

Global Burnt Area Products

Kevin Tansey Department of Geography, University of Leicester, UK kevin.tansey@le.ac.uk

Structure

- Why burnt area estimation is important
- Challenges to global burnt area mapping
- Data sets: Current
- Data sets: Future

The need for burnt area

 $BB = A \times D \times a \times a$

A = area burned D = biomass density á = fraction of above-ground biomass â = burning efficiency

G(X) = M x P x E G = amount of gas X released M = biomass loading per surface unit P = % of biomass consumed E = emission factor.

Seiler and Crutzen (1980)

Justification

The area consumed by fire at both continental and global scales is one of the parameters that create the greatest uncertainty in calculating the amount of biomass burned and gases (e.g. CO, CO2, CH4) emitted at these scales

(Scholes et al., 1996; Barbosa et al., 1999; Andreae and Merlet, 2001; Isaev et al., 2002; Conard et al., 2002)

The need for global products

- Regional/continental data computed using different methodologies
- Validation results differ or do not exist
- Source data for global products can be traced
- Data can be gridded and time composited
- Input data for GCMs and ecosystem models

Challenges

- BA cannot be derived from active fire products
 - Signal saturation
 - Diurnal signal (detected by MODIS)
 - Useful for detection of below-canopy fires
 - Possibly useful for the confirmation that a fire occurred but limited in the temporal sense
- Scientists try it though -
 - ♦ Giglio et al., ACPD, 5, 2005
 - BA is proportional to fire count
 - Vegetation cover data, size of active fire cluster
 - Lots of assumptions that cannot easily be verified

Challenges

- Fires occur in a number of different ecosystems
 - Intensity
 - Size
 - Production of ash
 - Flaming/smouldering
 - Time scale of scar visibility
 - Smoke/cloud cover
 - Leaf off conditions
 - Flooding
 - Annual variability

Current BA products

Product name Satellite-sensor Product type	Resolution sensor Product	Time step <i>sensor</i> Product	Coverage	Period	Source	Documentation
GBA2000 <u>SPOT</u> -VGT Burnt area	<i>1 km</i> 1 km ²	<i>day</i> month	globe	2000	JRC	Tansey et <i>al</i> ., 2004 JGR(109) & Climatic Change (67) //www-gvm.jrc.it/fire/gba2000/index.htm
GLOBSCAR ERS-AATSR Burnt area	<i>1 km</i> 1 km ²	<i>day</i> month	globe	2000	ESA	Simon <i>et al.</i> , 2004 JGR(109) //shark1.esrin.esa.it/ionia/FIRE/BS/ATSR/
GBA1982-1999 <u>NOAA</u> -AVHRR Burnt area	<i>5 km</i> 8 km ²	<i>day</i> week	globe	1982 to 1999	JRC	Carmona-Moreno <i>et al.</i> , 2005 Global Change Biology (11 /9) //www- gvm.jrc.it/tem/Disturbance_by_fire/index.htm

Information provided by Jean-Marie Gregoire (JRC)

Inter-comparison of global fire products: -World Fire Atlas (WFA) - GLOBSCAR - GBA2000

University of Leicester DEPARTMENT OF GEOGRAPHY

Boschetti et al., 2004

Future BA products

PRODUCT NAME EO system	Resolution sensor product	Time step <i>sensor</i> product	Coverage	Period	Source	Documentation
GLOBCARBON ERS, ENVISAT, SPOT ATSR, AATSR, MERIS, VGT	<i>1 km</i> 8 km	<i>day</i> month	globe	1998-2003	ESA	http://dup.esrin.esa.it/projects/ summaryp43.asp
VGT4Africa SPOT-VGT	<i>1 km</i> 1 km ²	<i>day</i> 10 days	Africa	2005-	JRC	http://www-gvm.jrc.it/tem/
GEOLAND GLOBCARBON/VGT	<i>1 km</i> 1 km	<i>day</i> 10 days	Africa & Eurasia	1998-2003	JRC	http://www-gvm.jrc.it/tem/ Restricted access (GEOLAND)
MODIS Burned Area TERRA, AQUA	<i>500 m</i> 500 m	<i>day</i> month	globe	2000-	UMD NASA	http://modis- fire.umd.edu/products.asp#8

