Expectations from ADM-Aeolus ESA's Doppler lidar wind-profile mission DGH Tan ECMWF Acknowledgments: ESA (Mission Experts Division & Aeolus project team) Aeolus Mission Advisory Group Level-1B/2A/2B Development Teams

Overview - why expectations are so high

- ADM-Aeolus addresses key observational needs
 - Objectives, wind observation requirements, DWL instrument, viewing geometry
- Implementation well-advanced for launch in 2009
 - Space and ground segments
 - HLOS wind product (L2B data, algorithm, portable s-ware)
 - Cloud and aerosol products (L2A data)
 - Experimental campaigns and calibration/validation
- Studies with wind lidar data support theoretical expectations
 - Data simulations, NWP data impact studies (assimilation ensembles as alternative to OSSEs, + information content)
- Airborne DWL (Weissman). Tropical assimilation (Zagar).
 Sep 07 Expectations from ADM-Aeolus ECMWF Seminar Week
 Slide 2

Key references

- Baker et al 1995, BAMS
- ESA 1999 Report for Assessment (Stoffelen et al 2005, BAMS) and 2007/8 Science Report
- Weissman and Cardinali 2006, QJRMS
- N. Zagar & co-authors, QJRMS & Tellus A
- Tan & Andersson 2005, QJRMS
- Tan et al 2007, QJRMS
- Tan et al 2008, Tellus A (Special Issue on ADM-Aeolus)

Background for ADM-Aeolus What is the ADM-Aeolus Mission ?

- Aeolus objectives
 - improve understanding of atmospheric dynamics & climate processes (global atmospheric transport, global cycling of energy, water, aerosols, chemicals), and
 - improve the quality of weather forecasts (via better initial conditions - analyses from data assimilation), by
 - providing global observations of wind profiles from space
- Selected in 1999 as the 2nd Earth Explorer Core mission in ESA's Living Planet Programme for Earth Observation
 - Launch 2009 (provisional), duration 3 years
 - Currently in Phase C (manufacturing & testing)
 - R&D, pre-operational for future meteorological satellites

Background for ADM-Aeolus

Observational Requirements

		PBL	Troposph.	Stratosph.
Vertical Domain	[km]	0-2	2-16	16-20
Vertical Resolution	[km]	0.5	1.0	2.0
Horizontal Domain			global	
Number of Profiles	[hour ⁻¹]		> 100	
Profile Separation	[km]		> 200	
Horizontal Integration Length	[km]		50	
Accuracy (HLOS Component)	[m/s]	1	2	3
Data Availability	[hour]		3	
Length of Observational Data Set	[yr]		3	

Most important requirements - accuracy & vertical resolution

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

Background for ADM-Aeolus Measurement Concept

CALIPSO lidar - vertical cross sections of backscatter

Backscatter signal

- Aeolus winds are derived from Doppler shift of aerosols and molecules along lidar line-of-sight
- Error estimates, cloud & aerosol properties derived from signal strength

Background for ADM-Aeolus Measurement Concept

- Backscatter signal
- Winds are derived from Doppler shift of aerosols and molecules along lidar line-of-sight
- Error estimates, cloud & aerosol properties derived from signal strength

Slide 7

ECMWF

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

ADM-Aeolus Space Segment - preparation/testing of 1) structural-thermal model 2) lidar transmitter/receiver

Background for ADM-Aeolus ADM-Aeolus Optical Receiver

- Mie light reflected into Rayleigh channel
- Rayleigh wind algorithm includes

correction term involving

Slide 10

scattering ratio (s)

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

ILIAD - Impact of P, T and backscatter ratio on Rayleigh Responses

ADM-Aeolus pre-launch campaigns

with development/pre-flight instrument (A2D)

