

First lessons learnt from Metop

Peter Schlüssel

Jörg Ackermann, Arlindo Arriaga, Thomas August, Hans Bonekamp, Xavier Calbet, Lars Fiedler, Tim Hultberg, Dieter Klaes, Xu Liu, François Montagner, Éamonn McKernan, Olusoji Oduleye, Bill Smith, Jon Taylor

Initial Joint Polar System

- Since 1978 NOAA is flying operational polar orbiting weather satellites carrying multi-spectral sounders and imagers
- Under a NOAA-EUMETSAT cooperation agreement, signed in November 1998, Europe agreed to share the burden of the meteorological polar service with the USA
- Integration and coordination of the NOAA Polar Orbiting Environmental Satellite (POES) and the EUMETSAT Polar System (EPS) Programmes:
 - Afternoon & early morning orbits covered by the USA (POES & DMSP Satellites)
 - Mid-morning orbit covered by Europe (Metop Satellites)
 - Exchange of instruments and data, coordinated development and operations

Joint effort in a partnership of ESA, NOAA, CNES, and EUMETSAT

Start from Cosmodrome in Baikonour with Sojuz/Fregat launcher on 19 October 2006

...overpass of Metop, observed by Dieter Klaes on 19 April 2007

MetOp-A

6/2 MESZ

. . © Dieter Klaes

Height: 6.3 m Transverse Section: 3.4 m x 3.4 m (Launch Configuration)

Solar Panel: 11.3 m

Power: 2210 W (End of Life, Orbit Average)

Lifetime: 5 Years

12 Instruments

Launch Mass: 4200 kg

Data Flow: 3500 kbps

The Metop Satellite

ECMWF Seminar 3-7 September 2007

Metop during integration of instruments

ECMWF Seminar 3-7 September 2007

From launch to operational use (1/2)

Launch on 19 October 2006 from Cosmodrome in Baikonur

- Start and transfer to final orbit by ESA/ESOC
- Handover to EUMETSAT: 22 October 2006
- Successive switch-on of instruments and distribution of data
 - SARR, SARP instrument switch on: 24 October 2006
 - AMSU-A1/A2 instrument switch-on: 24 October 2006
 - First global AMSU-A data distributed in NRT: 31 October 2006
 - IASI instrument switch-on and start of otgassing: 24 October 2006
 - AVHRR instrument switch-on and outgassing: 25 October 2006
 - First generation of AVHRR L1 products (VIS, NIR): 25 October 2006
 - HIRS instrument switch-on and outgassing: 26 October 2006
 - A-DCS instrument switch-on: 26 October 2006
 - GRAS instrument switch-on: 27 October 2006
 - ASCAT instrument switch-on and first product generated: 27 October 2006

From launch to operational use (2/3)

Successive switch-on of instruments and distribution of data (cont.)

- GOME-2 instrument switch-on: 27 October 2006
- GOME-2 first spectra: 30 October 2006
- MHS instrument switch-on and first data: 31 October 2006
- MHS first L1 products generated: 1 November 2006
- SEM instrument switch-on: 9 november 2006
- ASCAT in measurement mode: 20 November 2006
- A-DCS instrument switch-on: 20 November 2006
- AVHRR, HIRS, GOME-2 in measurement mode:
- LRPT switch-on: 15 January 2007
- AHRPT switch-on: 23 January 2007
- LRPT switch-off permanently (RFI with HIRS): 26 January 2006
- 4 November 2006: Two anomalies abruptly stopped the sequence of success
 - Sudden failure within the Low Resolution Picture Transmitter (LRPT)
 - Sudden automatic switch-off of the complete Metop-A Payload Module, with all instruments.

