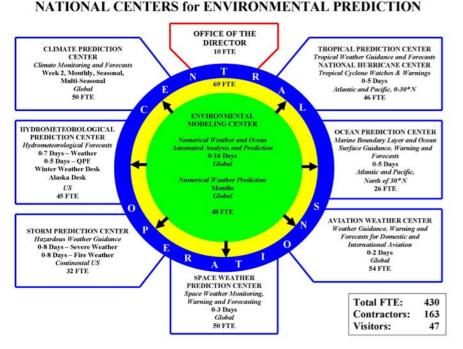


NAWIPS Status and Plans

Steve Schotz

NCEP/Central Operations Systems Integration Branch November 15, 2007

WHERE AMERICA'S CLIMATE AND WEATHER SERVICES BEGIN

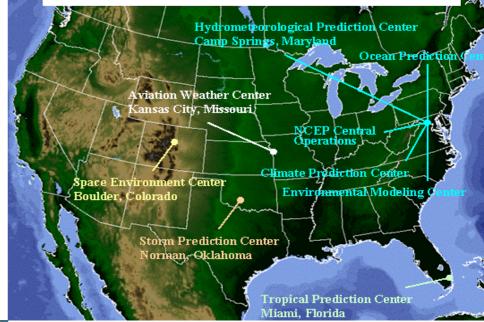

AGENDA

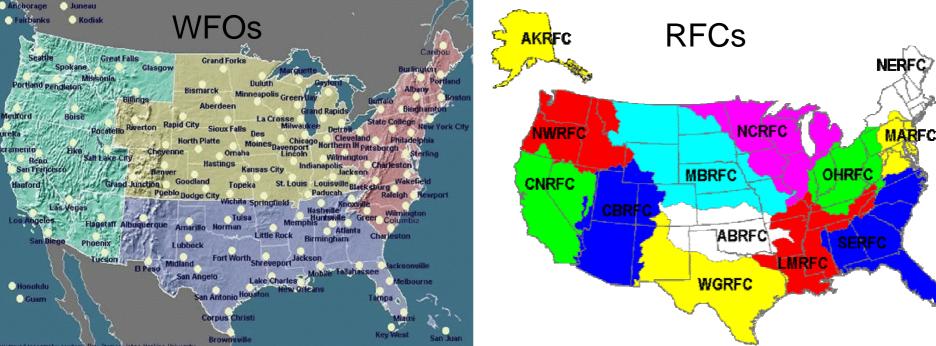
- Background
 - NCO organization background
 - NAWIPS mission
- Overview of NAWIPS functionality and development strategy
- Recent enhancement highlights
- AWIPS Evolution/AWIPS II
 - Program Scope
 - Architecture Overview
 - NAWIPS migration strategy to AWIPS II
- Questions

NCO Mission

Develop and Support IT Infrastructure for entire NCEP Enterprise

- Execute NCEP operational model suite
- Manage improvements to NCEP model suite
- Manage the flow of data and products
- Develop Meteorological Software

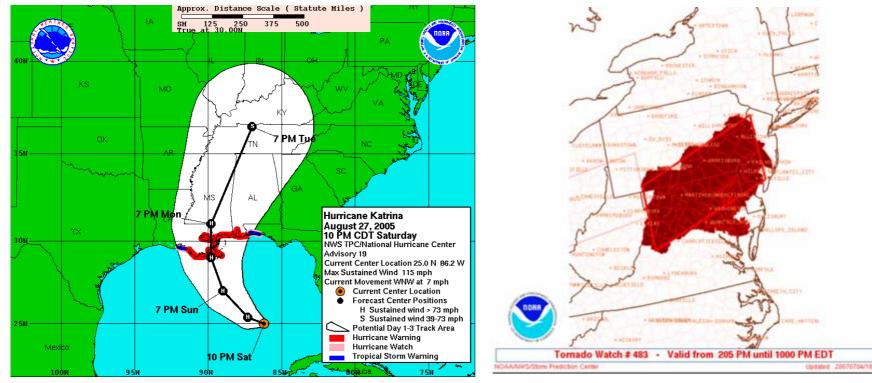




NAWIPS Mission

- Develop meteorological application software to meet NCEP requirements, NCEP-AWIPS (NAWIPS)
 - National Centers given responsibility to meet their mission requirements occurred in early phase of AWIPS program – Late 1980's
 - Recognition of significant mission differences between National Centers and Local Forecast offices and River Forecast Centers
 - Decision primarily cost-driven

