Playing the score – exploring beyond the hedge

Ian Jolliffe University of Reading

Outline

- Hedging, propriety, equitability, consistency
 - What are they?
 - When are they relevant?
- Starting point/inspiration
 - 'What does "hedging" a forecast mean ...' by Laurie Wilson & Beth Ebert in the FAQ section of http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif _web_page.html

Metaverification

- The term 'metaverification' was used by Murphy (1996) to describe 'determining whether or not verification measures ["scores" for brevity] satisfy specific criteria and/or possess particular properties'
- Such criteria include propriety, consistency and equitability, all of which relate to the avoidance of hedging

Hedging

- Hedging has a variety of definitions, but is commonly taken in everyday use to mean 'placing bets on the opposite side in order to cut losses or guarantee a minimum amount of winnings'. In other words a forecast allows more than one (conflicting) possibility.
- The term is fairly well-known in meteorology, though not very often used in print. When it is, it is taken to mean that it occurs (Murphy, 1978) 'whenever a forecaster's judgement and forecast differ'.

To hedge or not to hedge

- 'A meteorologist who prepares probability forecasts should not "hedge," i.e. the meteorologist's probabilities should express his true beliefs'
- 'A meteorologist whose forecasts are evaluated with a particular scoring system can, and should, be expected to "hedge" to obtain the best possible score'
- Both quotations express plausible positions. Both are from Murphy & Epstein (1967), the latter deriving from a panel discussion reported in BAMS (1952)

Hedging and scores

- Hedging is used to make some sort of gain over what can be achieved without hedging
- In everyday usage the gain is financial
- In meteorology the gain is a better value or expected value of some score used to assess/verify forecasts. Hence hedging is 'playing the score'.
- To make both quotations compatible we can restrict ourselves to using scores for which hedging is impossible we need proper, or consistent, or perhaps equitable, scores

Propriety

Children should early be taught the lesson of Propriety and Good Manners.

• Next they should be taught about equitability and consistency.

Propriety II

- For probability forecasts, a (strictly) proper scoring system is one for which the forecaster obtains the best possible expected score by forecasting his/her true beliefs (and only by doing so) – Murphy & Epstein, 1967
- The Brier score is the best known proper score there are others (logarithmic, spherical –Winkler & Murphy, 1968; Winkler, 1996), also plenty of theory and discussion (e.g Gneiting & Raftery, 2007, Winkler + discussants 1996). Equally, many scores (e.g. linear) are not proper.

Equitability

- 'All' unskilled forecasts should have the same expected score
- Not so obviously related to hedging as propriety
 - But if a score is not equitable, it can be hedged in the sense that a forecaster who knows (s)he has
 little skill may do better using an unskilled forecast with a better expected score

Propriety and equitability

- No scoring system for probability forecasts can be both proper and equitable – noted at the last of these workshops (Montreal), and at last written up
- Given the choice, which would you prefer?
 Propriety or equitability?

Equitability and probability forecasts

- Not only is equitability incompatible with propriety, but it is rather difficult to achieve equitability at all for probability forecasts
- Any score is a function S(d) of the difference d=f-o, where f is forecast probability and o the corresponding observation, which is always 0 or 1
- If S(d) is required to be symmetric [S(d)=S(-d)], then equitability is impossible unless the event being forecast has a base rate/climatology θ equal to 0.5
- In this case if the unskilled expected score is zero any score with S(d) = -S(1-d) will be equitable, but the limitation to $\theta=0.5$ is somewhat restrictive

Equitability and probability forecasts II

- What about allowing non-symmetry of S(d)?
- It is then relatively easy to get an equitable score
- Suppose again that the unskilled expected score is zero, and (arbitrarily) set S(0)=-1. Also let θ be the base rate and $r = \theta/(1-\theta)$.
- Then for d>0, the score
 - S(d)=[d/(1- θ)]-1; S(-d)=(d/ θ)-1 is equitable
- But such scores rapidly become non-symmetric as θ and d move away from zero e.g for $\theta=0.6$, S(d)=(5d/3)-1 and S(-d)=(5d/2)-1. At the end of the range S(1)=r, S(-1)=1/r, equating to 3/2 and 2/3 in the example, and becoming 9 and 1/9 for $\theta=0.9$.

Equitability and probability forecasts III

- Is such asymmetry ever desirable?
 - I can envisage the possibility of asymmetry based on cost/loss considerations, but for equitability, the nature of the asymmetry is tied to the base rate

Consistency

- For deterministic forecasts 'consistency' takes the place of 'propriety'
- Like 'hedging' the meaning is slightly different from everyday usage
- There are 'consistent' forecasts those that correspond with the forecaster's judgments i.e. the forecaster does not hedge (Murphy, 1993)
- There are also 'consistent' performance measures (scores) ...

Consistent scores

- For the definition of consistency given by Murphy & Daan (1985) we need to assume that any forecaster really has a probability distribution for the variable to be forecast and a rule or directive determines the deterministic forecast to be made, given the forecaster's probability distribution
- Then a score is consistent with the directive if that score is minimised by forecasting using that directive. For example if the directive is 'forecast the mean' for a continuous variable, then mean square error is a consistent score as it is minimised by forecasting the mean.

Consistent scores - remarks

- The assumption of how the forecaster behaves (forecast deterministically when his/her beliefs are probabilistic) implies that the forecaster always hedges in the sense that true beliefs are not forecast
- However, it is the opposite of hedging in its everyday usage (make forecasts less definite), and is not done to improve a score
- As a slight digression, Murphy (1978) argues that 'the desire to eliminate hedging should encourage forecasters to express ... forecasts in probabilistic terms'
- It seems to me that the definition of consistency could be turned around to say that a directive is consistent with a score, rather than a score consistent with a directive. Are others uneasy with the definition? What do we mean by hedging for deterministic forecasts?

Hedging for deterministic forecasts

- First what do we mean by hedging?
 - For probability forecasts it implies improving 'expected score'. But expectation is with respect to the forecaster's true beliefs.
- For deterministic forecasts either the forecaster's true beliefs are
 - deterministic (and clearly wrong) or
 - Probabilistic and unknown
- So does hedging now imply improving actual score? Or is there another definition?

Back to equitability

- Although apparently not very useful for probability forecasts, it is often made a requirement for deterministic categorical forecasts
- Does equitability rule out hedging when hedging implies improvement of actual score?
- Does non-equitability necessarily imply that a score can be hedged?

Equitability – a conjecture

- Equitability ensures that hedging is impossible for deterministic categorical forecasts
- It works for the Pierce skill score, an equitable score for binary forecasts
 - Transferring a proportion of forecasts of an event to forecasts of no event or, conversely, transferring a proportion of no-event forecasts to 'event', reduces the Pierce skill score
 - But is this the only way that a forecaster can diverge from his/her true beliefs?

Non-equitable scores

- Non-equitable scores may or may not be hedged, depending on details of the data
- Consider 'Proportion Correct' in a (2x2) table, a non-equitable score, (a+d)/n
- If a>b and d>c the score cannot be improved by transferring a proportion of forecasts to nonforecasts, or vice versa; otherwise it can

	Observe event	Observe no event
Forecast event	a	b
Forecast no event	с	d

Questions? Or answers!