Ack: Oliver Reitebuch

Campaign	Location	Time	Instruments
ADM-Aeolus Ground Campaign	Lindenberg DWD-MOL	4 weeks Jul 2007	A2D within container (DLR) 2μm lidar within container (DLR) 482 MHz windprofiler radar (DWD) 35.5 GHz cloud radar (DWD) laser ceilometer (DWD) sun-photometer (DWD) 4 operational RASO/day + 10 additional (DWD) aerosol lidar 355 nm (MIM) Rayleigh Doppler lidar?
ADM- Aeolus Airborne Campaign 1	DLR-Oberpfaffenhofen over-flights Lindenberg and other sites	15 days Oct 2007	A2D and 2µm in DLR Falcon DWD-MOL instruments as in AGC
ADM- Aeolus Airborne Campaign 2	TBD	17 days 2008/9	A2D and 2μ m in DLR Falcon additional instruments, if linked to other campaign

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

ADM-Aeolus Ground Segment

Aeolus Ground Segment & Data Flows (schematic view)

On-going preparations for ADM-Aeolus

- Level-0 to Level-2B processing
 - Rayleigh HLOS retrieval requires auxiliary meteorological data (T & p profiles) from NWP models
 - Flexible & portable L2B processor being developed

> prototype available to the nwp/scientific community

- Error estimates, quality indicators, weighted averaging of the measurement scale (< 3.5 km) to produce the observation scale (50 km), signal classification
- Potential cloud & aerosol products (+ algs / code for L2Bp)
- Concepts for follow-on & future missions
 - Scanning vs multiple orbits non-scanning
 - Programmatics, data continuity

Previous data simulations for ADM-Aeolus

Yield (data meeting mission requirements in % terms) at 10 km

- 90% of Rayleigh data have accuracy better than 2 m/s
- In priority areas (filling data gaps in tropics & over oceans)
- Complemented by good Mie data from cloud-tops/cirrus (5 to 10%)
- Tan & Andersson
 QJRMS 2005

Slide 15

MWF

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

Assimilation of prototype ADM-Aeolus data

New observed quantity introduced into 4d-Var

Observation Screening

Assimilation Algorithm

Diagnostic post-processing

IFS "Screening Job" Check completeness of report, blacklisting **Background Quality Control**

"Bufr2ODB"

Observation Processing

Data Flow at ECMWF

Slide 16

IFS "4D-VAR" Implement HLOS in FWD, TL & ADJ Codes Variational Quality Control

> "Obstat" etc (Lars Isaksen) **Recognize HLOS for statistics** Rms, bias, histograms

7 Sep 07 **Expectations from ADM-Aeolus – ECMWF Seminar Week**

Analysis

Assimilation studies for ADM-Aeolus

- Tan et al., QJRMS 133:381-390 (2007)
- Assimilation ensembles for data impact assessment
 - Original motivation: use ensemble spread as proxy for short-range forecast errors (background errors)
 - By extension, good data reduce ensemble spread
 - DWL impact
 - Radiosonde/profiler impact provides calibration
- Additional diagnostics related to information content
 - Entropy reduction
 - Degrees of freedom for signal

<u>OSE</u>

<u>OSE</u>

Data impact on ensemble forecasts - zonal wind spread at 500 hPa

- Radiosondes and wind profilers over Japan, Australia, N.Amer, Europe
- DWL over oceans & tropics
- Some features more obvious at 200 hPa ...

Slide 20

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

OLD Data impact on ensemble forecasts - zonal wind spread at 500 hPa

- Radiosondes and wind profilers over Japan, Australia, N.Amer, Europe
- DWL over oceans & tropics
- Some features more obvious at 200 hPa ...

