

Assimilation of satellite data for the environment

Frédéric Chevallier, Peter Rayner Laboratoire des Sciences du Climat et de l'Environnement CEA/CNRS/UVSQ, IPSL, France

Richard Engelen ECMWF, Reading

ECMWF seminar '07

F. Chevallier

- Audrey Fortems, Philippe Peylin and Sophie Szopa
 - LSCE
- The members of the FP6 GEMS consortium
 - Tony Hollingsworth
 - Antje Dethof and Angela Benedetti

- Introduction: CO₂ from space
- Optimization of atmospheric concentrations
- Optimization of surface fluxes
- Optimization of surface model parameters
- Conclusion

IASI Level 1C Spectra 29/11/2006, 13:42:11 UTC Source CNES-CNRS ETHER

ECMWF seminar `07

F. Chevallier slide 4

• HIRS 15-micron channels

- "The brightness temperature differences can be as large as 1 K for a 30-ppmv CO₂ increase and a seasonal variation of a few tenths of a Kelvin may exist" (Turner, 1993).
- Impact on temperature retrievals

ECMWF seminar `07

CO₂ as signal

- First retrievals of CO₂ concentrations (Chédin et al., 2003).
- Upper troposphere in tropical latitudes
- HIRS+MSU

CO₂ as signal (cont'ed)

- Extension to high-spectral resolution measurements
- o AIRS
- Upper troposphere in tropical latitudes

F. Chevallier

CO₂ as signal (cont'ed)

- Extension to high-spectral resolution measurements
- SCIAMACHY
- Total column over lands

Buchwitz et al., 2005 DOAS

Model simulations of CO₂ column [ppm] Olsen and Randerson, 2004

ECMWF seminar `07

F. Chevallier

slide 8

The same planet?

- o Total column vs. upper tropospheric column
- Retrieved vs. measured

CO₂ as primary target

- CO₂ concentrations higher than at any time within the last 650,000 years
- OCO (NASA)
 - Launch Dec' 2008

Changes in Greenhouse Gases from ice-Core and Modern Data

- GOSAT (JAXA, NIES, MoE)
 - Launch Dec' 2008
- More projects
 - A-SCOPE, ACCLAIM, CARBOSAT, ...

ECMWF seminar '07

F. Chevallier

slide 10

Beyond NWP within NWP systems

0.8

0.6 0.4 0.2

-0.2 -0.4

0.6

8707

Mean dev. (K)

20N 60N ------20S 60S ------

9007 9101 9107

8907

date (yymm)

8807

 Errors on atmospheric concentrations of gases and aerosols affect NWP systems
 channel 10 - CM-3
 1.2
 a)

> NOAA-10 channel 10 Calculated minus obs Pierangelo et al., 2004

- NWP systems flexible and powerful enough to tackle environmental issues
 - Expertise in data merging
 - Expertise in satellite observations
 - Expertise in atmospheric modelling
- Surface and soil properties

ECMWF seminar `07

F. Chevallier slide 11

FP6 GEMS project

- Part of the Global Monitoring for Environment and Security (GMES, funded by EC & ESA) Atmosphere theme
- o 31 consortium members, 4 years (started in March 2005)
- Coordinated by ECMWF
- Creation of a pre-operational global monitoring system for greenhouse gases, reactive gases, and aerosols in the troposphere and in the stratosphere
- Near-real-time and retrospective global analyses for monitoring atmospheric composition, and shortrange forecasts to drive regional air-quality models.

Summary of introduction

- Use of satellite data for the environment = emerging topic
- Increasing interest from the NWP community
- Signal-to-noise may be challenging for some species

o Introduction

- Optimization of atmospheric concentrations
- o Optimization of surface fluxes
- o Optimization of surface model parameters
- o Conclusion

Mathematical framework

 The optimal solution minimizes the following cost function

$$-2 ln P(\mathbf{x}|\mathbf{y}) = (\mathbf{x} - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}_b) + (\mathbf{H}\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H}\mathbf{x} - \mathbf{y})$$

ECMWF seminar '07

2.9

2.8 2.4 2.0

1.6 1.2 0.8 0.4

0.0 -0.4 -0.8

-0.8

CO₂ analysis

Monthly mean CO2 column mean volume mixing ratio between 150 hPa and 700 hPa Reanalysis using AIRS observations August 2003

CO₂ 4D-Var analysis using AIRS August 2003 Started in January 2003

Monthly mean CO2 column mean volume mixing ratio between 150 hPa and 700 hPa Difference between reanalysis and simulation August 2003

ppmv 30"N 30°S F. 90°E 120°E 150°E

Analysis minus free run August 2003

R. Engelen

ECMWF seminar '07

Individual Profiles

Individual Profiles

Individual Profiles

Molokai, Island, Hawaii

Blue: free-running model

Red: reanalysis

Black: observations

Analysis of CO

- \circ CO₂ lifetime ~ 100 years
- CO lifetime ~ 2 months
- CO interacts with OH
 - Surface sources (combustion)

- Chemical production in the atmosphere
- Chemical loss in the atmosphere
- Observed by MOPITT satellite since 2000
- GEMS analysis system : 2-way coupling between IFS and a chemistry-transport model

Analysis of CO

Free running

Assimilation of MOPITT data

Assimilation minus free run

15-30 July 2003 10¹⁸ modelcules/cm²

ECMWF seminar `07

F. Chevallier

slide 22

Analysis of CO (cont'ed)

