# Two extra components in the Brier Score Decomposition 

David B. Stephenson, Caio A. S. Coelho (now at CPTEC), Ian.T. Jolliffe University of Reading, U.K.

$$
\begin{aligned}
& B S=\frac{1}{n} \sum_{k=1}^{m} \sum_{j=1}^{n_{k}}\left(f_{k j}-o_{k j}\right)^{2} \\
& =\bar{O}(1-\bar{O})+\frac{1}{n} \sum_{k=1}^{m} n_{k}\left(f_{k}-\bar{O}_{k}\right)^{2}-\frac{1}{n} \sum_{k=1}^{m} n_{k}\left(\bar{o}_{k}-\bar{O}\right)^{2} \\
& =\text { Uncertainty }+ \text { Reliability - Resolution }
\end{aligned}
$$

## Brier score components

To calculate the components (e.g. E(o|f)):
Stratify on ALL issued probability values $\{\ddagger\}$

OR

Stratify into $m$ distinct probability bins:

- More reliable estimates (smoothing);
- Can avoid sparseness issues;
- Comparison of different forecasting systems.


100 bins


50 bins


## $\rightarrow$ Forecast system is over-confident

## Example:Equatorial Pacific SST

88 seasonal probability forecasts of binary SST anomalies at 56 grid points along the equatorial Pacific. Total of 4928 forecasts.

$$
o=(S S T>0) \quad f=\operatorname{Pr}(\hat{o})
$$

OBS


OBS ENS



The probability forecasts were constructed by fitting Normal distributions to the ensemble mean forecasts from the 7 DEMETER coupled models, and then calculating the area under the normal density for SST anomalies greater than zero.

## Forecasts and observations at 150W



X = observed binary event: =1 for above average SST Dots = ensemble mean forecasts of SST
Solid line = probability forecast estimated from ensemble means

## Prob. forecasts stratified on observations



Observed binary event $X$

## $\rightarrow$ Forecast system has discrimination

## Brier score for probabilties in m bins

$$
\begin{aligned}
& B S=\frac{1}{n} \sum_{k=1}^{m} \sum_{j=1}^{n_{k}}\left(f_{k j}-o_{k j}\right)^{2} \\
& =\bar{O}(1-\bar{O})+\frac{1}{n} \sum_{k=1}^{m} n_{k}\left(f_{k}-\bar{O}_{k}\right)^{2}-\frac{1}{n} \sum_{k=1}^{m} n_{k}\left(\bar{O}_{k}-\bar{O}\right)^{2} \\
& +\frac{1}{n} \sum_{k=1}^{m} \sum_{j=1}^{n_{k}}\left(f_{k j}-\bar{f}_{k}\right)^{2}-\frac{2}{n} \sum_{k=1}^{m} \sum_{j=1}^{n_{k}}\left(o_{k j}-\bar{o}_{k}\right)\left(f_{k j}-\bar{f}_{k}\right) \quad \leftarrow N E W!!
\end{aligned}
$$

$=$ Uncertainty + Reliability - Resolution

+ Within-Bin Variance - Within-Bin Covariance
For mathematical derivation please refer to: Stephenson, D.B., Coelho, C.A.S., and Jolliffe, I.T., 2007: Two extra components in the Brier Score decomposition, Weather and Forecasting (submitted).


## Brier score components vs. num. of bins



## $\rightarrow$ Brier score is less than REL-RES+UNC!

## Within-bin terms and Generalised RESolution


$\rightarrow$ GRES=RES-WBV+WBC is more constant than RES

## The End

## Within-bin Variance of Probabilities



Red dots = probabilities $f$ Blue line = bin-average $f$ Black line = bin-average o (reliability diagram)






## $\rightarrow$ Forecast system is over-confident






## $\rightarrow$ Forecast system is over-confident

