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ABSTRACT 

This paper describes the purpose, approach, configuration, results, validation and plans of the uncoupled North 
American Land Data Assimilation System (NLDAS). NLDAS is a multi-institution partnership of three U.S. federal 
agencies and five universities to develop a realtime and retrospective uncoupled land data assimilation system on a 1/8° 
grid over the continental U.S. (CONUS) and consists of a) four land models executing in parallel in uncoupled mode, 
b) common hourly surface forcing and c) common streamflow routing. This initiative is largely sponsored by the 
GCIP/GAPP program of GEWEX.  This paper describes and evaluates the 3-year NLDAS execution of 01 Oct 96 to 30 
Sep 99 – a period rich in observations for validation. The validation includes a) mesoscale observing networks of land 
surface forcing, fluxes and states, b) regional snowpack measurements, c) daily streamflow measurements and d) 
satellite-based retrievals of snow cover, land-surface skin temperature (LST) and surface insolation. The results show 
substantial inter-model differences in surface evaporation and runoff (especially over non-sparse vegetation), soil 
moisture storage, snowpack and LST. Owing to surprisingly large inter-model differences in aerodynamic conductance, 
inter-model differences in mid-day summer LST were unlike those expected from the inter-model differences in Bowen 
ratio. Lastly, results of experiments to assimilate LST in one of the four land models are presented, including 
assessment and assimilation of geostationary satellite-derived LST. 

1. Introduction 

For two decades, advances in providing atmospheric initial states via 4-dimensional data assimilation 
(4DDA) have paved the way for emerging 4DDA systems for the ocean and land. The backbone of any 
4DDA system is the geophysical model whose execution provides temporally and spatially continuous 
background states, into which generally discontinuous observations are assimilated from various observing 
platforms (in situ, satellite, radar). A land data assimilation system (LDAS) is needed to blend sparse land 
observations with the background fields of a land surface model (LSM). The accuracy of the LSM 
background field (and companion surface and sub-surface water/energy fluxes) is crucial to LDAS viability. 
The chief objective of the NLDAS study presented here is to generate and validate, over a 3-year period over 
the CONUS domain, the background land states and surface fluxes of four LSMs: Noah, Mosaic, VIC, and 
Sacramento – denoted SAC.  

Coupled land-atmosphere 4DDA systems (including global reanalysis) often yield significant errors and drift 
in soil moisture/temperature and surface energy/water fluxes, owing to substantial biases in the surface 
forcing from the parent atmospheric models. To constrain such errors and drift, coupled land-atmosphere 
4DDA systems often nudge the soil moisture according to 1) climatology of soil moisture, 2) differences 
between the observed and 4DDA background fields of precipitation or 3) screen-level air temperature and 
dew point errors. Such nudging methods, however, do not reduce the main error source, namely large bias in 
the land surface forcing (especially precipitation and solar insolation) of the parent atmospheric model.  

The NLDAS here omits soil moisture nudging in favor of using non-model, observation-based precipitation 
analyses and non-model, satellite-based surface insolation fields (with all other surface forcing from 
atmospheric 4DDA) to drive the four participating LSMs, all with common hourly surface forcing on a 1/8° 
grid over the CONUS domain. Specifically, the NLDAS project achieved the following key objective: 1) to 
develop and execute the first realtime prototype of a continental-scale uncoupled land 4DDA backbone 
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(continuously cycled land-model states) executed daily at NCEP using realtime streams of hourly to daily 
data, and 2) develop and execute a companion retrospective mode for research.  

The present paper briefly surveys the NLDAS results from the ten joint NLDAS papers listed below, which 
appear in the recent GCIP-3 Special Issue of the Journal of Geophysical Research. Henceforth here, each 
paper below is cited by the given 3-letter label, denoting last initial of first two authors and N for NLDAS.  

