Performance of the ECMWF Model in Polar Regions

Thomas Jung ECMWF (ECMWF Annual Seminar on Polar Meteorology)

Thanks to: Martin Leutbecher + colleagues from RD

- Analysis
- Predictability issues
- Specific Phenomena
- Systematic Error

Region

- Primarily Northern Hemisphere

Season

- Boreal winter (DJF and DJFM)

Atmospheric circulation

ERA-40 vs Operational Analysis

Total Z500 Variability

(a) Standard Deviation: Total Z500 Variability (ERA40, 2000-01)

(b) Standard Deviation: Difference OD-ERA40 (2000-01)

Synoptic Z500 Variability

(a) Standard Deviation: Synoptic Z500 Variability (OD DJF 2000-01)

(b) Standard Deviation: Difference OD-E4 (Synoptic, DJF 2000-01)

Synoptic-Scale Z500 Snapshots

2-8 day bandpass-filtered data

- Analyzed circulation seems good enough for the purposes of this study
- This is true for synoptic and planetary scales
- Clearly improvement in recent years

<u>Temporal Evolution of</u> Deterministic Forecast Error

<u>Temporal Evolution of</u> Deterministic Forecast Error

<u>Temporal Evolution of</u> Deterministic Forecast Error

ACC Z50 DJF NH: 1995-2006

Time Series of the Meridional Temperature Gradient

Probabilistic Skill: NH Polar Cap

All Scales

Synoptic Scales Only

Polar Cap=north of 65N

Courtesy of Martin Leutbecher

EPS Skill vs. Spread: NH Polar Cap

All Scales

Solid lines: RMSE of EM Dashed lines: Ensemble spread

Courtesy of Martin Leutbecher

<u>Sensitivity of Forecast Error</u> <u>to Initial Conditions</u>

Q: How do perturbations to the initial conditions look like that have a large impact on forecast error north of 70N?

$$\delta J = \left\langle \nabla_0 J, \delta \mathbf{x}_0 \right\rangle$$

- T159L60 TL/AD
- linearized physical processes
- Target: north of 70N
- 48 hour forecast error

<u>D+2 Forecast Error in Polar Regions:</u> Temperature at about 500 hPa (20041129)

Forecast Sensitivity (DJFM 2004/05) to Initial Perturbations

Flow-Dependent Deterministic Forecast Error (D+2, DJF, 1982-2001)

PC1-Associated Z500 Anomaly (DJF 1982-2001)

EOF2: Absolute D+2 FCE Z500 (DJF 1982-2001)

PC2-Associated Z500 Anomaly (DJF 1982-2001)

Flow-Dependent Deterministic Forecast Error

Composite Z500 (01/96-12/02) Analysis vs NAOI

Composite Z500 (01/96-12/02) D+5 Forecast Error vs NAOI

Composite Z500 (01/96-12/02) D+5 EPS Spread vs NAOI

<u>Conclusions</u>

- Substantial improvements in the predictive skill in polar regions
 - Troposphere and stratosphere
 - Deterministic and probabilistic
 - Resolutions seems to be a key-element
- Mid-latitude North Atlantic has an impact on high-latitude forecast skill (flow-dependent)
- Deterministic forecast error is flowdependent
- EPS captures flow-dependence in the midlatitudes (also polar regions?)

Mean Z500 Errors at D+10 (DJF)

Deterministic Forecast

Control Forecast

(b) Mean Z500 Error: CF D+10 (2001-2006 DJF) 70 60 50 40 30 20 10 -10 -20 -30 -40 -50 260⁰ -60 5800 -70

Spurious Systematic Z500 Error?

Spurious Systematic Z500 Error?

Jung, QJ, 2005

- Systematic errors of the circulation are difficult to detect at high-latitudes (large decadal-scale variations)
- Loss of predictability might be misinterpreted as biases
- Long time series are necessary (reforecasts)
- ERA-40 reforecast (D+10) show rather little systematic error in polar region (NH)
- However, in some region systematic errors continue to grow beyond D+10...

Seasonal Integrations

- Atmospheric model only (different model cycles and resolutions)
- Lower boundary conditions: Observed SSTs (uncoupled)
- Initial conditions: ERA-40 and/or OD analysis
- One run for each of a large number of winters (e.g., 1990-2005)

Mean Z500 Error and Horizontal Resolution (DJFM 1990-2005)

T_L95L91-OBS

T_L511L91-OBS

Extratropical Cyclones: Questions

- How well do we simulate observed characteristics of high-latitude cyclones?
- How sensitive are the results to horizontal resolution?

Extratropical Cyclones: Experiments

Three data sets:

- ERA-40/Operational analyses for verification
- T_L95L91 run (31R1)
- $T_L 159L91 run (31R1)$
- $T_L 255L91 run (31R1)$
- T_L511L91 run (31R1)
- DJFM 1990-2005 (forecasts start 1st November)
- 6-hourly MSLP interpolated to a common 2.5x2.5 deg grid

Description up to T255 in Jung et al. (2006), to appear in QJ

Tracking Software

- Strategy: Searching for and tracking local minima in MSLP fields
- High temporal resolution required (6-hourly data)
- Data have been interpolated to 1-hourly data for tracking
- The accuracy of the software is very high (verified against manually tracked systems)!
- The software has been developed by Sergey Gulev and co-workers

Extratropical Cyclone Tracks and Pressure

Number of Extratropical Cyclones (1990-2005)

