

Aerosol Monitoring and Modeling

Olivier Boucher

Presentation to ECMWF seminar on Global Earth-System Monitoring

5-9 September 2005

OUTLINE

1. Why do we need to monitor aerosols globally?

2. Design of an aerosol monitoring system

3. GEMS-aerosol

OUTLINE

1. Why do we need to monitor aerosols globally?

2. Design of an aerosol monitoring system

3. GEMS-aerosol

Reasons for getting interested in aerosols

- climate effect (clear-sky, cloudy-sky)

 anthropogenic aerosols are responsible for a radiative forcing
 anthropogenic aerosols may modify the hydrological cycle
 natural aerosols may response to climate change
- visibility ==> tourism, aviation
- air quality issues ==> human health, ecosystems
- improvement in meteorological (re)analysis
- improvements in weather forecasts
- deposition and acid rain issues ==> ecosystems
- satellite atmospheric corrections ==> retrieval of the properties of ocean, land, and atmosphere
- role of aerosol deposition on ocean biology
- depletion of the stratospheric ozone layer

Terminology: direct and indirect effects

• Direct effect:	extinction of sunlight by aerosols in clear-sky (+extinction and emission of longwave radiation)
• Semi-direct effect:	impact of aerosol absorption in clear- (and cloudy-) sky on the temperature and humidity profiles and hence on cloud formation
• First indirect effect:	increase in cloud optical depth due to an increase in the number and a decrease in the size of cloud droplets (for a fixed liquid water content)
Second indirect effect	ct: increase in the cloud liquid water content, cloud height, or cloud lifetime due to a reduced precipitation efficiency
Hadley Centre © Crown copyright 20	

Page 6

Aerosol direct effects

• Aerosols do scatter and absorb sunlight radiation.

• Anthropogenic aerosols suspected to be responsible for a negative radiative forcing of climate.

• Climate has not warmed as much as it would have in the absence of anthropogenic aerosols.

• The magnitude of the aerosol direct effect is now bound but remains uncertain.

Aerosol indirect effects

First indirect effect

Second indirect effect

As aerosol concentrations increase and visibility decreases, there is

- a whitening of the landscape,
- loss of texture,
- loss of contrast.

Biscuit and Tiller Fires in California and Oregon (08/14/02)

Moscow – September 2002

Peat fires, Moscow, September 2002

© Crown copyright 2004

Malaysia – August 2005

11 August 2005

"Malaysia has declared a state of emergency as the air pollution index soars to extremely hazardous levels on the west coast, which is worst-hit by smoke from fires in Sumatra."

Global aerosol tools relevant to AQ!

Maps of aerosol optical depth from MODIS instrument

Global aerosol tools relevant to AQ!

Met Office

Global aerosol tools relevant to AQ!

Wang and Christopher, GRL, 2003

Figure 2. (a) Spatial distribution of MODIS AOT and linearly derived AQI from Terra on Sept 11, 2002. Also shown are the 700mb geopotential heights. Grey regions are areas where MODIS AOT is not available due to possible sun glint or cloud contamination. (b) Relationship between MODIS AOT and $PM_{2.5}$ mass, (c) Monthly variation of $PM_{2.5}$ and MODIS and Sunphotometer (SP) AOT, inset shows the diurnal variations (in Central Standard Time, CST) of $PM_{2.5}$ in different seasons. (d) AQI derived from MODIS data. The box shows the ±1 standard deviation of $PM_{2.5}$ and AOT centered in the mean value (red filled circles) in each bins. The red line in the box shows the median value in each bin.

An aerosol impact on carbon sinks?

<u>Hypothesis</u>: some of it may be caused by large events of stratospheric aerosols Hypothesis: Change in the distribution of direct/diffuse light in the canopy with associated changes in productivity

If true, there must have been a (transient) effect of tropospheric aerosols on the land carbon sink during the XX century.

Aerosol impact on NWP forecasts

Aerosols can affect NWP forecasts, analysis and reanalysis through three different ways:

- Aerosols may adversely impact satellite data or satellite retrievals which are assimilated in the NWP suite
- 2. Aerosols modify the clear-sky radiative fluxes with impact on the surface and atmospheric temperature profile (unaccounted term in the equation for energy conservation => imperfect model).
- 3. Aerosols modify cloud properties (unaccounted for in the model).