Mitchell et al. (2004 )  ML-N  NLDAS overview, summary of results from next nine papers 

Cosgrove et al. (2003a)  CL-N:  generation of land surface forcing 

Luo et al. (2003)   LR-N:  validation of land surface forcing  

Pinker et al. (2003)   PT-N:  production/validation of GOES-based solar insolation  

Lohmann et al. (2004)  LM-N:  production/validation of streamflow and water budget 

Robock et al. (2003)  RL-N:  validation of energy budget, soil moisture/temperature 

Schaake et al. (2004)  SD-N:  evaluation of soil moisture storage and range 

Sheffield et al. (2003)  SP-N:  validation of simulated snow cover 

Pan et al. (2003)   PS-N:  validation of simulated snowpack content  

Cosgrove et al. (2003b)  CM-N:  evaluation and testing of spin-up 

For brevity, the reference list herein gives only Mitchell et al. (2004), which contains the full citations of the 
other nine papers above and a list of all acronyms used here. The NLDAS collaborating institutions/PIs 
include NCEP/EMC (K. Mitchell), NASA/GSFC (P. Houser), NWS/OHD (J. Schaake), NESDIS/ORA (J. 
D. Tarpley), NCEP/CPC (R. W. Higgins), Princeton University (E. Wood), Rutgers University (A. Robock), 
and the Universities of Maryland (R. Pinker), Washington (D. Lettenmaier), and Oklahoma (K. Crawford).  

2. NLDAS Configuration 

The NLDAS is executed over a rectangular 1/8° grid that encompasses the continental U.S. (CONUS). 
Across the four LSMs, NLDAS applies a common land mask, terrain elevation, hourly surface forcing, soil 
texture and vegetation classes, streamflow routing, and frequency (hourly) and format (GRIB) of model 
input/output. Of the four LSMs, two use tiling (Mosaic for vegetation, VIC for vegetation and elevation). 
SAC omits treatment of vegetation. Though the LSMs apply common fields of vegetation and soil class, the 
NLDAS partners chose NOT to impose common vegetation and soil properties, such as 1) parameter values, 
2) geometry of soil layers and root zone or 3) seasonal phenology, to avoid disrupting legacy of calibrations.  

The NLDAS control runs here required initial values of all LSM state variables for the common start time of 
00 UTC on 01 Oct 96. Initial snowpack was set to zero (reasonable for 01 Oct over the NLDAS domain). 
Initial soil moisture and temperature were derived from the soil states of the NCEP/DOE Global Reanalysis 
2 for 01 Oct 96. The soil moisture was provided to each LSM as a vertically uniform percent of saturation, 
which each LSM converted to its own absolute moisture state via its own parameters. CM-N examined the 
spin-up in all four LSMs and found that, for practical purposes, the spin-up required about one year. 

The sources, generation and validation of NLDAS surface forcing, which is produced in realtime and 
retrospectively, is summarized in ML-N and presented in detail in LR-N, CL-N, PT-N, and PS-N. The nine 
forcing fields required by the four LSMs are: U/V 10-m wind components, 2-m air temperature and specific 
humidity, surface pressure, downward longwave and shortwave radiation, and convective and total 
precipitation. SAC requires only total precipitation (P), air temperature and potential evaporation (PE). In 
NLDAS, SAC uses the PE computed by the Noah LSM. Only Mosaic requires convective precipitation. 

Except for precipitation and solar insolation, the source of NLDAS forcing is NCEP’s Eta model-based Data 
Assimilation System (EDAS), a 3-hourly, continuously cycled, N. American mesoscale 4DDA system. To 
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account for NLDAS vs. EDAS surface-elevation differences, a terrain-height adjustment is applied to the air 
temperature and surface pressure using a standard lapse rate (6.5 K km-1), then to specific humidity (keeping 
relative humidity fixed) and downward longwave radiation (using new air temperature, specific humidity). 
CL-N details the spatial/temporal interpolations and terrain-height adjustment. The NLDAS precipitation 

forcing is anchored to NCEP’s 1/4° gage-only daily precipitation analyses, which utilize about 6500 
(realtime) or 13000 (retrospectively) gauge observations of daily precipitation. In NLDAS, this daily 