NATIONAL CENTERS FOR ENVIRONMENTAL PREDICTION


NAWIPS Key Attributes

• NAWIPS Software:

- Ingests, performs calculations on and displays meteorological observational and model data
- Operates on the full spectrum of geographic and temporal scales
- Is adaptable, allowing for the introduction of new data, products and functional improvements
- Has the flexibility to support a diverse user base
 - NCEP Centers (AWC, CPC, HPC, NHC, OPC, SPC)
 - Automated products on the NCEP super computer
 - NWS Alaska, Pacific, & River Forecast Centers
 - UCAR-Unidata (~200 universities)
 - Government labs

- Is used to create a diverse set of forecast products

NAWIPS Product Samples

Hurricane Track Forecast

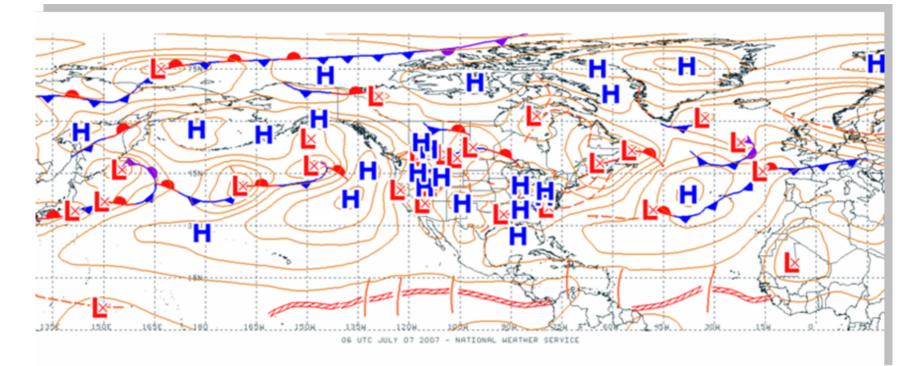
From the Tropical Prediction Center's National Hurricane Center

Tornado Watch

From the Storm Prediction Center

NAWIPS Product Samples

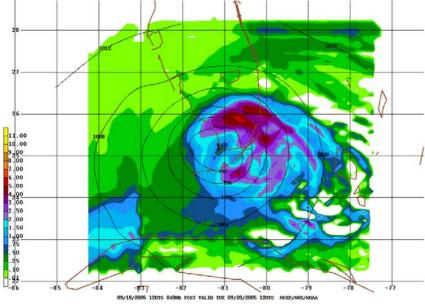
From the Aviation Weather Center

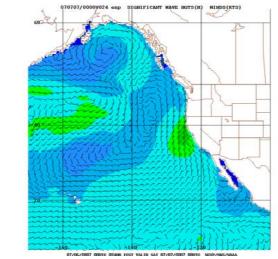

6 to 10 Day Forecast From the Climate Prediction Center

Ν

HTURE PROBABILI 6 JUL 2007 JUL 12 -

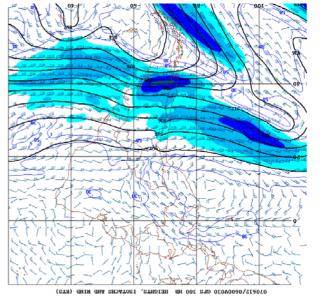
2007


NAWIPS Product Sample

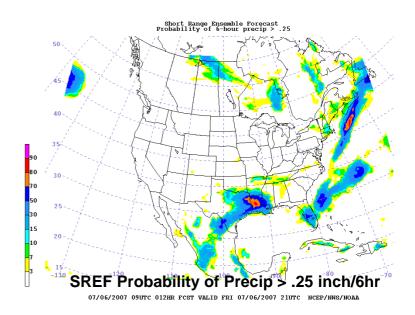

Unified Surface Analysis

Collaboration of the Hydrometeorological Prediction Center, Ocean Prediction Center, Tropical Prediction Center and Pacific Region

