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MBL/CBLAST Objectives

* When and where i1s Monin-Obukhov
Similarity theory valid over the ocean?

* When, where and why does It fail?




Monin-Obukhov Similarity
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 MOS states that various turbulent statistics are universal function of
z/L after normalization by the appropriate scaling parameters.

» For example, the dimensionless shear
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IS predicted to be a universal functions of z/L.

 This hypothesis has been substantiated by a number of studies in the
atmospheric boundary layer over land.

 Although the overland results have been used for years over the ocean,
we are finally testing this hypothesis in the marine boundary layer.



MOMENTUM EXCHANGE &
DRAG COEFFICIENTS




Monin-Obukhov Similarity
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Drag Coefficient Formulas

e Semi-empirical
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« “Empirical”
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CBLAST 2003 Offshore Array
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ASIT Flux-Profile Measurements
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Dimensionless Shear
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Stability Correction: Co(z/z.2/L)="7=
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Kansas-like
(TOGA-COARE)
In the Mean

Is this really the
best fit?

Can we quantity
any of the
variability about
the mean?

Dimensionless Shear

Von Karmans constant K= 0 39905 F|t k= 0. 3987 Mean

o CBLAST Data
- TC 3.0




Dimensionless Shear
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Kansas-like
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Dimensionless Shear

Unstable Data
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Dimensionless Shear
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Drag Coefficient Formulas

e Semi-empirical
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The Roughness Length

y = mx + b
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Coastal &
Open Ocean

TABLE 6.2.
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RELATION OF z, TO VARIOUS TERRAIN TYPES (ESDU, 1974)
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Surface Momentum Exchange & Waves

e Above the Wave Boundary Layer — MO Similarity expected
to hold.

oUW = pu'w’

« Within the Wave Boundary Layer — MO Similarity begins to
break down.

PUW = pU'W' + pUW
e At the surface
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Viscous Stress  Form Drag
« COARE parameterizes this through the roughness length:
1% u;
L, =a—+ ,B — Charnock Parameter

u. g




MBL/FLIP Wind Event

124 125

Yearday 2005

124 125

Yearday 2005




MBL/FLIP Wave Ages
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FLIP Drag Coefficients

-

+
*
\0;’0‘ *

FLIP

COARE 3.0

Large & Pond|]
I

16 18

O Binned Data
COARE 3.0
Large & Pond

|

16 18




CBLAST/OHATS Wave Ages
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FLIP/CBLAST Drag Coefficients
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Extreme
Conditions

Maximum wind speeds
exceeded 30 m/s In near
hurricane conditions.



FLIP: Open Ocean Event
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MBL/CBLAST/CLIMODE Drag Coefficients

Wave Ages: 0.4 < cp/U10 <5
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Wave Age Dependent Drag
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Wave Age Dependent Drag
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Fia. & Scatterplot of the Chamock parameter from different da-
tsets and ioverse wave age. The fall line is the least sgoares bast it
line from Fig. 4.2

Fia. 5. Scatterplot of the mean Chamock parameter from diffarent
datazets and imverse wave age. The fall line is the least sguares best
ft line

Johnson, et al., 1999: On the dependence of sea surface roughness on wind
waves, J. Phys. Oceanog., 1702-1716. 1
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Wave Age Dependent Drag

Wave Ages versus Wind Speed
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Wave Age Dependent Drag

Wave Ages: 0.4 < cp/U10 <5
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Wave Age Dependent Drag
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Summary |

The form of dimensionless wind shear is very similar to
Businger-Dyer like formulations developed over land.
— The largest differences are seen over swell.

A wind speed dependent drag coefficient give good results over a
wind range of sea-states/wave-ages.
— This requires a wind speed dependent Charnock variable

— Numerous investigations have shown that the Charnock variable is
dependent on wave-age.

— However, these findings can be reconciled since observed wave ages over
the coastal and open ocean are clearly associated with wind ranges.

We have collected a nice set of data for model validations and
parameterization studies over a wide range of conditions.

The presenter likes to collaborate!




ENERGY EXCHANGE &
WAVE GROWTH




Energy Flux Into the Marine Surface Layer
(Neutral & Horizontally Homogeneous)

E(h) = uwU +w_e+1w_p

Yo,




Energy Flux Into the Marine Surface Layer
If there Is no energy out the bottom, then the law-of-the-wall is expected.

E(h) = uwU +w_e+1w_p




Energy Flux Into the Marine Surface Layer

However, iIf some of the energy is transported to the ocean then less
energy Is dissipated & ...

E(h) = uwU +w_e+1w_p




Energy Flux Into the Marine Surface Layer

The measured dissipation should be less than predicted by the
law-of-the-wall.

E(h) = uwU +w_e+1w_p




Measured dissipation should be

less than predicted.
A

FLIP results

pation Profile for Yearday 124,748 10 124.811

Measured
MO Prediction

0.02 0.03

& (m2sd)

confirm this



Energy Flux Into the Marine Surface Layer
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Energy Flux Into the Marine Surface Layer
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Energy Flux Into the Marine Surface Layer

Dissipation Surplus
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Energy Flux Into the Marine Surface Layer
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The reduced/enhanced dissipation Is caused by:
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e \Wave-induced modulation of the shear
production term.
e Momentum Flux — puw(0) = p(0) on/ox

e Energy transport

* \Wave induced modulation of the energy
transport terms.

e Energy Flux — wp(0) = p(0)on/ot




Summary |1

o Our investigations of energy transport in the MABL indicate a
dissipation deficit over growing seas and a dissipation surplus
over swell.

— This corresponds to the expected energy input to the waves in growing seas
and an energy output to the atmosphere over swell.

— As demonstrated earlier, the mechanical production (and wind profiles) is
not substantially affected by waves except over swell.

— As such, there is often an imbalance between dissipation and production
over the ocean.

— The balance is primarily accounted for via the pressure transport term.

« This would appear to have important implications for closure in
numerical models.
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