analysis is interpolated to 1/8°, and then disaggregated to hourly (details in CL-N) via temporal weights 
derived from hourly, radar-based (WSR-88D) precipitation fields. This hourly disaggregation preserves the 
gauge-based daily precipitation. Lastly, convective precipitation is estimated by multiplying NLDAS total 
precipitation by the ratio of EDAS convective to EDAS total precipitation. There is no distinction between 
rainfall and snowfall in NLDAS precipitation forcing. This requires criteria to infer snowfall. The input 

precipitation at each model time step is assumed to be all rainfall for surface air temperature > 0°C and all 

snowfall otherwise. The NLDAS surface solar insolation forcing is obtained from hourly, 1/2° GOES 

satellite-derived solar insolation, as described and validated in PT-N, LR-N and CL-N. 

Key references and the attributes of the Noah, VIC, Mosaic and SAC LSMs in NLDAS are summarized in 
ML-N. Of the many LSMs, these four give a good cross-section of different traditions of application, 
including small scale versus large scale, coupled versus uncoupled, distributed versus lumped, with explicit 
vegetation (Noah, VIC, Mosaic) versus without (SAC), and tiled (Mosaic and VIC) versus non-tiled (Noah 
and SAC). Mosaic and Noah emerged from the surface-vegetation-atmosphere transfer (SVAT) setting of 
coupled atmospheric modeling with little calibration. VIC and SAC grew from the hydrology community as 
uncoupled hydrology models with considerable calibration. VIC was developed as a macro-scale semi-
distributed model. SAC was developed as a lumped conceptual hydrology model, highly calibrated for small 
catchments and used operationally in NWS River Forecast Centers. Subsequent to their early heritage, 
Mosaic, Noah, and VIC have been widely executed in coupled and uncoupled modes from small to large 
scales and all three can be considered as SVATs. As such, Mosaic, Noah and VIC simulate LST, the surface 
energy and water balance, snowpack, and soil moisture in several soil layers (4 in Noah, 3 in VIC and 
Mosaic). All three SVATs include direct evaporation from soil, transpiration from vegetation, evaporation of 
interception, and snow sublimation; and all explicitly model canopy resistance, though their formulations 
differ, as does their vegetation phenology and root profiles. Only Noah simulates soil freezing and thawing. 
In all three SVATs, the surface infiltration schemes account for subgrid variability in soil moisture and 
precipitation, but the treatments differ. In contrast, SAC is a conceptual rainfall-runoff, storage-type model. 
It treats only the surface water budget, omitting the surface energy budget, and uses the snowpack model of 
called SNOW17. SAC outputs evaporation E and runoff, with E being a fraction of input PE. The NWS 

Office of Hydrological Development (OHD) recently developed a distributed (non-lumped) version of SAC 
with a priori un-calibrated parameters intended for testing from small basins to entire continents. NLDAS 
provides the first tests of the distributed SAC model at continental scales. These are pilot tests, as SAC lacks 
the legacy of continental testing of the other 3 LSMs. SAC calibration was omitted in NLDAS runs and its 
primary parameters were specified a priori. 

LM-N presents the formulation of the common streamflow model in NLDAS and validates the daily 
streamflow simulations of the four LSMs over 9 large basins and 1145 small to medium-sized (and mostly 
unregulated) basins across the CONUS using USGS streamflow measurements. The streamflow routing 
requires both a river network (flow-direction mask) on the NLDAS grid and a routing model. The chosen 
routing model is linear and calculates the timing of the runoff reaching the grid-cell outlet, as well as the 
transport of water through the river network. It operates in two modes: 1) distributed, using a-priori grid-cell 
specific routing parameters common to all four models and 2) “lumped”, in which constant routing 
parameters were separately calibrated for each of the 1145 basins, yielding a separately calibrated unit 
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hydrograph for each basin for each model. A cool season impact on the modeled runoff is the timing of 
snowmelt in each LSM. LM-N found streamflow performance increasingly degraded in regions of increased 
seasonal snowfall. The worst cases of peak streamflow timing occurred in the snow season of the mountain 
ranges of northwest CONUS, where the LSMs differed by up to four months in their peak-flow timing.  