Slide 21

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

Data impact on ensemble forecasts - zonal wind spread at 200 hPa

- Radiosondes and wind profilers over Japan, Australia, N.Amer, Europe
- DWL over oceans and tropics

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

Profiles of 12-hr Fc impact, Southern Hemisphere

Information content - global diagnostics

- Mike Fisher for Entropy Reduction & DFS
 - $S \sim log(det(P^A))$
 - ~ tr (log (J''^{-1}))
 - J" = 4d-var Hessian
 - P^A = analysis error covar.
- DWL data are accurate and fill data gaps
 - subject to usual caveats about simulated data

	TEMP/PILOT	Simulated DWL
Data considered	u,v to 55 hPa	HLOS
Entropy_Reduction ("Info bits")	4830	3123
Deg_Free_Sig	3707	2743
N_Obs	90688	50278
Info bits per obs	0.053	0.062
N_Obs/Deg_Free_Sig	24.5	18.3
Redundancy		2 — 3 %

Information content - global diagnostics

- Mike Fisher for Entropy Reduction & DFS
 - $S \sim log(det(P^A))$
 - ~ tr (log (J" $^{-1}$))
 - J" = 4d-var Hessian
 - P^A = analysis error covar.
- DWL data are accurate and fill data gaps
 - subject to usual caveats about simulated data

	TEMP/PILOT	Simulated DWL
Data considered	u,v to 55 hPa	HLOS
Entropy_Reduction	4203	2787
("Info bits")		
Deg_Free_Sig	3153	2454
N_Obs	74682	28979
Info bits per obs	0.056	0.096
N_Obs/Deg_Free_Sig	23.7	11.8
Redundancy		2 — 3 %

Assimilation of prototype ADM-Aeolus data Reception of L1B data and L2B processing at NWP centres

7 Sep 07 **Expectations from ADM-Aeolus – ECMWF Seminar Week**

The Level-2B Processor

- 1. Introduction
 - a. What are the Level-2B/2C Wind Products?
 - b. How do they differ from Level-1B Products?
- 2. Strategy and implementation
 - a. Who will make them?
 - b. Why distribute source code for the L2BP?
- 3. Does it work?
 - a. Main algorithm components
 - b. Retrieval examples, future work
- 4. How will L2BP source code be distributed?

1a/b. What are Level-2B/2C Products?

1a/b. What are Level-2B/2C Products?

- > 2B: Meteorologically representative HLOS profiles
 - retrieval algs applied to Level-1B data, 2B-output suitable as input to data assimilation
 - auxiliary input data: T & p, Rayleigh-Brillouin response data, etc

> 2C: Meteorologically representative wind vector profiles

- result of a data assimilation algorithm, combining
 Level-2B with other data/weather forecast model
- > How do they differ from Level-1B Products?
 - Rayleigh channel retrieval accounts for T & p effects
 - measurements grouped/weighted by features detected in the atmospheric scene (primarily clouds & aerosol)

2a. Who will make Level-2B/2C Products?

- > ECMWF for "operational" Level-2B/2C products
 - Processing integrated with data assimilation system
 - Products in ESA's Earth Explorer file format available from ESA (Long-Term Archive)
- > ESA LTA for Level-2B late- & re-processing
 - Level-1B missing ECMWF's operational schedule
 - New processing parameters/auxiliary inputs
- > Other Numerical Weather Prediction centres
 - Different operational schedule/assimilation strategy
 - Different processing params/aux inputs/algorithms
- Research institutes & general scientific users
 - Different processing params/aux inputs/algorithms

2a-1. ECMWF "operational" configuration

2a-2. ESA-LTA late- and re-processing

2a-4. Research/general scientific use

2a-3. Other NWP configurations

2b. Why distribute L2BP Source Code?

- > Distribution of executable binaries only permits
 - limited number of computing platforms
 - different settings in processing parameters input file
 - thresholds for QC, cloud detection
 - different auxiliary inputs
 - option to use own meteorological data (T & p) in place of ECMWF aux met data (available from LTA)
- Provide maximum flexibility for other centres/institutes to generate their own products
 - different operational schedule/assimilation strategy
 - scope to improve algorithms
 - feed into new releases of the operational processor

