstable stratification

• M-O similarity theory is only valid for growing waves

During swell the MABL is characterized by

- Low-level jet (LLJ) at 5-10 m height
- Constant wind speed above LLJ
- Small or positive momentum flux varying with height
- Energy is transported from waves to atmosphere by pressure transport term T_p

Mixed seas

As soon as a small portion of the waves are travelling faster than the wind (mixed seas) MABL is slowly changing from an ordinary boundary layer to a 'swell dominated ' boundary layer and <u>Monin-Obukhov similarity theory is not valid</u>

During stable stratification wave effects are small

Heat fluxes

- The dynamics of the MABL influence the air-sea exchange of sensible and latent heat.
- When the convective boundary layer is ruled by horizontal rolls the well known COARE algorithm is valid.
- When detached eddies originating from the upper part of the surface layer is present (UVCN regime) the heat fluxes are increased and the Φ_h -function goes to zero

Why has not the UVCN regime been observed earlier?

- sonic temperature fails to measure temperature fluctuations correctly when σ_T is small (high wind speed, small $\Delta T)$
- data with small ΔT are often removed from the data set
- measurements are taken at heights above the UVCN layer.

Thanks to

- Ulf Högström, Erik Sahlee, Anna Rutgersson, Hans Bergström, Cecilia Johansson, MIUU
- Will Drennan, RSMAS, Miami, Kimmo Kahma and Heidi Pettersson, FMRI, Helsinki
- Phd-students: Andreas Karelid , Björn Carlsson, Maria Norman, Alvaro Semedo
- Former Phd-students: Cecilia Johansson Birgitta Källstrand, Anna Rutgersson, Anna Sjöblom, Xiaoli Guo Larsen