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• Introduction
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• Energy Exchange
• Summary



MBL/CBLAST Objectives

• When and where is Monin-Obukhov 
Similarity theory valid over the ocean?

• When, where and why does it fail?



• For example, the dimensionless shear 

is predicted to be a universal functions of z/L.

Monin-Obukhov Similarity

• This hypothesis has been substantiated  by a number of studies in the 
atmospheric boundary layer over land.  

• Although the overland results have been used for years over the ocean, 
we are finally testing this hypothesis in the marine boundary layer.

)/(
*

Lz
z
U

u
z

mφ
κ

=
∂
∂

• MOS states that various turbulent statistics are universal function of 
z/L after normalization by the appropriate scaling parameters.  
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MOMENTUM EXCHANGE & 
DRAG COEFFICIENTS
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Rearrange

Integrate

Rearrange

Semi-empirical Basis 
for Bulk Formulae

Monin-Obukhov Similarity
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Drag Coefficient Formulas

• Semi-empirical
2
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• “Empirical”



CBLAST 2003 Offshore Array
Air-Sea Interaction Tower
Heavy Surface Moorings
Light Surface Moorings
MVCO Sensors
Bottom Pressure Moorings
Nantucket Field Site 
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CSAT
LI7500

CSAT
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Met3A

CSAT
LI7500
Met3A

Gill R2A
LI7000

CSAT

Gill R3A

Upward-looking
Radiometers

Downward-looking
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Rain GaugeProfiling 
Package

Laser 
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Microwave 
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22 m

ASIT Flux-Profile Measurements
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Kansas-like 
(TOGA-COARE) 
in the Mean

Dimensionless Shear

z
U

u
kz

L
z

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

*
mφ



2

20 )/()/ln(
)/,/( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
Δ
−

=
LzzzU

uwLzzzC
mo

D ψ
κStability Correction: 



Stability Correction: 2
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Kansas-like 
(TOGA-COARE) 
in the Mean

Is this really the 
best fit?

Can we quantity 
any of the 
variability about 
the mean?

Dimensionless Shear
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Kansas-like 
(TOGA-COARE) 
in the Mean

Is this really the 
best fit?

Can we quantity 
any of the 
variability about 
the mean?

Dimensionless Shear
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Developing (Young) Sea U

Cp

U > Cp

Wave Age

Developed (Mature) Sea U

Cp

U ≈
 

Cp

Decaying (Old) Sea U

Cp

U < Cp



Kansas-like 
(TOGA-COARE) 
in the Mean

Is this really the 
best fit?

Can we quantity 
any of the 
variability about 
the mean?

Dimensionless Shear
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Kansas-like 
(TOGA-COARE) 
in the Mean

Is this really the 
best fit?

Can we quantity 
any of the 
variability about 
the mean?

Dimensionless Shear
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Drag Coefficient Formulas

• Semi-empirical
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Coastal & 
Open Ocean

The Roughness Length



• Above the Wave Boundary Layer – MO Similarity expected 
to hold.

Surface Momentum Exchange & Waves

• Within the Wave Boundary Layer – MO Similarity begins to 
break down.
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Viscous Stress Form Drag
• COARE parameterizes this through the roughness length:
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MBL/FLIP Wind Event



MBL/FLIP Wave Ages

2.1/   :Sea  DevelopedFully  10 ≈Ucp

Developing
Seas

Old Seas 
Swell



FLIP Drag Coefficients



CBLAST/OHATS Wave Ages

2.1/   :Sea  DevelopedFully  10 ≈Ucp

Developing
Seas

Old Seas 
Swell



FLIP/CBLAST Drag Coefficients



CLIMODE Platforms



12 m

Extreme 
Conditions

Maximum wind speeds 
exceeded 30 m/s in near 
hurricane conditions.

ASIS destroyed by rough wave



MBL/CBLAST/CLIMODE Wave Ages

2.1/   :Sea  DevelopedFully  10 ≈Ucp



MBL/CBLAST/CLIMODE Drag Coefficients



Wave Age Dependent Drag



Wave Age Dependent Drag

Johnson, et al., 1999:  On the dependence of sea surface roughness on wind 
waves, J. Phys. Oceanog., 1702-1716.
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Wave Age Dependent Drag
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Wave Age Dependent Drag
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Wave Age Dependent Drag



Summary I
• The form of dimensionless wind shear is very similar to 

Businger-Dyer like formulations developed over land.
– The largest differences are seen over swell.

• A wind speed dependent drag coefficient give good results over a 
wind range of sea-states/wave-ages.
– This requires a wind speed dependent Charnock variable
– Numerous investigations have shown that the Charnock variable is 

dependent on wave-age.
– However, these findings can be reconciled since observed wave ages over 

the coastal and open ocean are clearly associated with wind ranges. 
• We have collected a nice set of data for model validations and 

parameterization studies over a wide range of conditions.
• The presenter likes to collaborate!



ENERGY EXCHANGE & 
WAVE GROWTH
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Energy Flux Into the Marine Surface Layer 
(Neutral & Horizontally Homogeneous)
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Energy Flux Into the Marine Surface Layer 
If there is no energy out the bottom, then the law-of-the-wall is expected. 
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Energy Flux Into the Marine Surface Layer 
However, if some of the energy is transported to the ocean then less 

energy is dissipated & ...



h

0

z

wpweUuwhE
ρ
1)( ++=

0)0( ≠E

)]0()([
0

EhEdz
h

−−=∫ε

Energy Flux Into the Marine Surface Layer 
The measured dissipation should be less than predicted by the 

law-of-the-wall.
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FLIP results

confirm this
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Measured dissipation should be 
less than predicted. 
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Dissipation Deficit
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Energy Flux Into the Marine Surface Layer 

Dissipation Surplus
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The reduced/enhanced dissipation is caused by:

• Wave induced modulation of the energy 
transport terms.   
• Energy Flux → wp(0) = p(0)∂η/∂t

• Wave-induced modulation of the shear 
production term.
• Momentum Flux → ρuw(0) = p(0) ∂η/∂x

• Energy transport
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Summary II
• Our investigations of energy transport in the MABL indicate a 

dissipation deficit over growing seas and a dissipation surplus 
over swell.
– This corresponds to the expected energy input to the waves in growing seas 

and an energy output to the atmosphere over swell.
– As demonstrated earlier, the mechanical production (and wind profiles) is 

not substantially affected by waves except over swell. 
– As such, there is often an imbalance between dissipation and production 

over the ocean. 
– The balance is primarily accounted for via the pressure transport term.

• This would appear to have important implications for closure in 
numerical models. 
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