3. Assessment of the NLDAS water budget 

We summarize here the assessment by LM-N of the NLDAS water budget. We begin with the annual budget 
for the period 01 Oct 97 to 30 Sep 99. Over one or more annual cycles, mean annual storage change (soil 
moisture, snowpack, etc.) is negligible and thus the annual surface water budget is well approximated by P = 

E + R, wherein P, E, and R denote the mean annual totals of precipitation, evaporation, and runoff, 
respectively. Thus, the difference of the observed values of mean annual P and R (from observed 
streamflow) yields an observation-based estimate of mean annual E. LM-N performed this analysis for 

NLDAS and derived Figure 1, which shows how each NLDAS LSM partitioned the observed and prescribed 
mean annual P into mean annual E and R over four CONUS quadrants. In Figure 1a, each diagonal denotes 

the mean-annual area-averaged precipitation of a given quadrant (given by the diagonal’s x- or y-axis 
intercept value). On each diagonal, each LSM’s symbol projected onto the x-axis (y-axis) yields that LSM’s 
quadrant-average mean annual runoff (evaporation). The tiny displacement of an LSM’s symbol from the 
diagonal represents the negligible change in that LSM’s total water storage over the period. The disparity in 
mean annual E and R among the LSMs in Figure 1a is striking over the well vegetated, eastern half of the 

CONUS. ML-N illustrates this disparity in CONUS-wide maps of evaporation and runoff for each LSM. 
Noah and VIC have notably lower evaporation and hence higher runoff than Mosaic and SAC. Large 
disparity among LSMs in E vs. R partitioning was noted in PILPS and GSWP.  

a ba b

 
Figure 1(a) Partitioning of area-mean mean annual precipitation (diagonal, mm/year) into area-mean 
mean annual runoff (x-axis, mm/year) and evaporation (y-axis, mm/year) for the CONUS quadrants 
(inset) of Southeast-SE (top diagonal), Northeast-NE (2nd diagonal), Northwest-NW (3rd diagonal) and 
Southwest-SW (bottom diagonal) by Noah (N), VIC (V), Mosaic (M), and SAC (S) for 01 Oct 97 to 30 Sep 
99. (b) As in (a), except area-mean is for sub-area of basin-set depicted in inset for each quadrant. "+" 
symbol depicts observed area-mean mean annual runoff. 

The partitioning can be validated over the sub-regions of the quadrants for which basin-observed streamflow 
is available. Figure 1b, which utilizes USGS-observed streamflow from 1145 assessment basins, is the 
counterpart to Figure 1a obtained by area averaging the observed precipitation and LSM simulated 
evaporation and runoff only over the quadrant sub-area spanned by these basins (Figure 1b inset). For each 
basin, observed streamflow (m3s-1) is converted to mean-annual total discharge (m3), in turn converted (using 
the basin area) to area-average mean-annual runoff (mm) for the basin. The “+” symbol in Figure 1b depicts 
the area-mean of this observed runoff over the same quadrant sub-area. Projecting the “+” symbol onto the 
y-axis yields the budget-based estimate of the area-average mean annual evaporation. The reliability of this 
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observation-based evaporation estimate depends on the reliability of both the observed streamflow (high 
reliability) and the NLDAS precipitation forcing. Over NE and SE, which manifest relatively flat terrain and 
good density of precipitation gages, we trust the precipitation analysis and the estimates of evaporation 
there. For NE and SE, one sees in Figure 1b that evaporation and runoff of Noah are close to observed, while 
Mosaic and SAC show large biases of high evaporation and low runoff, with VIC yielding the reverse. In the 
NW and SW, owing to rugged orography and sparseness of both precipitation gauges and unregulated 
basins, the reliability of the observation-based evaporation and runoff estimates is rather uncertain. 

