

Scientific challenges in chemical data assimilation

Henk Eskes, Royal Netherlands Meteorological Institute, De Bilt, the Netherlands

Topics:

- Ozone
- Tropospheric chemistry:
 - * satellite trace gas observations
 - * 4D-Var

Ozone assimilation at numerical weather centres

NWP and ozone

Benefits for atmospheric chemistry science community:

Multi-year data base of 4D ozone fields, consistent with the available satellite observations and atmospheric dynamics (ERA 40)

- Recovery ozone layer
- Chemistry climate interaction

Benefits of accurate ozone observations to numerical weather prediction

- Radiation: ozone has significant influence on temperature (and wind)
- Satellite retrieval: TOVS
- Assimilated ozone observations lead to wind increments
- UV forecast

Impact of ozone on NWP winds

Wind increments due to TOVS ozone observations

ECMWF model

Elias Holm EU SODA project

Wind increments ~ 0.5 m/s

Ozone satellite observations

Satellite instruments measuring ozone

UV-Vis nadir

• TOMS (1978-present), SBUV, SBUV-2, GOME, SCIAMACHY, OMI

Limb (IR, MW, UV-Vis)

• MLS on UARS, MIPAS, OSIRIS, SMR, MLS-Aura

Occultation

• HALOE, SAGE, POAM, GOMOS

Nadir (IR)

• TOVS, AIRS

Ozone column measurements: 1978-2005

SCIAMACHY total ozone (KNMI retrieval)

QuickTime™ en een TIFF (ongecomprimeerd)-decompressor zijn vereist om deze afbeelding weer te geven.

currently assimilted in IFS

Henk Eskes, ECMWF seminar, September 2005

....

Stratospheric ozone assimilation

Ozone assimilation at KNMI

Chemistry-transport assimilation model:

- TM model: 2x3 degree lat-lon resolution, 44 layers
- ECMWF analyses of winds, temperatures
- Second moments advection
- Stratospheric chemistry parametrizations
 - Gas-phase
 - Heterogeneous
- GOME/SCIAMACHY ozone columns
- Sub-optimal Kalman filter data assimilation scheme

Eskes et al. Q. J. R. Meteorol. Soc., 129, 1663-1681, 2003

Stratospheric chemistry parameterization

Gas-phase chemistry

Cariolle, Déqué, JGR 91, 10825, 1986

$$\begin{aligned} \frac{d\chi}{dt} &= \langle S \rangle + \left\langle \frac{\partial S}{\partial \chi} \right\rangle (\chi - \langle \chi \rangle) \\ &+ \left\langle \frac{\partial S}{\partial T} \right\rangle (T - \langle T \rangle) + \left\langle \frac{\partial S}{\partial \Phi} \right\rangle (\Phi - \langle \Phi \rangle) \end{aligned}$$

- χ ozone concentration
- S sources sinks
- Φ ozone column above point

Stratospheric chemistry parameterization

Heterogeneous chemistry

(Peter Braesicke, CAS, Cambridge Univ.)

$$\frac{d\chi}{dt} = -\frac{1}{\tau}A\chi$$
$$\frac{dA}{dt} = \frac{1}{\tau_p}(1-A) - \frac{1}{\tau_l}A$$

- χ ozone concentration
- A activation tracer field (cold tracer)
- τ ozone depletion time scale
- τ_p activation time scale
- τ_l cold tracer life time

Typical forecast performance: OmF

total ozone rms(OmF) typically 3%

bias within 1%

SCIAMACHY vs. assimilation

Henk Eskes, ECMWF seminar, September 2005

Ozone forecasts

Anomaly correlation

Anomaly correlation

$$C = \langle (f-c)(a-c) \rangle / v \langle (f-c)^2 \rangle v \langle (a-c)^2 \rangle$$

(f = forecast, a = analysis, c = climatology)

- Anomaly normally defined w.r.t. climatology "c" : Not useful for ozone - artificially high scores
- Alternative: "c" = running monthly mean