 Assimilation of MOPITT CO columns leads to improved fit to profile observations from MOZAIC flights

Assimilation of POLDER data within the LMDZ-INCA model

Aerosol optical thickness

Generoso et al. (2007)

F. Chevallier

slide 24

ECMWF seminar `07

Assimilation of POLDER data within the LMDZ-INCA model

Generoso et al. (2007)

F. Chevallier

slide 25

ECMWF seminar '07

Assimilation of POLDER data within the LMDZ-INCA model

Generoso et al. (2007)

ECMWF seminar `07

F. Chevallier slide 26

- o Introduction
- o Optimization of atmospheric concentrations
- Optimization of surface fluxes
- o Optimization of surface model parameters
- o Conclusion

Mathematical framework

 The optimal solution minimizes the following cost function

$$-2 ln P(\mathbf{x}|\mathbf{y}) = (\mathbf{x} - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}_b) + (\mathbf{H}\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H}\mathbf{x} - \mathbf{y})$$

x: state vector (surface fluxes)
y = Hx+ε: observation (atmospheric concentrations)
H: linear observation operator

(long-range chemical transport + interpolation)

B: background error covariance matrix
R: observation error covariance matrix

ECMWF seminar '07

 Comparison of a priori (grey symbols) and a posteriori (black symbols) monthly biomass burning sources in Africa with van der Werf et al. (2004) inventory (white symbols)

- o 11-month inversion
- March 2003, GEMS test re-analysis
- AN-FG, gC/m²/month

- o 11-month inversion
- May 2003, GEMS test re-analysis
- AN-FG, gC/m²/month

ECMWF seminar `07

Multi-tracer inversions

Simplified atmospheric chemistry

- Computing time
- Limited observation information content

Hydrocarbon oxidation chain

Multi-tracer inversion from MOPITT+ surface MCF

Multi-tracer inversion from MOPITT+ surface MCF

• Too much HCHO in the free model

F. Wittrock, 2006 Bremen University

ECMWF seminar `07

F. Chevallier

slide 35

- o Introduction
- o Optimization of atmospheric concentrations
- o Optimization of surface fluxes
- Optimization of surface model parameters
- o Conclusion

Mathematical framework

 The optimal solution minimizes the following cost function

$$-2 ln P(\mathbf{x}|\mathbf{y}) = (\mathbf{x} - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + (\mathbf{H}\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H}\mathbf{x} - \mathbf{y})$$

x: state vector (model parameters)
y = Hx+ε: observation (atmospheric concentrations + ...)
H: linear observation operator
 (surface model +long-range chemical transport + interpolation)
B: background error covariance matrix
R: observation error covariance matrix

ECMWF seminar '07

• More complex observation operator

$$\nabla J(\mathbf{x}) = 2\mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + 2\mathbf{H}^{T}\mathbf{R}^{-1}(\mathbf{y} - H[\mathbf{x}])$$

- LMDZT transport model includes ~ a few thousands lines of code
- ORCHIDEE model of the terrestrial vegetation includes ~ 40,000 lines of code

- Changes the observation errors as seen by the inversion system
 - [Observation error] = [Measurement error]
 - + [representativeness error]
 - + [Model error]
- Biases / Variances / Correlations
- We may not have enough information from the observations to introduce a weak constraint formulation

Impact of observations error correlations

- Surface fluxes from OCO
- Hypothetical 0.5 along-track correlation
- Correlations ignored in the inversion
- Uncertainty reduction 1-sig(post)/sig(prior)

Pro: assimilate more than atmospheric concentrations

- Assimilation of MODIS LAI within the ORCHIDEE vegetation model
- RMS difference between simulated gross primary production and independent FLUXNET data (40 sites)
- o gC/m²/month

• Background error correlations

$$-2 ln P(\mathbf{x}|\mathbf{y}) = (\mathbf{x} - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + (\mathbf{H}\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H}\mathbf{x} - \mathbf{y})$$

Pro: spread increments (cont'ed)

 Optimizing generic parameters may be more efficient than prior errors in spreading the observation information in space and time

Error reduction for the inversion of CO_2 surface fluxes from CO_2 concentrations at two sites. 4-day period.

No prior error spatial correlations.

Transport from MesoNH at 8-km resolution.

Lauvaux et al. (2007)

ECMWF seminar '07

F. Chevallier

Pro: predictive capability

Anomalous terrestrial uptake for the 21st century calculated by the BETHY model forced by output from the IPSL climate model (SREES-A2 scenario run). the red curve uses unoptimized parameters while the black curve uses optimized parameters.

Rayner et al. (2005, 2007)

ECMWF seminar '07

- From the assimilation of satellite data to the inversion of parameters
- Comprehensive approach
- Increased sophistication
- Large networks of expertise required

Greenhouse gas provision

ECMWF seminar `07

Reactive gas provision

	REACTIVE Gases (O ₃ , N ₂ O, SO ₂ , CH ₂ O) : Main Satellite Provision 2003-2019																	
	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
Upr.	TropI	_ower	Strat														NASA Eur	
													Un	certair	nty		NOAA	
ENVISAT (MIPAS, SCIAMACHY, GOMOS)															JAXA			
AURA (TES, OMI)																		
	GOME												(Metop)					
	NPP/ OMPS (~sbuv+toms)																	
								OMPS-Nadir (Npc							pess)			
Lower Troposphere																		
		EN	IVISAT	C (SCIA	MACH	Y)												
AURA (TES, OMI)																		

ECMWF seminar `07

ECMWF seminar '07