Automated Model Product Samples Created on the NCEP CCS

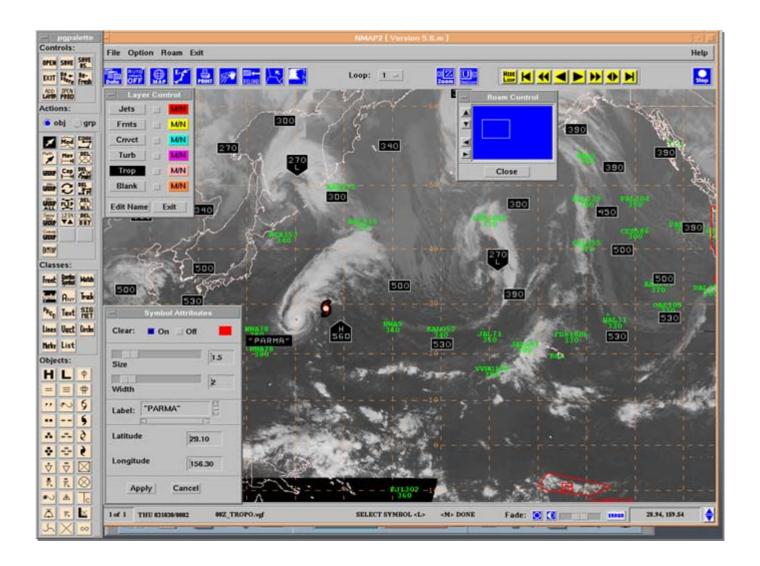


HWRF Surface Forecast



WW3 Wave height/winds

15.0 14.0 13.0 12.0 11.0 -9.0 -9.0 -8.0 -7.0 6.0 5.0 -3.0 -2.0 -1.5


GFS Upper Air Forecast over South America

NAWIPS Key Attributes- Continued

- Integrated Product Generation
 - Creation/Editing of graphical products overlaid on meteorological data displays
- Critical requirements:
 - Drawing and editing tools using meteorological objects, e.g., fronts, weather symbols, etc.
 - Graphical objects navigated to account for multiple product sectors and projections, wind rotation, …
 - Facility to import first guess fields, e.g., model fields and other centers' graphical products
 - Product formatting to support GIF, TIFF, PostScript, GRIB, BUFR, text …
 - Product layering to support multi-component or multi-time concurrent editing
 - Object grouping

NMAP2 Integrated Product Generation GUI

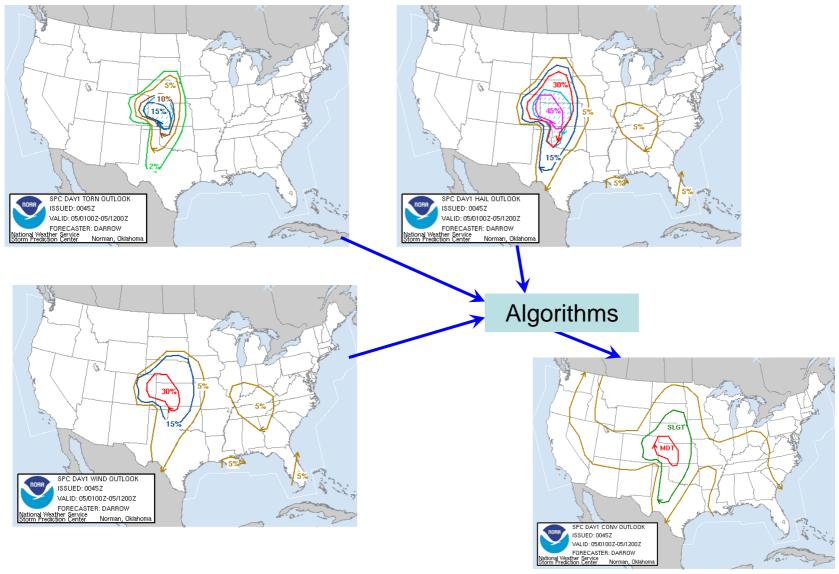
NAWIPS Development Strategy

- Address multiple requirements with generic functionality
- Support multiple platforms: Unix (HPUX, AIX), Linux, single or multi-monitor workstations
- Use an evolutionary development strategy
 - Build in small frequent increments, quarterly release cycle
 - Refine requirements based upon forecaster feedback

NAWIPS Enhancement Motivations

- Products new/enhanced/more consistent
- Forecast process
 - New science
 - New data types
 - New or enhanced techniques
 - Increase efficiency
 - Add or enhance interactive display and product generation tools
 - Automate process components

Automate Creation of Categorical Severe Weather Outlooks


Description:

 Automatically create categorical outlook from probabilistic products

Motivations:

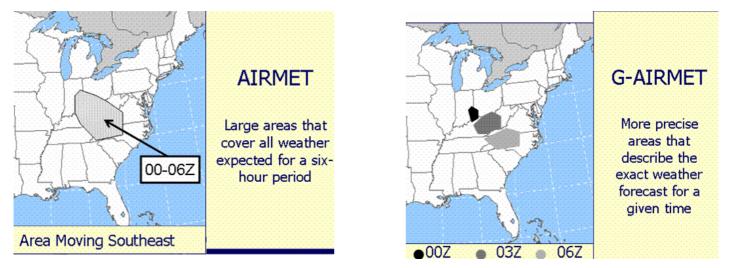
- Improve consistency among related outlook products
- Increase forecaster efficiency to allow forecaster more time to create new products

Automate Creation of Categorical Severe Weather Outlooks from Probabilistic Weather Outlooks for the SPC

Outlook Probabilistic to Categorical Process

- Forecaster uses NMAP2 tools for graphical creation/editing and text product creation
- Post processing Creates categorical outlooks
 - Polygon combine
 - Polygon clipping
 - Application of rule set that relates outlook types

Outlook Probability	TORN	WIND	HAIL
2%	SEE TEXT	NOT USED	NOT USED
5%	SLGT	SEE TEXT	SEE TEXT
10%	SLGT	NOT USED	NOT USED
15%	MDT	SLGT	SLGT
30%	HIGH	SLGT	SLGT
45%	HIGH	MDT	MDT
60%	HIGH	HIGH	MDT

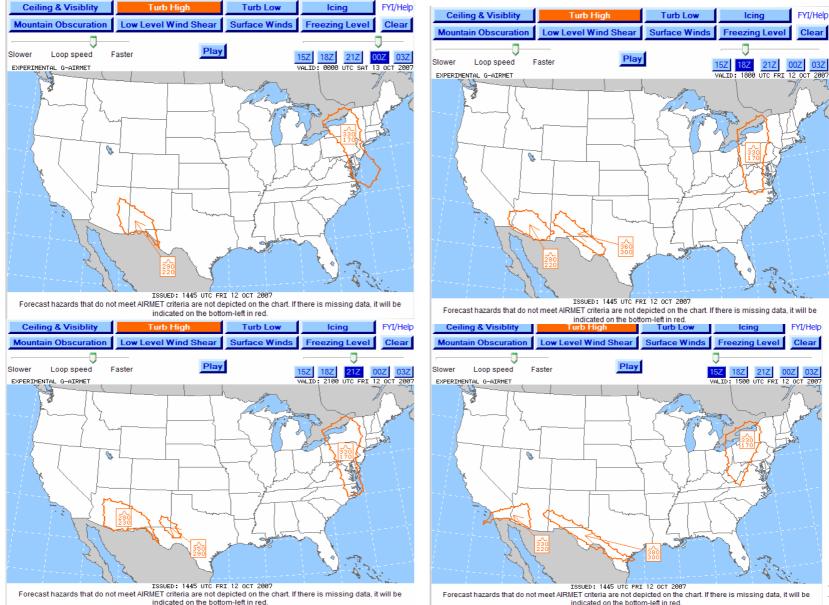

Day 1 Probability to Categorical Outlook Conversion (SIGNIFICANT SEVERE area needed where denoted by hatching otherwise default to next lower category)

- Public product creation
 - Graphics: object to graphic encoding
 - Grids : object to grid using graph-to grid techniques

Graphical AIRMET (G-AIRMET) Production For AWC

Motivations: Improve domestic forecast aviation hazard product

- Greater spatial and temporal resolution than current AIRMET
 - 3 hour snap shot as opposed to 6 hour time smear



- Increase product issuance
- Creating graphical product that is geo-referenced form (BUFR) to allow product to be displayed in end user systems
- Standardize AIRMET text product by deriving it from graphical product in a automated fashion