3a. How it works - Tan et al *Tellus A* in press

- > Rayleigh channel HLOS retrieval Dabas et al, Tellus A
 - R = (A-B) / (A+B) and HLOS = $F^{-1}(R;T,p,s)$
 - T and p are auxiliary inputs
 - correction for Mie contamination, using estimate of scattering ratio s
- > Mie channel HLOS retrieval
 - peak-finding algorithm (4-parameter fit as per L1B)
- > Retrieval inputs are scene-weighted
 - ACCD = Σ ACCD_m W_m, W_m between 0 and 1
- > Error estimate provided for every Rayleigh & Mie hlos
 - dominant contributions are SNR in each channel

Rayleigh-Brillouin spectrum and Aeolus response curves

3b. Level-2B input screening & feature finding

3b. Level-2B hlos wind retrievals

3b. Level-2B hlos retrieval - error estimates

3b. Level-2B hlos retrieval - error estimates

3c. Future work

- > Quality Indicators
 - Highlighting doubtful L2B retrievals
 - More complicated atmospheric scenes from simulations + Airborne Demonstrator
- > Advanced feature-finding/optical retrievals
 - Methods based on NWP T & p introduce error correlations
- > Modified measurement weights
 - More weight to measurements with high SNR?
- Height assignment
 - In situations with aerosol and vertical shear

- 4. Distribution of L2BP software
- > Software releases issued by ECMWF/ESA
 - Details & timings to be determined
 - Probably via registration with ECMWF and/or ESA
 - Source code and scripts for installation
 - Fortran90, some C support
 - Developed/tested under several compilers
 - Suite of unit tests with expected test output
 - Documentation
 - Software Release Note
 - Software Users' Manual
 - Definitions of file formats (IODD), ATBD, etc.

Conclusions

- > Expectations for ADM-Aeolus are high
 - On track for producing major benefits in NWP
 - Meeting the mission requirements for vertical resolution & accuracy
 - Extending to stratosphere, re-analysis
 - Our software available to NWP/science community
 - Combine with other observations
 - Height assignment for AMVs
 - Complement other cloud/aerosol missions
 - Related research
 - Background error specification

5.1 Prototype Level-2C Processing

- ✓ Ingestion of L1B.bufr into the assimilation system
 - L1B obs locations within
 ODB (internal
 Observation DataBase)
- ✓ Assimilation of HLOS observations (from L1B)
 - Corresponding analysis increments (Z100)

FCMWF

5.2 Key assimilation operators

HLOS, TL and AD

- $\bullet H = u \sin \varphi v \cos \varphi$
- $\bullet dH = du \sin \varphi dv \cos \varphi$
- dH* = $(-dy \sin \varphi, -dy \cos \varphi)^T$
- Generalize to layer averages later
- Background error
 - Same as for u and v (assuming isotropy)
- Persistence or representativeness error
 - ♦ 10 to 20 m/s for technical development
- Prototype quality control
 - Adapt local practice for u and v

5.3 L2BP integration within an assimilation system

5.4 Overview data flow - standalone mode

5.5 Principal Guidance to Met Centres

- 1. How to install and test the standalone version
 - Source code, documentation, unix scripts and test data (EE format) supplied
 - Useful tool for inter-comparison purposes
- 2. Interface requirements for integrated-assimilation mode
 - Generation of auxiliary meteorological data
 - Wrapper module between "odb" and L2B processor used as a callable subroutine within assimilation.x
 - Both to occur during Screening
 - Facilitates assimilation of Aeolus data
 - Assimilation outputs at discretion of each met centre

1 Baseline L2BP Algorithm

Purpose of L2BP

- Produce L2B data from L1B data and aux met data
 - 50 km observations from ~ 1 km measurements
 - Error estimates and quality indicators
- Temperature and pressure corrections via met data
- Scene classification and selective averaging
- Design a portable source code for three processing modes
 - Integration at many met centres
 - → Reprocessing @ ESA (ECMWF-supplied met data)
 - → Testing in a range of environments
 - Simple to use, yet flexible to permit extensions

Auxiliary processing - prepares met data as L2BP input

Scene classification influences L2B output

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

1.3 ECMWF operational schedule

Processing of L1B 09-21Z starts at 02Z (D+1) "dcda-12utc"