ECMWF, 6th February 2006

Information provided by Jean-Marie Gregoire (JRC)

University of Leicester DEPARTMENT OF GEOGRAPHY

GlobCarbon

- GlobScar algorithm applied to (A)ATSR-2
- 3 GBA2000 algorithms to VGT data
 - 1 Mexico & Australia
 - ◆ 2 Africa
 - ♦ 3 Remaining land areas
- Merging of the two BA products
- Confidence Rating Index
- 1998-

Information provided by Stephen Plummer (ESA-IGBP)

ECMWF, 6th February 2006

GlobCarbon - Results

Madagascar

Confidence Rating Index

63-74% 75-87%

88-100%

Information provided by Stephen Plummer (ESA-IGBP)

Sensor Agreement ATSR VGT Both University of Leicester DEPARTMENT OF GEOGRAPHY

MODIS Algorithm

Developed for systematic automated global mapping

- Not a classification approach requiring training data or human intervention
- Takes advantage of the robustly calibrated, atmospherically corrected, cloud-screened, geo-located data provided by MODIS data
- Physically-based algorithm less dependent upon imprecise but noise tolerant classification techniques
- Provides a route for the use of multiple data sources and observations of varying degrees of uncertainty within a rigorous modeling framework

Algorithm

- Change detection approach applied independently per pixel to daily gridded MODIS 500m land surface reflectance time series
- Thresholds defined by the noise characteristics of the reflectance data and knowledge of the spectral behavior of burned vegetation and spectrally confusing changes

=> map 500m location and approximate day of burning

Information provided by David Roy (SD State University)

Blue = beginning of month Red = end of month

University of Leicester DEPARTMENT OF GEOGRAPHY

Information provided by David Roy (SD State University)

European Global Daily BA Product

- University of Leicester initiative with
 - JRC Technical Uni. of Lisbon Catholic University of Louvain
- Improvement of a GBA2000 algorithm
- Multi-annual SPOT VGT data 1999-
- 1km² resolution
- Daily product first date of detection
- Error sources are being addressed

Processing Module Inputs

- Input B2, B3 and MIR data for day x
- Intermediate composite products
 B2 B3 and MIR
 - B2, B3 and MIR
- Contaminated pixel mask
- Regional statistical algorithm
- First day of burn (FDOB) binary
 - Julian day
- View and solar angle information
- Land cover data

Processing Module Outputs

- Updated Intermediate composite products
 B2, B3 and MIR
- Contaminated pixel mask
- Updated First day of burn (FDOB) binary
 - Julian day
- Probable burnt area product for day x
 - Summed with the existing burnt area product to give confidence indicator of burnt area
- Cloud cover frequency & gap frequency

	💋 Raster	Attribute
	File Edit	Help
DDA Doily Dooulto	🗃 🗋	H 17
PBA DAILY RESULTS	Row	Histogra
	200	
	201	
	203	
	204	
	205	
	207	
	208	
	200	
	211	
	212	
	213	
	215	
Search and the second	216	
	217	
	219	
	220	
	222	
	223	
	224	
	226	
	227	
	228	
	220	
	231	
	232	
	234	
	235	
	236	
	238	
	239	
	240	
	242	
	243	
	244	
	246	
	247	
	248	
Northern Australia	250	
	251	
	252	
	054	

Editor - fdob_australia.img(:Layer_1) ÷ 🖹 🔂 Layer Number: 1 Color Opacity ~ m 1 1 1 1 254 255 256 257

ECMWF, 6th February 2006

PB

>

💹 Raster Attribute Editor - fdob_safrica.im... 🗐 🗖 🔀 File Edit Help -🖹 🔂 Layer Number: *i* **R** 17 Color ~ Histogram Row Opacity 0 0 349 359

ECMWF, 6th February 2006

FDOB Northern Africa

FDOB Central Russia

ECMWF, 6th February 2006

Concerns over Results

Canada and Russia – leaf off conditions
This will be corrected using existing data

Questions

- Hard and soft classifications:
 - Does the user community want or know how to handle probability data?
 - Do they still need burnt or not burnt information?
- How do we combine burnt area data with fire severity data for improved emissions estimates?