Monthly-mean analysis: April 2001

Analysis vs TOMS: 15 April 2001

Total ozone anomaly correlation

meaningful forecasts up to 7 days (outside the tropics)

Eskes et al., ACP, 2, 271, 2002

Forecast of the 2002 ozone hole split event

GOME measurements at 25 September 2002

Vortex breakup, September 2002

26 September 2002 Analysis based on GOME

H. Eskes et al, J.Atmos.Sci. 62, 2005

A. Simmons et al, J.Atmos.Sci. 62, 2005

Vortex breakup, September 2002

26 September 20027-day forecast

Clear-sky UV forecast (UV-index)

20 November 2001 (5-day forecast)

August 2005: very early start of ozone hole

SCIAMACHY assimilation

(grey: large analysis error)

August 2005: very early start of ozone hole

As seen by OMI ...

August 2005: very early start of ozone hole

Ozone hole size GOME and SCIAMACHY

plot generated on 6 Sep 2005

Residual transport

Residual circulation: Brewer-Dobson, STE

Issue:

The distribution and concentration of long-lives trace gases (CH4, N2O, O3, CO) is very sensitive to a correct description of slow overturning processes in the atmosphere: mixing barriers subtropics - midlatitudes, stratosphere-troposphere, northern - southern hemispere

Example: Too much stratosphere-troposphere exchange has a profound influence on chemistry in the troposphere

Note: NWP models are especially well tested for medium-range time scales (10 days)

Residual circulation: Brewer-Dobson, STE

Bram Bregman

• Stratosphere-troposphere exchange enhanced: large ozone influx problem for tropospheric chemistry models *Twan van Noije, J. Geophys. Res, 109, 2004*

Residual circulation: Brewer-Dobson, STE

Trajectory study: Schoeberl et al, jgr 108, 2003

Recent run at ECMWF with improved bias correction on temperature and with 4D-Var shows considerable improvement: *Adrian Simmons, GEMS kick-off*

Ozone: Summary and challenges (1)

Satellite ozone measurements and assimilation

- Long list of satellite instruments measuring ozone, but only small fraction is assimilated operationally: SBUV, TOVS, bit of MIPAS, GOME, SCIAMACHY, TOMS for reanalyses
- Total ozone measured accurately by UV-Vis spectrometers TOMS, GOME, SCIA, OMI: latest retrievals have accuracy order 2%
- Still lack of tropospheric satellite ozone measurements
- Challenges:
 - 1. Create operational analyses and re-analyses based on multiplesatellite observations: limb-nadir, trop-strat-meso 3D view
 - 2. Realistic tropospheric analyses, e.g. by combining total ozone observations, stratospheric profile observations and a well tuned data assimilation scheme. Improve retrievals specifically with respect to troposphere.

Ozone: Summary and challenges (2)

Ozone modeling

- Dynamical features in the lower stratosphere (and total column anomalies) modelled well in much detail
- Ozone and clear-sky UV forecast work well useful up to D+7, also for extreme events like sudden warmings

• Challenge:

Find efficient way to accurately represent ozone chemistry in NWP models

GEMS: coupling IFS and CTMs with comprehensive chemistry

Ozone: Summary and challenges (3)

Ozone assimilation

- rms(OmF) of total ozone data assimilation typically 3%
- Challenge:

Demonstrate positive impact of ozone assimilation on wind field

Age of air, strat-trop exchange

 Assimilation models typically show too strong mixing between tropics-extratropics (M. Schoeberl), stratosphere-troposphere exchange too fast These issues crucial for trace gas modelling

Challenge:

Identify problems and improve

e.g. bias corrections of satellite temperature observations in higher stratosphere (ECMWF)

Satellite observations of tropospheric chemistry / air quality

GEMS: Focus on O₃, CO, CH₄, NO₂, CH₂O, SO₂

Why these gases ?

- Crucial compounds for chemistry of free troposphere
- Crucial compounds in air-quality O₃, NO₂, CO, SO₂ (and aerosols) all subject to regulations
- CH₂O related to total hydrocarbon release
- CH₄ greenhouse gas
- Satellite data has recently become available !