Number of Extratropical Cyclones (1990-2005)

Influence of Horizontal Resolution on the Number of Extratropical Cyclones (1990-2005)

Synoptic Activity and Horizontal Resolution (DJFM 1990-2005)

Synoptic Activity and Horizontal Resolution (1990-2005)

Synoptic Z500 Activity: Difference eslx-esm0 (12-3 1990-2005)

The Greenland Tip Jet Events

Moore and Renfew (2005)

Greenland Tip Jet Events: D+1 Forecasts at Various Resolutions

T₁95L91

(a) SLP and Turbulent Heat Fluxes: 20041226 12z FC+24h (T95)

(d) SLP and Turbulent Heat Fluxes: 20050116 12z FC+24h (T95)

(e) SLP and Turbulent Heat Fluxes: 20050116 12z FC+24h (T255)

(f) SLP and Turbulent Heat Fluxes: 20050116 12z FC+24h (T799)

Jung and Rhines, JAS, submitted

Greenland Tip Jet Events: QuikSCAT Winds

T_L799L60

Courtesy of Hans Hersbach

Leading EOFs: Z50 Anomalies

53.0% EOFI 53% Z50 Anomalies er40 (12-3 1962-2001)

8.8% EOF3 8.84%: Z50 Anomalies er40 (12-3 1962-2001)

62.4% EOF1 62.4% Z50 Anomalies eqzy (12-3 1962-2001)

12.3% EOF2 12.3% Z50 Anomalies eqzy (12-3 1962-2001)

10.7% EOF3 10.7%: Z50 Anomalies eqzy (12-3 1962-2001)

Leading EOFs: Z50 Anomalies

53.0% EOFI 53% Z50 Anomalies er40 (12-3 1962-2001)

15.6%

EOF2 15.6%: Z50 Anomalies em3i (12-3 1962-2001)

8.8% EOF3 8.84%: Z50 Anomalies er40 (12-3 1962-2001)

58.4%

EOF1 58.4%: Z50 Anomalies em3i (12-3 1962-2001)

10.2%

EOF3 10.2%: Z50 Anomalies em3i (12-3 1962-2001)

The Stratosphere-Troposphere Link

<u>Methodology</u>

$$\dot{\mathbf{x}} = \mathbf{IFS}(\mathbf{x}_0) \pm \mathbf{F}$$

- F is the composite optimal forcing of the polar vortex (adjoint, 18 cases)
- F is applied in the stratosphere only (>150 hPa)
- 3 40-day forecasts for every winter (1982-2001)
- Control & Control ± F
- T_L95L60 (cycle 28r1)

Stratospheric Response (50hPa)

Z1000 Response (Weak-CNTL)

Strong Vortex Composites (ERA-40)

Strong Vortex Composites (T_L95L91)

Sensitivity to Vertical Resolution

- Two different resolutions (L62 and L91)
- Same resolution up to 150hPa.
- L91:
 - About 45 levels in the stratosphere
 - Highest level at 0.01 hPa
- L62:
 - About 15 levels in the stratosphere
 - Highest level at 5 hPa
- All runs at T_L95
- DJFM 1962-2001 (starts on 1st October)

Influence of Vertical Resolution (L62-L91)

Influence of Vertical Resolution (L62-L91)

Stationary Waves

(b) Eliassen-Palm Flux Vectors and Divergence Difference (eqzy-eqz8 1962-2001) Stationary Eddies

Transient Waves

- Substantial improvements of the model climate at very high resolution (e.g, westerly wind bias).
- This is particularly true for synoptic-scale systems in high-latitudes.
- More realistic simulation of the stratospheric eigenstructure.
- Vertical resolution primarily influences stationary waves.
- "Downward propagation" is captured by the ECMWF model (even at T_L95L62).

Strong Vortex Composites (T₁95L62)

STD of Forecast Error: D+2.5 Z500 Tendency (2-8 days)

(a) STDEV: Z500 Tendency Analyses (2001-2006 DJF)

(c) STDEV: D+3-D+2 Z500 CF Error (2001-2006 DJF)

n

(d) Difference: (c)-(b)

Evolution of D+3 Systematic Z500 Errors

Jung, QJ, 2005

Synoptic Z500 Activity in Different Analyses

Difference Synoptic Z500 Activity: ERA40-ERA15 (DJFM 1979-92)

Systematic Error Growth: EPSC Z500 (DJFM 2000-03)

Reduction of Systematic Errors (1981-2003)

Extratropical Cyclone Tracks (1995-2001)

Model Cyclones DJFM 1995-2000 (T255L40)

940 950 960 970 980 990 1000 1010 1020

Systematic Z500 Error Growth: Medium-Range (DJFM 1960-2001)

Planetary-Scale Z50 Variability (k=1-5)

Synoptic-Scale Z50 Variability

EP-Flux Vectors and Divergence: Stationary Eddies

ERA-40

L62-ERA40

EP-Flux Vectors and Divergence: Stationary Eddies

ERA-40

L91-ERA40

Optimal Stratospheric Forcing (50hPa)

EP-Flux Vectors and Divergence: Stationary Eddies

L91

L62-L91

EP-Flux Vectors and Divergence: Transient Eddies

ERA-40

L62-ERA40

EP-Flux Vectors and Divergence: Transient Eddies

ERA-40

L91-ERA40

EP-Flux Vectors and Divergence: Transient Eddies

L91

L62-L91

Synoptic Z500 Activity D+21-D+30