Aerosol impact on satellite retrievals (I)

CM3=3-month running mean difference in $BT_{calculated}$ - $BT_{measured}$ for different HIRS channels

channel 8 - CM-3

Pierangelo et al., JGR, 109, 2004.

channel 18 - CM-3 1.5 20S 20N 20N 60N 20S 60S c) 1 Mean dev. (K) 0.5 0 Salar -0.5 -1 9107 9207 9307 9407 9507 date (yymm)

date (yymm)

channel 5 - CM-3 1.5 208 20N 20N 60N d) 20S 60S 1 Mean dev. (K) 0.5 0 d^{\prime} -0.5 -1 9307 9207 9507 9107 9407 date (yymm)

Pierangelo et al., JGR, 109, 2004.

Aerosols may improve weather forecasts (I)

Tompkins et al., Influence of aerosol climatology on forecasts of the African Easterly Jet, GRL, 32, 2005.

Hadley Centre © Crown copyright 2004

Aerosols may improve weather forecasts (II)

(a) 26r3 Analysis

Tompkins et al., Influence of aerosol climatology on forecasts of the African Easterly Jet, GRL, 32, 2005.

(d) 26r3-26r1 Forecast Difference

Met Office

OUTLINE

1. Why do we need to monitor aerosols globally?

2. Design of an aerosol monitoring system

3. GEMS-aerosol

Ground-based networks (examples)

AERONET (PHOTONS)

aeronet.gsfc.nasa.gov www-loa.univ-lille1.fr/photons

EARLINET

World Data Centre for Aerosols (GAW / WMO) www.ei.jrc.it/wdca/

+ EMEP / IMPROVE

lidarb.dkrz.de/earlinet/

Aerosol-relevant satellite data (examples)

MODIS aerosol optical depth

MODIS aerosol optical thickness at 550 nm — September 2002

Met Office

MOPITT CO concentrations

ATSR (G. de Leeuw, TNO)

ATSR fire counts

IGACO

The report summarizes

- ground in-situ
- aircraft in-situ
- spaceborne remote-sensing
- ground remote-sensing

and suggests priorities

Implementation plan ongoing

For the Monitoring of our Environment from Space and from Earth

September 2004 An international partnership for cooperation in Earth observations

IGACO – Tropospheric aerosols

COMPONENT	col/prof	90	91	92	93	94	95	96	97	98	99	00	01	02	03	04	05	06	07	0.8	09	10	11	12	13	14	15	16	17	18	19	20
Non-Satellite Global																																
Ground-based in situ							m	ore li	nteo	ratio	on re	quir	ed e	spe	cial	y be	twee	n a	r qu	ality	oth	er m	onit	orin	g ne	etwo	rks					
Ground-based total column AOD from solar radiation measurements Radiometry & sun photometry							m	ore in	nteg	ratic	on re	quir	ed e	spe	cial ed i	y be nteg	twee ratio	inia n re	r qu quir	ality ed a	oth mor	er m Iq th	ionit le di	orin ffere	g ne entr	atwo netw	rks orks					
Ground-based vertical profile Lidar		777	111	111	m	111	111	111	111	III	111	m	111	111	111	m		ffor	s re	quir	ed to	0 00	ordi	nate	act	iviti	es fo	or of	era	liona	ai u:	se
Aircraft						-	-	-			-	-																				
MOZAIC	UT																		1.000	-												
CARIBIC	ហ								111	111	111	111	111	m	-	7777	1111	111	111	111	IIII	111	7177	7777	111	111						
Meteorological (Operational) Satellites																											-					
METEOSAT - GOES	С		imite	ad, t	out l	onq	tern	n infe	orm	alior	n, no	ope	arati	onal	retr	ieva																
NOAA/AVHRR	C		-			limi	ed,	but	ona	terr	n in	orm	atio	n	-	-																
MSG - GOES - MTG	С															sign	ficar	it lo	nq-te	rm	infor	ma	lion.	no	ope	ratio	nal	retri	eval	plar	nne	
METOP - NPOESS - AVHRR-3 - VIIRS	С															-	1	nific	ant	ond	-lerr	n in	form	atio	n, n	0 0	oera	tiona	il re	nev	al p	lann
Research Satellites																														_		
NIMBUS 7-METEOR-ERS2-ADEOS-EP / TOMS	С	711	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m															
ERS / ATSR	C						777	m	111	m	111	m	m	m	m																	
TERRA-AQUA / MISR-MODIS	С											711	m	m	111	m	m	m	m	de	dica	ted	to a	eros	sol					_		
ENVISAT / MERIS-AATSR-SCIAMACHY	С													111	m	111	m	111					1									
AURA / OMI	С													2.1.2	1	111	111		m	111	111											
PARASOL / POLDER	С																m	TT	m	1												
ICESAT-CALIPSO / GLAS-lidar	P														111	111	111	III	111	CA	LIPS	50 d	dedid	cate	d to	aer	osol					
NPP / VIIRS	С																	Sec. 1	-	-	-									_		
ADM	Р																		m	m	III											
NPOESS VIIBS	C																												_			1

