3rd International Verification Methods Workshop, 29 January - 2 February 2007

Group Project:

A Maidens, A Celozzij, Y-F Tong, C Gebhardt, P Zacharov

Objective:

To evaluatie the quality of Pop forecastis generatied from the ECMMWF EPS for Hong Kong

Verification Questions:

What is the qualitiy of the PoP forecasts? Are the PoP forecasts skilful?

Data

- Forecenst dentie:

1. ECMMMF EPS datie! (1 contirol + 50 ensemble members) for dailly precipitation firons May 2004 to Noventor 2006 (forecast lead-tinne 47 dayss).
2. ECMWMF deterninistic forecest for deily precipitetion for the selrne period.

- Observation: Observed daily rainfall in flong Kong, average of $/$ representative ralin-gauges.

Choice of Verification Method

- Verify the probability forecastis for rainy days (i.e. >0.5mins/dey); healy rain (i.e. >20mnn/day).
- Verification scores and meinods chosen:

1. Reliability diegrams (bias)
2. Brier Score (reliabilitity, resolution)
3. ROC score (potential skill)

ROC-area $=0.84$

4-day lead-time

- $\quad \mathrm{DS}=0.19$
- DS - bess $=0.24$
- ESS $=0.21$
- Fel-BSS = 0.03
- Res-ESS = 0.08
- UnIC-ESS $=0.24$

20 おnsidaly

$B S=0.095$
BS - bas $=0.09589$
Skill Score $=0.006$
Re-BBS $=0.007$
Res-BBS $=0.0075$
Unc-BBS $=0.096$

Day-5 to 7 forecasts, rainy day (>0.5 mm/day)

Reliability, $0.5 \mathrm{~mm} /$ day threshold, day- 5 forecast

Reliability, $0.5 \mathrm{~mm} /$ day threshold, day- 6 forecast

Reliability, $0.5 \mathrm{~mm} /$ day threshold, day- 7 forecast

ROC, $0.5 \mathrm{~mm} /$ day threshold, day- 6 forecast

ROC, $0.5 \mathrm{~mm} /$ day threshold, day- 7 forecast

Brier Skill Score

Resolution

Reliability

ROC area

Conclusions

- The POP forecasis tend to over-forecast the occurrence of rainy days (i.e. $>0.5 \mathrm{~mm} / \mathrm{m} / \mathrm{da}$ ay)
- Brier skill scores (ESS) indicatie that the POP forecasts are in general skiliful compared to sample climatiology.
- The BSS decreases (i.e. qualify degrades) with increasing forecast leacl-time. The decease is mainly due to the reduction of resolution component, corresponding to the fact that the EPS forecests become similar to the climatiologjual distribution with longer lead-time
- The ROC curves suggest that the EPS POP forecasts have-similair potential skill for day-4 to day-7 lead-times.

Thank You!

Summary

5-day lead time

Reliability, $0.5 \mathrm{~mm} /$ day threshold, day- 5 forecast

ROC plot, $0.5 \mathrm{~mm} /$ day threshold, day- 5 forecast

0.5 mindelay

- $\mathrm{DS}=0.19$
- BS - bets = 0.24.
- BSS $=0.19$
- Fel-ESS = 0.032
- Res-ESS $=0.076$
- Unc-DSS $=0.24$

ROC-area $=0.835$

Reliability, $20 \mathrm{~mm} /$ day threshold, day- 5 forecast

20)nindelay

- $\mathrm{BS}=0.094$
- BS - bess $=0.096$
- Skill Score $=0.01$
- Rel-BES $=0.0043$
- Res-BES $=0.006$

Unc- BBS $=0,096$

6-day lead time

Reliability, $0.5 \mathrm{~mm} /$ day threshold, day- 6 forecast

Reliability, $20 \mathrm{~mm} /$ day threshold, day- 6 forecast

ROC, $0.5 \mathrm{~mm} /$ day threshold, day- 6 forecast

ROC-area $\mathbf{= 0 . 8 2}$

ROC-area $=0.68$

20 nasideley

- $\mathrm{BS}=0.094$
- BS - bas $=0.095$
- Skill Score $=0.016$
- Rel-gBS $=0.00$ B
- Res-BES $=0.004$
- V月C-BES $=0.095$

Reliability, $0.5 \mathrm{~mm} /$ day threshold, day -7 forecast

ROC-area $=0.81$

7-day lead time

- ES $=0.20$
- DS - bes = 0.24
- BSS = 0. 135
- Fel-ESS = 0.032
- Res-BSS = 0.064
- Unc-ESS = 0.24
- FSOC-Eljeel = 0.81

20ssiss/day

- BS $=0.094$
- ES - bes = 0.095
- Skill Score $=0,016$
- reel-BES = 0.003
- Res-BBS $=0.004$

Une= B $S=0.095$ ROC-area $=0.66$