- 1.4 Baseline architecture L2BP
- Auxiliary L2B processing (centre-dependent)
 - Profiles of temperature and pressure vs height
 - → At requested locations, full model vertical resolution
 - → L2BP will perform conversion to WGS84 coords
 - Extract from "first-guess fields" during "screening"
 - → Nearest time (within 15 mins at ECMWF)
 - → At ECMWF, vertical profiles and not slanted
 - → Currently one profile per observation
 - Pre-processing step
 - Standardize input for primary L2B processing
 - Align met data with L1B measurements in horizontal
 - Could be achieved via extrapolation or interpolation

- 1.5 Locations for computing aux met data
 - Obtain from geolocation information in real L1B data
 - Offset from the sub-satellite track
 - Example shows 30 mins x 50 km spacing along-track

1.4 L2BP - auxiliary pre-processing

 \checkmark Collocation implemented, suitable for 1 met locn per BRC

□ Sensitivity study to guide extensions, eg interpolation code

1.5 L2BP - primary processing

- Primary processing (HLOS retrieval)
 - □ L1B product validation (mainly in Consolidation Phase)
 - ✓ Signal classification (+ further code from L2A study)
 - Assign weights to signals (+ further development)
 - □ Apply weights to a general parameter
 - ✓ lat & lon = L2B centre-of-gravity
 - temperature & pressure = Tref & Pref
 - □ HLOS temperature & pressure corrections
 - □ Error estimates, quality indices
 - □ Output in EE format

2 Future work

Key inputs from other activities

- L1B test datasets
- Cloud detection and scene classification
 - → algorithms/codes based on L2AP
- Details of temperature & pressure correction scheme
 - → ILIAD results & implementation (e.g. lookup table)
- Algorithms for
 - → HLOS error estimates & Quality indicators
- Check suitability of interfaces for many met centres
 - Basic concept ~ screening of radiosonde observations

Facts and figures for ADM-Aeolus

• ESA point of contact - Dr Paul Ingmann

• Mission Experts Division, ESA/ESTEC, The Netherlands

Orbit	Sun-synchronous	Dawn-dusk
- inclination & altitude	97 °	408 km
Mass - total & "ALADIN" lidar component	1100 kg	450 kg
Transmitter - laser type & pulse energy	Nd:YAG, frequency tripled to 355 nm	150 mJ
- pulse repetition freq. & duty cycle	100 Hz	10 s every 28 s
Receiver - telescope diameter		1.5 m
- spectrometers	Fizeau (Mie)	Dual edge etalon (Rayleigh)
Average power demand	1400 W	
Launch date & mission lifetime	2008	3 years

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

- 1 Baseline L2BP Algorithm
- Baseline architecture
 - ♦ HLOS retrieval TN2.2, Fig 2
 - ♦ Generation of aux met data TN2.2, Fig 1

- L1B BRCs processed independently (& possibly in parallel)
 - No communication of intermediate L2BP results
- L1B data arriving within met centre operational schedule
 - Met centre produces aux met data, L2B (and L2C)
- L1B data missing the ECMWF schedule
 - ECMWF produces aux met data
 - → at locations inferred from predicted flight tracks
 - ♦ L2B possible via re-processing

1.1 L2BP - Portability considerations

Common design accommodating three processing modes

	Met Centres	Operational (ECMWF)	Re-proc (ESRIN)
L1B data (input) in EE format	Received in	Received in NRT (~5h)	LTA/reprocessing
(or predicted orbit locations)	Q/NRT (30m-3h)		
Auxiliary meteorological input	Self-generated	Self-generated & sent	Oper available
(T & p profiles, EE/BUFR)		to LTA	(via LTA)
Primary L2BP code	Oper available	Oper	Oper available
Auxiliary parameter input files	Oper available	Oper	Oper available
L2B data output in EE format	Yes	Yes	Yes
L1B/L2B data in BUFR format	EE2BUFR	EE2BUFR	Not required
(for assimilation purposes)			