Figure 2 gives the time series of area-average monthly evaporation E for each CONUS quadrant for the 

NLDAS LSM control runs, including the initial spin-up year. We focus on the more humid eastern 
quadrants, which show the most disagreement. There, during mid and late summer, Mosaic clearly has the 
highest evaporation during mid-to-late summer, while SAC has the highest in winter and spring. Noah 
evaporation generally falls between that of Mosaic and VIC in the warm season. VIC has the lowest 
evaporation in virtually every month in the vegetated eastern quadrants, consistent with the earlier annual 
results. Figures 2b,d strongly suggest that Mosaic and VIC manifest rather different canopy conductance. 
Such large differences in warm season evaporation imply large warm season differences in soil moisture 
storage change. To examine this, Figure 3 shows the time series of area-average monthly-mean total column 
soil moisture for all four quadrants for the 3 LSMs that carry explicit soil layers. After year one, spin-up is 
essentially complete. For years 2-3, Figure 3 together with Figures 1-2 reveal 1) very different levels of total 
soil moisture across the LSMs, 2) somewhat more similarity, yet still significant differences, in annual-cycle 
amplitude (seasonal change) of total soil moisture among the LSMs, 3) larger differences among the models 
over the wetter eastern quadrants than the drier western quadrants, 4) that the model with the highest level of 
soil moisture is not the model with the largest evaporation or seasonal change in soil moisture. Further 
analysis in ML-N shows that Mosaic’s large warm season evaporation in non-arid areas compared to Noah 
and VIC stems from its notably more vigorous upward diffusion of soil moisture from below the root zone. 
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Figure 2 Time series of area-averaged monthly evaporation (mm/month) in NLDAS for Noah (squares), 
VIC (triangles) Mosaic (circles), and SAC (crosses) over the four CONUS quadrants of (a) NW, (b) NE, 
(c) SW and (d) SE for Oct 96 to Sep 99. 
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Figure 3 Time series of area-averaged monthly mean total column soil moisture (mm) in NLDAS for 
Noah (squares), VIC (triangles), Mosaic (circles), and SAC (crosses) for the CONUS quadrants of (a) 
NW, (b) NE, (c) SW and (d) SE for Oct 96 to Sep 99. 

Figure 4, from the study of SD-N, compares NLDAS bi-monthly area-mean 2-m soil moisture with that from 
17 measurement sites across the state of Illinois, from of the Illinois State Water Survey. For VIC, separate 
best-fit lines for northwest and southeast Illinois were required, because past VIC calibration yielded rather 
different soil moisture storage capacities in these regions. In Figure 4, Mosaic shows a dynamic storage 
range greater than the other LSMs and about 50% more than observed, owing to larger warm season 
depletion. Noah and SAC agree with observations in both storage range and storage magnitude. VIC also 
shows good storage range over its two regions, but storage magnitude lower than observed. The study of 
RL-N found similar contrasts in soil moisture character between LSMs and between observations and LSMs 
using measured soil moisture from the Oklahoma Mesonet, including scrutiny at individual stations. RN-L 
also presents revealing sensitivity tests of the SVAT models at individual soil moisture measuring stations. 