Tropospheric Life Cycles of Climatically Important Species

Carbon monixide

Satellite sensors:

- MOPITT
- AIRS
- IASI
- TES Aura
- SCIAMACHY
- IMG
- MIPAS
- SMR Odin
- ACE-FTS
- MLS-Aura

Note:

- Infrared instruments especialy sensitive to middle troposphere
- Near infrared sensitive to surface

NO₂: combined retrieval/modeling/assimilation

- Surface albedo
- Profile shape
- Stratosphere
- T-dep cross sections

Slant column retrieval

NO₂ trend over China

....

SCIAMACHY vs CHIMERE: 2003 yearly mean

Yearly-mean bias = $0.2 \ 10^{15}$ molec cm⁻², RMS 2.9, correl.coeff. 0.73 Cloud-free pixels

OMI SO₂

Source: A. Krueger S. Carn (UMBC)

Presented at OMI Science Team meeting, KNMI, June 2005

OMI CH₂O

Source: K. Chance T. Koruso

Presented at OMI Science Team meeting, KNMI, June 2005

OMI aerosol

Aerosol optical depth

11 Oct 2004

Courtesy O. Torres NASA-GSFC & UMBC-JCET

Levelt et al, IEEE special issue on EOS-Aura, 2005

Combined 4D-Var source and initial state assimilation of methane

SCIAMACHY methane

SCIAMACHY vs TM model

C. Frankenberg Science 308, May 2005

SCIAMACHY methane **OSSE**

4D-Var:

joint optimalisation of 2D emissions + 3D initial field $v = (s, c_0)$ 1 month time window

$$J(\boldsymbol{v}) = \frac{1}{2} (\boldsymbol{v}_b - \boldsymbol{v})^T \mathbf{B}^{-1} (\boldsymbol{v}_b - \boldsymbol{v}) + \frac{1}{2} \sum_{i=0}^n (\mathbf{H}_i \boldsymbol{x}_i - \boldsymbol{y}_i)^T \mathbf{R}_i^{-1} (\mathbf{H}_i \boldsymbol{x}_i - \boldsymbol{y}_i).$$

Model:

Single tracer. Detailed CH4 emissions. Sink: OH from full chemistry run SCIAMACHY simulated CH4 observations, real cloud retrieval

Meirink et al, submitted to ACP, 2005

SCIAMACHY methane **OSSE**: experiment setup

Henk Eskes, ECMWF seminar, September 2005

SCIAMACHY methane **OSSE**: cloud

SCIAMACHY methane **OSSE**

Conclusions:

- A combined state + emission 4D-Var assimilation system is potentially able to extract meaningful information on emissions, on a monthly time scale and 500km spatial scale.
 With a 1 month time window the system can efficiently distinguish emission errors from initial state errors.
- A SCIAMACHY retrieval precision of 1-2 % will enable improved source estimations (Heidelberg retrievals reach 1.5-2%)
- The use of cloudy pixels is essential, despite their larger uncertainty. Cloud and albedo parameters should be retrieved as accurately as possible, averaging kernels should be provided with the observations.

Tropospheric chemistry: Summary and challenges K

Tropospheric observations of CO, CH₄, NO₂, CH₂O, SO₂

- New satellite instruments, new retrievals and data sets have become available for the troposphere in the past couple of years
- Tropospheric retrievals are difficult (compared to e.g. the stratosphere)
- Retrievals in troposphere difficult due to inteference from clouds, aerosols, surface properties
- New instruments like OMI with high coverage / small pixels allow dayto-day monitoring of individual events: fires, volcanoes

• Challenge:

Improvement and characterisation of retrievals, validation

Tropospheric chemistry: Summary and challenges KNM

Assimilation, inverse modelling

- Very few studies up to now. Focus on CO from MOPITT.
- Joint state + emission 4D-Var: promising approach for all tropospheric tracers.
- Challenge:

Set up assimilation/inverse modelling approaches for tropospheric chemistry. Use of satellite observations to improve tropospheric chemistry models, emission inventories, air-quality forecasts.