From launch to operational use (3/3)

Progressive dissemination of data to users

- Monitoring by NWP centres (ECMWF and Met Offcie) provides valuable information on data quality and anomalies
- First global AMSU-A data distributed in NRT: 31 October 2006
- Met Office starts assimilation of AMSU-A data on 22 January 2007
- ECMWF starts assimilation of IASI data on 12 May 2007
- Cooperation with OSI SAF leads to successful calibraton of ASCAT despite failure of calibration transponders
- Completion of Metop-A Satellite In-Orbit Verification (SIOV): 30 March 2007
- Hand-over to operations: 21 May 2007

Metop-A control during SIOV

ECMWF Seminar 3-7 September 2007

Metop-A Satellite In-Orbit Verification

ECMWF Seminar 3-7 September 2007

Validation

- Validation of processors and products
 - Configuration of Product Processing Facilities
 - First rough validation including bias corrections in Level 2 processors using short-range forecasts
 - Refinement wit data from dedicated validation campaigns
- Campaigns:
 - ASCAT transponder-campaign Turkey, November 2007
 - CNES/CNRS IASI-Balloon: Kiruna, February 2007
 - Met Office FAAM: Western North Sea, March2007
 - IfM/Polarstern: Atlantic Ocean, April/May 2007
 - Met Office/NASA FAAM and WB-57: Golf of Mexiko and Oklahoma ARM-Site, April/May 2007
 - DWD: Assmann-Observatory Lindenberg, June-August 2007
 - FMI: Observatory Sodankylä, June-August 2007
 - CNES/CNRS IASI-Balloon: Kiruna, September 2007

Partnership (1/2)

- The EPS programme was set up in partnership with
 - ESA (for the development of the Metop space Segment)
 - NOAA (provision of US instruments and operational cross support)
 - CNES-IASI (Development of the IASI instrument, level 1 processor and Technical Expertise Centre)
 - CNES-ARGOS (A-DCS payload and operations)
- The Space Segment development was managed by the Single Space Segment Team (SSST) located at ESTEC, Noordwijk
- The Metop-A satellite was developed by a European consortium led by Astrium as the prime contractor under a joint ESA-EUMETSAT contract
- The Launch service was provided by Starsem using a Soyuz 2.1 a with an ST fairing launcher from the Baikonur Cosmodrome, under EUMETSAT Contract

Partnership (2/2)

- The Launch and Early Operations Phase (LEOP) was conducted by ESOC, Darmstadt, under EUMETSAT contract
- The Core Ground Segment was developed by Thales Alenia Space under EUMETSAT contract
- The Satellite SIOV activities were conducted by a joint team led by the SSST, EUMETSAT being responsible for the operations, and with contributions from all other partner organisations and industrial teams from the space segment and instrument manufacturers
 - Last but not least: EUMETSAT users provide valuable feedback
 - Throughout the programme development on instrument characteristics, system configurations, product processing and product formats
 - Post-launch via data monitoring and data usage

Satellite Application Facilities (SAF)

ECMWF Seminar 3-7 September 2007

EPS Service

Local Mission: Real-time data transfer of imaging and sounding instruments to local receiving stations

Global Mission: Provision of global data from Metop and NOAA satellites within 2¼ hours after respective measurements

Search and Rescue (S&R) Relay of distress signals

A-DCS: Reception and transfer of in-situ data

Daten Dissemination: EUMETCast: full data stream GTS: sub-set

IASI TEC CNES Toulouse IASI-Cal/Val and monitoring UMARF Central archive

EUMETSAT -

Data transfer and distribution

- From satellite to surface:
 - Data of one orbit is stored on board the satellite
 - Transfer to surface via X-band reception station on Svalbard after completion of each orbit
 - Transfer from Svalbard to Darmstadt via fibre link
 - Local users can directly read out the instrument data while the satellite is above their horizon
- Data processing in EPS Core Ground Segment at EUMETSAT HQ
 - Generation of Level-1-Products: decoding, calibration, navigation, apodisation, mapping/merging of data from different instruments
 - Generation of ATOVS and IASI Level-2-Products: atmospheric and surface meteorological parameters
- Distribution to users:
 - Level 1: within 2¹/₄ h after measurement, Level 2: within 3 h after measurement
 - Transfer via EUMETCast (BUFR code)
 - Transfer of subset via GTS (BUFR code)
 - All data, inclusive generated products are archived in the UMARF: Unified Archival and Retrieval Facility, and accessible 7 hours after the measurement

ATOVS- and AVHRR-Products

- AVHRR: Advanced Very High Resolution Radiometer
- AMSU-A: Advanced Microwave Sounding
- MHS: Microwave Humidity Sounder
- HIRS: High-resolution Infrared Radiation Sounder