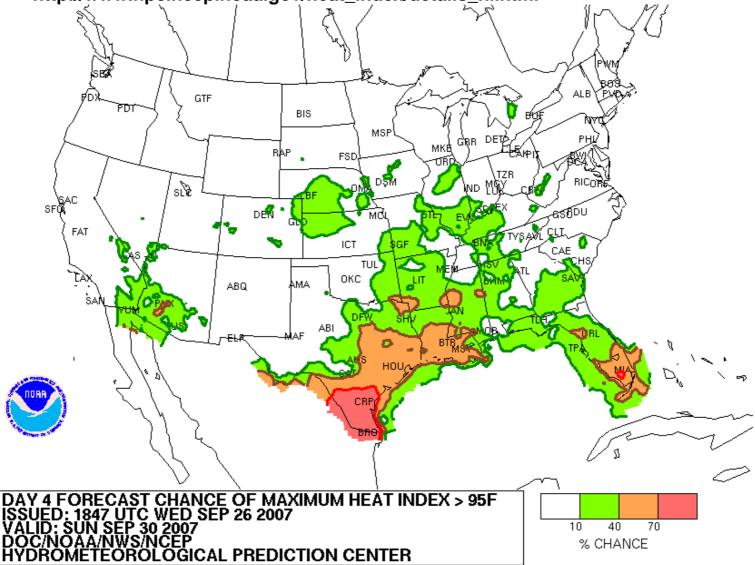
G-AIRMET Creation Process

- Create G-AIRMET hazard snap shot object using NMAP2 tools
- NMAP2 generates AIRMET text product using a suite of algorithms:
 - Polygon combine for 6 hour time smear
 - Polygon snapping to aviation relative geographic points
 - Polygon clipping to forecast boundaries
 - Polygon point reduction and splitting to ensure that generated text product complies with AIRMET text length specification
- Post processing to create BUFR and web products with required attributes from NMAP2 generated objects

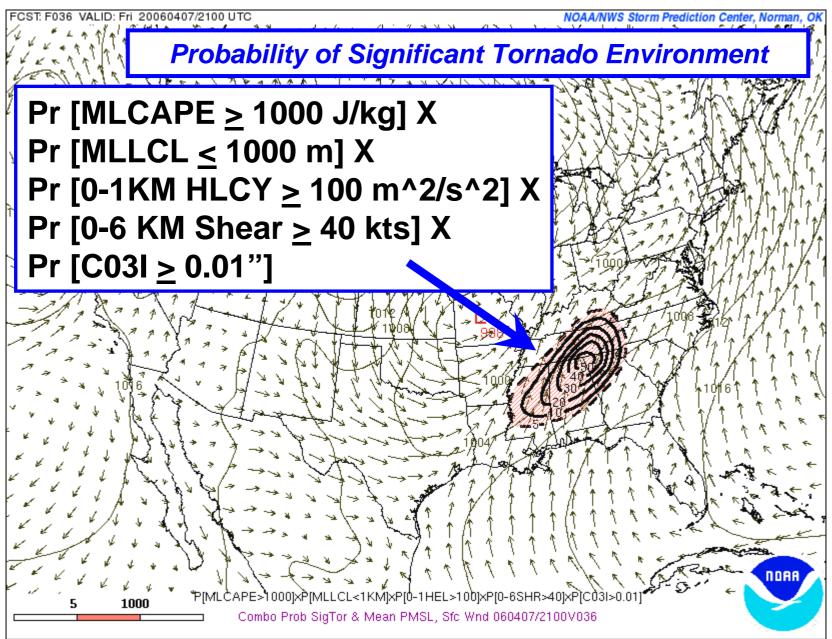
Example: Turbulence

19

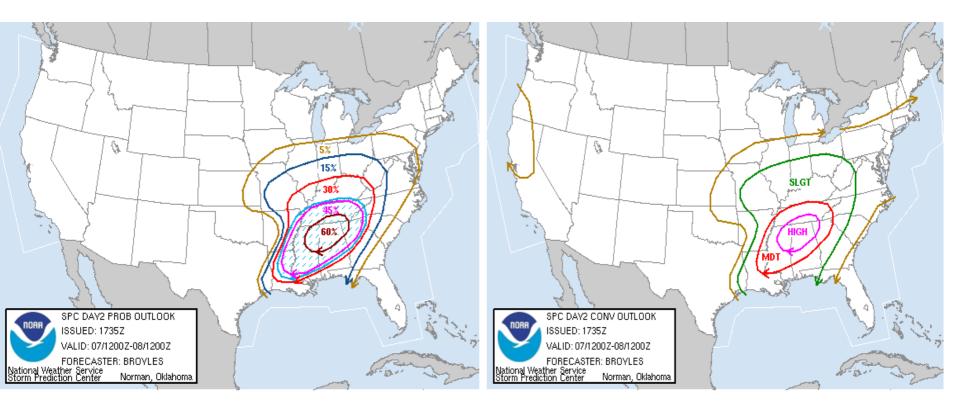
NAWIPS Ensemble Calculation Capabilities


• Motivation

- Improve use of ensemble derived products to support forecast process
- Requirements for probabilistic based products