Turning to snowpack issues, the studies by PS-N and SP-N perform large-scale assessment of NLDAS 
snowpack water equivalent (SWE) and snow cover extent (SCE), respectively. SP-N validated NLDAS 
snow-cover simulations against the NESDIS daily, N. Hemisphere, 24-km snow cover analysis and found 
substantial differences across the LSMs, arising from differences in LSM treatment of snow cover fraction, 
snow albedo, and snow sublimation. PS-N validated NLDAS SWE simulations against 110 western 
SNOTEL stations, which measure SWE, air temperature and precipitation every 15 minutes. The majority of 
SNOTEL elevations are above 1000 m, with mean elevation near 2500 m. Figure 5 shows model versus 
observed mean-annual maximum SWE for the control runs of the four LSMs (and two VIC sensitivity tests) 
at the SNOTEL sites. All the LSMs substantially underestimate annual maximum SWE. Noah has the largest 
low bias and the lowest correlation. Mosaic also shows a rather low correlation. SAC and VIC have notably 
better bias and substantially higher correlation. The model with elevation tiling (VIC) yields the highest 
correlation, yet the simplest model (SAC) without elevation tiling or energy balance treatment is closely 
competitive. PS-N found the NLDAS precipitation forcing to be biased substantially low when compared to 
observed precipitation at the SNOTEL sites. PS-N executed two tests in VIC with two methods of bias-
corrected precipitation. The results are shown in Figures 5e,f and discussed in PS-N. Given bias-corrected 
precipitation forcing, VIC snowpack simulations manifested little bias in mean-annual maximum SWE. The 
rather poor performance of Noah snowpack simulations prompted considerable changes to Noah snowpack 
physics, including the treatments of snow cover fraction and snow albedo and a reformulation of Noah 
sublimation over patchy snow cover. These changes yielded marked improvement (not shown). 
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Figure 4 Two-year comparison of NLDAS versus observed bi-monthly total soil moisture (mm) in top 2 
m, averaged over 17 sites across Illinois during Oct 97 to Sep 99 for (a) Noah, (b) VIC, (c) Mosaic, and 
(d) SAC. Note different axis ranges. Text describes the two sets in (b) 
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Figure 5 Comparison of mean annual maximum snow water equivalent (SWE) during Oct 96 to Sept 99 
between observations (x-axis) and model simulations (y-axis) at 110 SNOTEL sites for the control runs of 
(a) SAC, (b) Noah, (c) VIC and (d) Mosaic, and two VIC tests runs forced with regionally corrected 
precipitation forcing (e) and locally corrected precipitation forcing (f). 

4. Validation of NLDAS surface energy fluxes and LST 

This section presents results from the validation of NLDAS surface energy fluxes in the study by RL-N, 
which validates energy fluxes during Jan 98 to Sep 99 using the 24 extended facility (EF) flux stations of the 
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ARM/CART network in Oklahoma and Kansas. The results omit the SAC, as SAC omits the physics of 
surface energy balance. Multi-station spatial averaging and hourly temporal averaging are used to reduce the 
influence of scale differences between NLDAS grid cells and point-wise flux stations. Figure 6 shows the 
21-month time series of monthly-mean observed versus modeled surface fluxes of the NLDAS control runs, 
including net radiation (R), latent heat flux (LE), sensible heat flux (H), and ground heat flux (G). As 

anticipated from the results for the NE and SE quadrants in Figure 1, Mosaic has a substantial high bias in 
LE and, correspondingly, a substantial low bias in H. VIC has a substantial low bias in LE and high bias in H 
throughout most of the year (except spring), while Noah shows much smaller bias in LE (slightly low in 
warm season) and H (modestly high in warm season). The counterpart to evaporation bias in Figure 1b was 

runoff bias of opposite sign. Here the counterpart to LE bias is sensible heat flux bias of opposite sign.  

Figure 6 shows serious errors in monthly mean ground heat flux in Mosaic. Noah shows comparatively little 
error in ground heat flux. Other figures (not shown) from RL-N and ML-N also show large ground heat flux 
errors on hourly time scales throughout much of the mean diurnal cycles of both Mosaic and VIC. VIC’s 
daytime and nighttime biases in G are rather symmetric and opposite in sign and thus nearly cancel on the 

monthly mean scale of Figure 6. Both Mosaic and VIC show large daytime diurnal high bias and phase error 
in G. Finally, the simultaneous and very high daytime biases in G and LE in Mosaic during Apr-Jun conspire 
to yield dramatically low sensible heat flux (H) during these months in Figure 6. The poor ground heat flux 

performance of Mosaic and VIC prompted sensitivity runs in NLDAS, as reported in RL-N and ML-N, 
wherein the surface heat capacity parameters in both models were changed, yielding in dramatic 
improvement in the ground heat flux of both models. However, the improvement in G in the Mosaic and 
VIC sensitivity tests provided no improvement in the large warm-season LE biases in Mosaic or VIC in 
Figure 6. Rather, the increase in daytime available energy (R-G) gained by reducing daytime high bias in G  

 