EUMETSAT

ECMWF Seminar 3-7 September 2007

AVHRR SE-Coast of Greenland on 16/03/2007

AVHRR:

Wind vectors vectors in polar regions

CIMSS/Univ. Wisconsin

ECMWF Seminar 3-7 September 2007

MHS

MHSx_xxx_00_M02_20061031123900Z_20061031141800Z_N_C_20061031141551Z

ECMWF Seminar 3-7 September 2007

ECMWF Seminar 3-7 September 2007

ECMWF Seminar 3-7 September 2007

Feedback from Met Office AMSU-A noise figures (NE∆T in K)

Channel	Spec	Met Office estimate	NOAA- 18	Channel	Spec	Met Office estimate	NOAA- 18
1	0.3	0.19	0.20	9	0.25	0.18	0.17
2	0.3	0.19	0.18	10	0.4	0.24	0.20
3	0.4	0.28	0.22	11	0.4	0.29	0.23
4	0.25	0.15	0.16	12	0.6	0.37	0.29
5	0.25	0.15	0.18	13	0.8	0.52	0.40
6	0.25	0.12	0.15	14	1.2	0.92	0.63
7	0.25	0.13	0.16	15	0.5	0.10	0.14
8	0.25	0.19	0.20				

Feedback from Met Office MHS noise figures (NE∆T in K)

Channel	Spec	EUMETSAT estimate	Met Office estimate	NOAA-18 EUM/NOAA	AMSU-B EUM/NOAA
1	1.0	0.19	0.20	0.21/0.32	0.41/040
2	1.0	0.39	0.37	0.34/0.53	0.80/0.80
3	1.0	0.52	0.50	0.54/0.50	0.82/0.80
4	1.0	0.40	0.41	0.40/0.41	0.75/0.75
5	1.0	0.36	0.34	0.55/0.55	0.80/0.80

HIRS Channel 8

21 November 2006

ECMWF Seminar 3-7 September 2007

ASCAT: Advanced Scatterometer

LEVEL 2: soil moisture (land)

LEVEL 2: surface wind (ocean)

ASCAT: 20070530 21:30Z HIRLAM: 2007053015+6 lat ion: 61.76 -3.41 IR: 21:30

ASCA_SZO_1B_M02_20070530195702Z_20070530213559Z_N_O_20070530214303Z

EUM/MET/VWG/07/0351, Issue 1, 07/08/2007

ECMWF Seminar 3-7 September 2007

Page 35

(c) EUMETSAT/KNM

ASCAT

Normalised backscatter coefficients (σ_0)

ECMWF Seminar 3-7 September 2007
ASCAT: first comparisons by ECMWF

• GOME-2: Global Ozone Monitoring Experiment 2

First GOME-2 ozone columnar contents

First GOME-2 NO₂ columnar contents

Loyola, 2007

10¹⁶ mol cm⁻²

10¹⁵ mol cm⁻²

ECMWF Seminar 3-7 September 2007

GRAS GAVA antenna

Global Receiver for Atmospheric Sounding

ECMWF Seminar 3-7 September 2007

Infrared Atmospheric Sounding Interferometer (IASI)

- Michelson-Interferometer •
- IFOV diameter
- Scan interval (horiz.) •
- Swath width \bullet
- Spectral domain
- Spectral resolution
- Radiometric resolution Absolute calibration
 - Data rate
 - Internal imager

8461 spectral samples 12 km (nadir) 25 km (nadir) ±48.33° (2200 km) 645 - 2760 cm⁻¹ (3.6 – 15.5 μm) 0.5 cm⁻¹ 0.07 - 0.7 K (bands 1, 2) < 0.3 K 1.5 Mbit/s 10-12 µm Temperature- and humidity profiles, O₃, CO, CO₂, CH₄, N₂O, ...