DEMONSTRATION

OPERATIONAL

PROPOSED

PRE-OPERATIONAL Data available in near real-time

Data available in near real-time and replacement guaranteed by agency

UT/LS: upper trop./lower strat. C = column P=profile T= troposphere S= stratosphere

IGACO – Stratospheric aerosols

COMPONENT	col/prof	90	91	92	2 9 3	94	1 9!	5 9	69	9	8 9	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
Non-Satellite Global																																	
AOD from solar radiation measurements		-				-		-	n	o dis	stin	ctio	n b	etwe	en	stra	tosp	heri	c an	d tre	opo	sphe	ric (cont	ribu	tions		1000			-	-	
Sunphotometry (spectral)									-	-			no	disti	nctio	on b	etw	een	stra	osp	heri	c an	d tr	opos	sphe	eric (cont	ribu	lion				
Lidar NDSC	P	7//	m	111	111																	_	_										
Lidar EARLINET Regional EUROPE										22		114	111	777	111	111												-			1	-	-
Balloon vertical profile		777				UII		<u>iin</u>	ШĮ	1111	11		///	111	111		711	111	9/10	280	siles	1001	(6(8	99//			7772	m		m	un.		
Aircraft																																	
CARIBIC	LS								2		111			111				710		111	7/11	111			111	111	7777	3					
MOZAIC	LS																			C				-			-		-				-
Satellite		1																															
UARS/HALOE	P		777							1111		111		777	111		711	111	3														
ERBS-METEOR3M / SAGE I-II-III	P	777	an	m	an	an	in	111	111	un		714	771	111	111	111	111	717															
SPOT 3/4 POAM II/III	P				11	111				Z		714	777	111	111	111		777	111														
AQUA / AIRS-AMSRE	Р													- a		111			111		3												
ENVISAT / MIPAS-GOMOS-SCIAMACHY	P														111	111	111	111	111	1													
ODIN / Osiris	P														111	111		a															
AURA / HIRDLS - TES	P																7//	111	111	111	111	111											
CALIPSO LIDAR	Р						-																										

DEMONSTRATION

OPERATIONAL

Data available in near real-time PRE-OPERATIONAL

Data available in near real-time and replacement guaranteed by agency

PROPOSED

P= profile T= troposphere

S= stratosphere

C = column

UT/LS: upper trop./lower strat.

Met Office

Areas of interest

Climate	Air Quality	Health Effects	Ecosystem	Emissions	Monitoring	Protocol Monitoring & Legislation	Atmospheric Correction	Other *
22	26	18	18	21	28	17	12	4

Aerosol properties of interest

97% of users interested in aerosols (3% in gas species)91% of users interested in tropospheric aerosols38% of users interested in stratospheric aerosols

Microphysical properties Number Concentration □ Surface concentration Volume concentration Mass concentration PM10 ■ PM2,5 □ PM1 Granulometry Effective or mean Radius Chemical Composition

Optical Properties

Present use of aerosol data

Requirements for satellite data

Local

After 1 Week

After 1 Month

On Request

Spatial resolution

Time resolution (average)

Timeliness

Hadley Centre © Crown copyright 2004

Page 33

Met Office

OUTLINE

1. Why do we need to monitor aerosols globally?

2. Design of an aerosol monitoring system

3. GEMS-aerosol

Satellite coverage

Figure 6a. Frequency maps of MODIS aerosol retrievals for spring (March–May 2001), summer (June–August 2001), autumn (September–November 2001), and winter (December 2000–January 2001). Frequency (%) is calculated using MODIS L3 daily products as the number of days with successful retrievals in $1^{\circ} \times 1^{\circ}$ grids divided by the total number of calendar days in the season. Filled value (e.g., –9999) is filled in grids with unsuccessful retrieval. Note that a single retrieval from a $10 \times 10 \text{ km}^2$ area of L2 is allowed to represent a $1^{\circ} \times 1^{\circ}$ area of L3.