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

The ILIAD Study

- Why the ILIAD study ?
 - The L1 processing scheme proposed by the industry for Rayleigh winds does not take into account the impact of the pressure and the potential presence of Mie scattering.
 - Preliminary studies conducted by DLR (O. Reitebuch) and ESA (M. Endemann) suggested the impact of both exceed requirements on data quality.
- Objectives
 - Find a correction scheme.
- Study Team.
 - IPSL/LMD (P. Flamant, C. Loth), IPSL/SA (A. Garnier), ONERA/DOTA (A. Dolfi-Bouteyre), HOVEMERE (D. Rees), MF/CNRM (A. Dabas, M. L. Denneulin)

ILIAD - Impact of P, T and backscatter ratio on Rayleigh Responses

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

ILIAD - Baseline Inversion Scheme

ILIAD - Simplified correction scheme

Based on a simplification of baseline inversion.

Two-step appraoch:

- 1. Inverse response R_R as if there were no Mie.
 - <u>Method</u>: Look-up in the 3D matrix $\mathcal{F}_d(i, j, k)$ giving the inverse frequency (or velocity) for pressures $P_i = P_0 + i\Delta P$, $Tj = T_0 + j\Delta T$ and $R_k = R_0 + k\Delta R$
 - <u>Output parameters</u>:
 - → $V_r(P_{mod}, T_{mod}, \rho=1)$ where P_{mod} and T_{mod} are the pressure and temperature inside the sensing volume as predicted by the NWP model.
 - → dv_r/dP , dv_r/dT and dv_r/dR , that is, the first order derivative of v_r with respect to P, T and the response R_R .
- 2. Correct from Mie contamination.
 - <u>Method</u>: First order, linear correction based on the estimation of dv_r/dp

ILIAD - Practical implementation

Aeolus satellite layout

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

ALADIN Structure and Optical Structural Thermal Model

ALADIN structure has been completed for OSTM and tested.

Mass-dummies have been integrated for OSTM: Power Laser Heads (PLH), Reference Laser Heads (RLH), and

Optical Bench Assembly (OBA)

ALADIN OSTM

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

ALADIN Laser Cooling System

Data simulations for ADM-Aeolus Yield (%age of data meeting mission requirements) at 5 & 1 km

- 5 km: 75% of Rayleigh have accuracy < 2 m/s (also 15% Mie not shown)
- 1 km: 66% of Mie have accuracy < 1 m/s (aerosol & cloud returns)
- Adequate transmission through overlying cloud

Slide 72

ECEMWF
ADM-Aeolus data simulations - comparison with radiosondes/mission spec

♦ Aeolus median like obs error assigned operationally to radiosondes

ADM-Aeolus data simulations - Effects of model cloud cover (2)

Assimilation of prototype ADM-Aeolus data

Quality Control for Aeolus data

- Most QC parameters taken from conventional wind obs
 - Background errors & quality control thresholds (BgQC+VarQC)
- Aeolus-specific Background Quality Control (recommended option)
 - Capping of observation error in bg departure classification Set B = (obs-bg) / ES(obs-bg), accept obs iff abs(B) < 4. In standard BgQC for Aeolus, ES = (σ₀² + σ₀²)^{1/2}.
 Aeolus option: ES = (s₀² + σ₀²)^{1/2}, where s₀ = min(σ₀, 2.5 ms⁻¹)
- Testing with LITE period, LIPAS-simulated Level-2B data
 - Gaussian + non-Gaussian errors (instrument bias, input wind bias)
 - Operational model (Cy26r1) at full/reduced resolution, ERA40/NoSSMI

Slide 75

Quality Control Examples: Std + Aeolus-optional QC for DWL -- active

Radiosonde U-wind

Option improves departure statistics

7 Sep 07 Expectations from ADM-Aeolus – ECMWF Seminar Week

Slide 76