ECMWF Seminar 3-7 September 2007

IASI FM-2: Radiometric noise

Scan patterns of the instruments

ECMWF Seminar 3-7 September 2007

IASI Level 2 product generation

ATOVS Level 2			MHS Lovel 1	NIWP Forecast
ATOVO LEVELZ		ANIOU-A Level 1		Itwi i biecast
		Pre-Pro	cessing	
			J	
		Cloud Pro	ocessing	
	G	eophysical Para	ameters Retrie	val
Monitoring Information		Level 2 Pro	duct	Quality Information

Properties of the Operational IASI L2 Processor (1/3)

- For a best use of IASI measurements the level 2 processing can combine IASI with concurrent measurements of AVHRR, AMSU-A, MHS, and ATOVS Level 2 products
- IASI stand-alone processing is possible if other measurements are not available, or if Product Processing Facility is explicitly configured to exclude other instruments
- NWP forecast is included to provide surface pressure as reference for the profiles to be retrieved and surface wind speed over sea for the calculation of surface emissivity
- Optionally, the NWP forecast profiles of temperature, water vapour and ozone can be used to initialise and/or constrain the retrieval

Properties of the Operational IASI L2 Processor (2/3)

- Processing is steered by configuration settings (80 configurable auxiliary data sets), which allows for optimisation of Product Processing Facility before and during commissioning
- Online quality control supports the choice of best processing options in case of partly unavailable IASI data or corrupt side information (data from other instruments or NWP forecast)
- Besides error covariances a number of flags are generated steering through the processing and giving quality indicators; 40 flags are specified, which are part of the product

ECMWF Seminar 3-7 September 2007

Properties of the operational IASI L2 Processor (3/3)

- All 8461 IASI spectral samples, covering the spectral region from 645 to 2760 cm⁻¹, are used in the retrieval to maximise the retrieved information
- The Product Processing Facility supports nominal and degraded instrument modes (e.g. failure of single detectors/bands)
- Bias control by radiance tuning via configuration

Cloud processing

Cloud detection

- AVHRR-based cloud detection using Scenes Analysis from AVHRR Level 1 processing
- Combined IASI / ATOVS cloud detection
- IASI stand-alone cloud detection
- Cloud parameters retrieval
 - Cloud fraction
 - Cloud top height
 - Cloud phase

First IASI spectra on 29 November 2006

IASI - 645 cm⁻¹

IASI - 945 cm⁻¹

IASI - 1645 cm⁻¹

Comparisons of simulated and measured spectra

ECMWF Seminar 3-7 September 2007

Comparisons of simulated and measured spectra

Correction of systematic errors

 ΔT_B (OBS-MOD) mean and stddev

- All retrieval and assimilation schemes use radiative transfer calculations as basis
- Prerequisite for the functionality of the retrieval or assimilation is a good representativity of the measurements by simulated radiances
 - Systematic errors:
 - Approxmations necessary for fast calculations
 - Insufficient knowledge of spectroscopic data
 - Erroneous input data
- Systematic fit of models to IASI measurements

$\rm AVHRR/0.6,$ cold front, all CFR, IASI 20070418124454Z

Discrimination of ice and water clouds

Geophysical parameters retrieval: state vector to be retrieved

- The state vector to be retrieved consists of the following parameters
 - Temperature profile at a minimum of 40 levels
 - Water vapour profile at a minimum of 20 levels
 - Ozone columns in deep layers (0-6km, 0-12 km, 0-16 km, total column)
 - Land or sea surface temperature
 - Surface emissivity at 12 spectral positions
 - Columnar amounts of N_2O , CO, CH₄, CO₂
 - Cloud amount (up to three cloud formations)
 - Cloud top temperature (up to three cloud formations)
 - Cloud phase

In case of clouds and elevated surface the state vector has to be modified

Geophysical parameters retrieval: first retrieval

- Spectra PC scores regression for temperature and water-vapour, and ozone profiles, surface temperature, and surface emissivity
- Artificial neural network (multi-layer perceptron) for trace gases (optionally also for temperature, water-vapour and ozone, depends on configuration setting)
- The results from the first retrieval may constitute the final product or may serve as input to the final, iterative retrieval; the choice depends on configuration setting and on quality of the first retrieval results