Hadley Centre © Crown copyright 2004

Met Office

Products	Usage
4D distribution of aerosol concentrations at 50-100 km resolution (troposphere and stratosphere)	climate research; monitoring of the atmospheric chemical composition; monitoring of the stratosphere (air traffic); monitoring of volcanic eruptions for local populations; initial and boundary conditions for regional air quality models
4D distribution of aerosol optical properties at 50-100 km resolution (troposphere and stratosphere)	atmospheric corrections for remote sensing of land surfaces and ocean;
	prediction of surface UV radiation
Surface distribution of particulate matter PM	regional air quality
Improved visibility range	air traffic, tourism
Improved photosynthetically active radiation (PAR) at the surface	study of the carbon cycle; monitoring of the Kyoto protocol
Aerosol deposition flux (dry and wet)	study of the ocean biology; impact on ecosystems (acid rain monitoring)
Improved photolysis rates	regional air quality; global monitoring of the atmospheric chemical composition
Improved surface, atmospheric, and top-of-atmosphere radiative budget	climate research

Aerosol modelling

Important criteria for model implementation:

- aerosol parametrisations need to be consistent with the ECMWF physics
- aerosol parametrisations need to be computationally affordable
- choice of aerosol parametrisations guided by skill scores
- to become interactive aerosols should at least not deteriorate the weather scores

Open questions:

how sophisticated the aerosol scheme should be?
 If plenty of good-quality data to assimilate
 monitoring purposes: simple aerosol scheme is enough
 forecasting purposes: more complex scheme
 If limited availability of good-quality data to assimilate
 a more sophisticated aerosol scheme is desirable

==> Balance between data availability, model quality and CPU number of model variables > or >> number of satellite variables

- what is the best approach: sectional or modal representation? Hadley Centre © Crown copyright 2004

Aerosol modelling: sectional approach

Met Office

Aerosol modelling: modal approach

Assumed shape for the mode size distribution (usually a log-normal)

Met Office

Variables: number and mass for each mode (average radius can be computed)

Processes can be parametrised as an integral over each mode.

Assumption may be needed on aerosol mixtures

Aerosol modelling: modal approach HAM-M7 Considered Compounds:

SulfateBlackOrganicSea SaltMineral DustCarbonCarbon

Resolve aerosol size-distribution by 7 log-normal modes

- Three modes are composed of solely one aerosol component
- Four modes are internal mixtures of several components

Aerosol modelling: modal approach HAM-M7

SulfateBlackOrganicSea SaltMineral DustCarbonCarbon

Resolve aerosol size-distribution by 7 log-normal modes

Three modes are composed of solely one aerosol component

Four modes are internal mixtures of several components

Mode size, mixing state, and composition predicted by microphysical and thermodynamical processes

Detailed description and evaluation in Stier et al., ACP, (2005)

 $J = (x - x_b)^{\top} \boldsymbol{B}^{-1} (x - x_b) + (y - \boldsymbol{H}[x])^{\top} \boldsymbol{R}^{-1} (y - \boldsymbol{H}[x])$

+ minimisation algorithm

B,R: Covariance error matrices

- y: observation
- x_b: background
- H: obs operator

- Correlation coefficients (observed vs simulated aerosol properties) - current models perform well on monthly means

- challenge will be to get good correlation on daily means
- Linear fits: slope, offset
- Root-mean square errors - largely used in RAQ
- Taylor diagrams
 - summarizes model performance in terms of correlation coefficient, standard deviation, and RMS.
- Figures of merit
 - useful to test the transport for particular events
 - has been used for ETEX

Hadley Centre © Crown copyright 2004

- Taylor diagrams

Skill scores

- Correlation plots

- Figures of merit

- useful to test the transport for particular events
- has been used for ETEX

- GEMS will be a major step forward in global aerosol monitoring.
- Continuous work needed to make the best use possible of satellite data (METOP + NPOESS + spaceborne lidar)
- Monitoring of aerosol absorption is also needed.
- Are aerosol indirect effects important for numerical weather prediction?