 
Figure 6 Time series of monthly mean surface energy fluxes (Wm-2) of (a) net radiation R, (b) latent heat 
LE, (c) ground heat G and (d) sensible heat H averaged over the ARM/CART sites during Jan 98 to Sep 
99 from observations (bold line, no symbols) and control runs for Noah (squares), VIC (triangles), and 
Mosaic (circles). Positive flux is heat sink to surface except in G. 

acted only to increase the sensible heat flux H, in both models, which helped the low H bias in Mosaic and 
worsened the high H bias in VIC. The non-responsiveness of LE and the high response in H strongly 

suggests that the canopy resistance is substantially higher than the aerodynamic resistance in both models in 
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this vegetated region in the warm season. Sensitivity tests of canopy resistance will be a focus in all three 
SVAT models in NLDAS follow-on studies.  

A chief goal of NLDAS is assimilation of satellite data to improve soil moisture, and in turn, surface fluxes. 
One keen interest is the assimilation of satellite-derived LST. Positive impact from LST assimilation will be 
greatly enhanced if errors in modeled LST stem primarily from errors in the background model’s Bowen 
ratio that arise from errors in model soil moisture states. Prospects for success are much lower if LST errors 

arise from Bowen ratio errors caused not by soil moisture, but by other errors or weaknesses in LSM 
physics, such as the ground heat flux errors noted above, or in aerodynamic conductance, as illustrated next. 
NLDAS investigations uncovered significant differences in simulated LST across the models caused not 
only by Bowen ratio differences, as expected, but also from surprisingly large inter-model differences in 
aerodynamic conductance.   Figure 7 shows for Jul 99 the multi-station and monthly mean diurnal cycle of 
ARM-station observed LST and co-located LST simulated from the NLDAS control runs, averaged over the 
ARM SIRS sites. (The Noah test in Figure 7 is described later.) Mosaic has a mid-day cool bias, as expected, 
given its high bias in LE and G and low bias in H in Figure 6. VIC and Noah have mid-day warm biases, 
also as expected, given their low LE and high H bias in July. While the sign of the models’ mid-day LST 
bias in Figure 7 is as expected, the comparative magnitude of the bias between the models is perplexing at 
first, given the LE and H fluxes in Figure 6. Specifically, the VIC mid-day (19-20 UTC) warm bias in July 
(about +2 K) is about half as large as Noah (about +4 K), despite VIC’s Bowen ratio (BR = 2.91) at this time 
being much higher than Noah’s (BR = 0.70) and the observed (BR = 0.38). Thus, VIC does not yield the 

largest mid-day warm bias, despite having by far the largest high bias in Bowen ratio. The previously cited 
high bias in daytime G in the Mosaic and VIC control runs does not answer the paradox. ML-N shows that 

the VIC test of lower surface heat capacity does raise VIC’s mid-day LST as expected, but only modestly, 
still leaving it well below the warmer LST of Noah. 

The chief explanation of the paradox of VIC vs. Noah mid-day summer LST lies in striking differences in 
their aerodynamic conductance (AC). Since the LSMs receive common surface forcing values of air 

temperature, wind speed, and surface pressure (and thus air density), then Noah can have higher mid-day 
values of LST than VIC simultaneously with lower mid-day values of sensible heat flux than VIC if and 
only if Noah has lower AC. Figure 8 depicts monthly-mean diurnal cycle of AC for Jul 98 for each LSM 

control run, averaged across 14 ARM stations. Indeed, the Noah control has substantially smaller daytime 
AC values than Mosaic, and far smaller values than VIC. The low AC values in Noah motivated a sensitivity 

test (denoted by solid squares in Figures 7-8), in which a parameter in Noah’s formulation for thermal 
roughness length was tuned to yield substantially higher AC. The mid-day values of AC in the Noah test 

(Figure 8) exceed those of the control by nearly 70%, yielding mid-day values roughly similar to Mosaic, 
but still notably less than VIC. The LST of this Noah AC test in Figure 7 shows a pleasing 2-3 K decrease in 