Geophysical paramters retrieval: final, iterative retrieval

- Simultaneous iterative retrieval, seeking maximum probability solution for minimisation of cost function by Marquardt-Levenberg method, using a subset of IASI channels, single or combined to super-channels
- Initialisation with results from first retrieval
- Other choices of initialisation may be selected, depending on configuration setting and availability (e.g. NWP forecast, climatology, ATOVS Level 2 product)
- Background state vector from climatology, ATOVS Level 2 product, adjacent retrieval, or NWP forecast, depending on configuration and availability
- State vector to be iterated depends on cloud conditions and configuration setting (clear, cloudy, variational cloud clearing)

Comparison: IASI / NAST-I / radiosonde

EUMETSAT

Comparison: ECMWF / IASI Clear situations May – June 2007 Land: 1330 match-ups Ocean: 21810 match-ups

Comparison: ECMWF – IASI L2

ECMWF Seminar 3-7 September 2007

JAIVEx: Joint Airborne IASI Validation Experiment

IASI: temperature retrievals on 10 June 2007 ~09:30 UTC

Page 69

IASI: temperature retrievals on 10 June 2007 ~09:30 UTC

IASI: humidity retrievals on 10 June 2007 ~09:30 UTC

IASI level 1 data format

Advantages of current data format

- User can use the IASI spectra like those from channel radiometers and extract useful parts
- Interferometric characteristics are hidden from users, e.g. negative radiances

Disadvantages of current data format

- Large data volume: 2 Mbit/s
- Quantisation in 16 bit words: slight degradation
- Full usage of information hardly possible
- Apodisation of spectra implies non-diagonal error covariances: complication in assimilation and retrieval

Possible future representation

Utilisation of empirical orthogonal functions

- Projection of IASI level 1A spectra (unapodised) on ~250 EOFs
- Dissemination of EOF-scores

Advantage and new potential

- Data volume: 49 kbit/s
- Re-constructed spectra are quasi noise-free
- Direct assimilation of EOF scores instead of radiance spectra

Conclusion

- Metop-A has been launched and been operated successfully
- New instruments have been successfully commissioned
- Level 1 data are routinely disseminated to users
- Validation of the numerous products is ongoing

PCRTM: radiative transfer in EOF-space

PCRTM calculates EOF-scores (Y) instead of spectral radiances (R)

$$\vec{Y} = U \times \vec{R}^{mono}$$
$$\frac{\partial Y_i}{\partial X} = \sum_{l=1}^{N_{mono}} a_l \frac{\partial R^{mono}(l)}{\partial X}$$

• Relationship between EOF scores and measured radiances:

$$R_{i}^{chan} = \frac{\sum_{k=1}^{N} \phi_{k} R_{k}^{mono}}{\sum_{k=1}^{N} \phi_{k}}; \qquad \vec{Y} = U^{T} \times \vec{R}^{chan}$$

Spectral radiances can be calculated from EOFs and corresponding scores:

$$\vec{R}^{chan} = U \times \vec{Y} = \sum_{i=1}^{N_{EOF}} y_i \vec{U}_i + \vec{\varepsilon}$$

ECMWF Seminar 3-7 September 2007

EUM/MET/VWG/07/0351, Issue 1, 07/08/2007

PCRTM: Training with LBL-model

•RMS error in brightness temperature: < 0.025 K

•Systematic errors in brightness temperature: (-0.0002 K, 0.0004 K)

PCRTM: validation with ECMWF and IASI data

ECMWF Seminar 3-7 September 2007

EUM/MET/VWG/07/0351, Issue 1, 07/08/2007

PCRTM-retrieval: Levenberg-Marquardt-iteration

$$X_{n+1} - X_{a} = (K^{T} S_{y}^{-1} K + \lambda I + S_{a}^{-1})^{-1} K^{T} S_{y}^{-1} [(Y_{n} - Y_{m}) + K (X_{n} - X_{a})]$$

50 retrieved EOF-Scores:

Surface temperature: 1 Temperature profile: 19 Humidity profile: 15 Ozone profile:10 Emissivity: 5

Variable	Radiance/state vector: dimensions	EOF-space: dimensions
Y	8461	100
X	>100	50
K	> 8461x100	100x50
S _y ⁻¹	8461x8461	100x100
S _a	> 100x100	50x50
Calculation of <i>K</i> and <i>Y</i>	~2 s	~0.1 s