• Key Attributes

- Ensemble calculations can operate on any of available grid diagnostics
- User specified ensemble members and/or deterministic models can be used in calculations
- Calculations can be performed on super-computer or workstation environment
- Current ensemble functions
 - Average, weighted average, spread of scalar and vector diagnostics
 - Min/max/mode/percentile/range of scalar diagnostic
 - Multivariate probability function of scalar diagnostics


Ensemble spread combined with forecaster input to create a probabilistic heat index forecast. For details see: http://www.hpc.ncep.noaa.gov/heat_index/details_hi.html

SREF Probability- Used For Day 2 Severe Outlook

Day 2 Severe Weather Outlooks Using Ensemble Guidance

Probability of severe weather within 25 miles of a point. Hatched Area: 10% or greater probability of significant severe within 25 miles of a point.

Ensemble IT Challenges

- Meteorology community desires access to entire suite of ensembles and derived products in a timely fashion
- Volume of ensemble data is large and will continue to grow rapidly thus applying stress on entire IT infrastructure: networks, data flow, local server processing and local data storage
 - Currently produced 850GB per day on CCS
 - Currently operationally distributed
 - 65 GB/day to remote centers NCEP Centers
 - 120 GB/day to FTP server
 - 45GB/day to NWS Telecommunications Operations Center
 - The future holds more expansions
 - Additional members
 - Higher resolutions
 - More individual ensemble output products

Ensemble IT Potential Options

- Centrally created products versus locally created products
 - Advantage Alleviates distribution issues by not distributing all data
 - Disadvantage less flexibility for center and end-users to create event based ensemble products
- Develop "smart push smart pull" data delivery systems
 - "Smart" Capability to subset and distribute by parameter, space, time, ensemble member
 - NOAA Operational Model Archive and Distribution System (NOMADS)
 - Advantage will partially satisfy end -user requirements in near term Initial Operational Capability FY08
 - Disadvantage Internal data flows, and server capacity limitations; Timeliness currently not sufficient to meet NCEP center forecaster requirements
 - Develop NWS enterprise solution AWIPS II evolution initiative
 - Implements a discovery service within the AWIPS II Service Orientated Architecture (SOA)
 - Allows access to data not available locally
 - Schedule Final Operational Capability FY 2012

AWIPS Evolution Scope

- AWIPS Evolution (FY2005 FY2014)
 - A long-term project which delivers a modern, robust software infrastructure that provides the foundation for future system level enhancements for the entire NWS enterprise
- AWIPS II Migration of WFO/RFC AWIPS (FY2007-FY2009)
 - Implements a modern Services Oriented Architecture (SOA) infrastructure
 - First output of AWIPS Evolution and provides the foundation for all subsequent improvements
- AWIPS II Extended Creation of a seamless weather enterprise spanning NWS operations (FY2009-FY2010)
 - Migration of NAWIPS into the AWIPS II SOA
 - Delivery of thin client
 - Support to the Weather Service Offices and Center Weather Support Units
 - Integration of "orphan" systems (e.g., Weather Event Simulator)
- AWIPS II enterprise enhancements (FY2009 FY2014)
 - Data delivery enhancements
 - "Smart push-smart pull" data access
 - Integrated visual collaboration
 - Visualization enhancements
 - Information generation enhancements

AWIPS II Architecture Overview

- Created by Raytheon
- Consists of AWIPS Development Environment (ADE) and the Common AWIPS Visualization Environment (CAVE)
- Service Oriented Architecture (SOA)
- Primarily Java based
- Integrates many Open Source Projects

ANT	ADE build scripting	
JAVA	ADE Java virtual machine	
postgresSQL	RDBMS for metadata	
Jibx	Java Object to XML mapping	
Jython	Python scripting in Java	
Jhdf5	Java API to HDF5	
Hibernate 3	Relational to object mapping	
Geotools	GIS libraries and tools	
Antlr	Language grammar parser	
Xfire	Collaborator server	
Eclipse RCP	Visualization framework	
Jogl	Open GL Java API for CAVE	
Batik	SVG tool library	
Activemq	ADE Java Messaging Service	
Mule ESB	ADE Enterprise Service Bus	

NAWIPS Migration Strategy

• FY-08

- Familiarize NAWIPS staff with AWIPS II Technology
 - SOA and Java Training
 - Participation in AWIPS II SOA testing
 - Develop prototype applications in AWIPS II environment
- Develop NAWIPS migration plan
- FY-09 and FY-10
 - Migrate NAWIPS functionality to AWIPS II SOA

QUESTIONS???