Noah’s peak daytime LST, cutting Noah’s mid-day warm bias by roughly half. Intriguingly, the Noah test 
and control runs exhibit relatively little change in mid-day sensible heat flux (not shown, see ML-N) -- and 
thus relatively little change in mid-day latent heat flux -- because the impact of increased AC is offset by the 

smaller difference between the air temperature and now cooler LST.  Thus the tuning of the Noah thermal 
roughness length parameter was successful in substantially reducing Noah’s mid-day LST warm bias 
without degrading the relatively good sensible and latent heat fluxes, and hence this thermal roughness 
length parameter was adopted as the standard in subsequent Noah runs, such as those in the next section. 
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Figure 7 Monthly mean diurnal cycle of LST (K) for Jul 
99 averaged over all ARM SIRS sites from observations 
(no symbols), VIC control (open triangles), Mosaic 
control (open circles), Noah control (open squares) and 
Noah test (solid squares). 

Figure 8 Monthly mean diurnal cycle of aerodynamic 
conductance (ms-1) for Jul 98 averaged over all ARM 
SIRS sites for VIC control (open triangles), Mosaic 
control(open circles), Noah control (open squares) and 
Noah test (solid squares). 

The ARM-station observations of LST are also useful for validating GOES satellite-based retrievals of 
hourly LST, as a prerequisite for assimilating the latter in the next section. The retrievals here were obtained 
from GOES-8 via the so-called “split-window” technique, which provided fields of hourly LST at 0.5° 
spatial resolution in cloud-free conditions during daytime. We bilinearly interpolated the GOES LST fields 
to the 1/8° NLDAS grid. MN-L and references therein further describe the retrieval technique, the associated 
cloud screening, and the thermal surface emissivity assumptions. Figure 9 presents the monthly and multi-
station mean of the daytime hourly diurnal cycle of observed LST and collocated GOES-8 retrieval LST 
over 22ARM/SIRS sites for Jul 98 (other months and years are shown in ML-N) at the times when the 
GOES retrieval detected virtually zero cloud. In Figure 9, the GOES LST reproduces the observed mean 
diurnal cycle, though it shows a small cool bias in the afternoon (likely from undetected sub-resolution 
cumulus clouds).  ML-N present additional results such as GOES vs. ARM vs. NLDAS LSM LST in station-
by-station scatter plots at fixed times of day, and then proceeds to use the GOES LST to validate LSM LST 
in CONUS regions beyond the ARM network.  

July 1998

c

July 1998

c

 
 

Figure 9 Monthly mean diurnal cycle of LST (K) 
averaged over ARM SIRS sites for Jul 98 from ARM obs 
(solid) and GOES-East retrievals (dashed). 

Figure 10 Volumetric soil moisture for Noah soil layer 
2 (10-40 cm) for control (top line) and assimilation 
(lower line) during May-Jun 98. 
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5. Assimilation of LST in the Noah LSM 
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Next we present progress at NCEP since the published papers of Section 1 to develop LST assimilation in 
Noah, via its adjoint / tangent linear model. To test our basic approach, we first performed 1-D identical-
twin experiments with the Noah column model for 1998, following a 1997 spin-up year, all forced with 30-
minute surface observations at a flux station operated by NOAA/ARL in east central Illinois. Three runs 
were executed for 1998: 1) the control run, 2) a degraded forcing run in which a 30% reduction was imposed 
on all moderate or greater amounts of the 30-minute precipitation, and 3) as in 2), but assimilating the 
simulated LST of the control run for a 3½-day period beginning 0000 UTC on 25 May. Figure 10 shows the 
Noah layer-2 soil moisture of the control run and the LST 4DDA run for May-Jun 98. The vertical line in 
Figure 10 denotes the start of the 3½-day assimilation. During this period, the assimilation routine calculates 
the cost function and the tangent linear of the Noah LSM and finds the optimal correction to the soil 
moisture state of 0000 UTC on May 25 that minimizes the difference between the “control” and simulated 
LST over the subsequent 3½ days. There is no assimilation after the 3½ days, so the runs drift apart in June. 

We next introduce a highly simplified 4D-Var assimilation of LST. We start with a typical cost function 

  (1) 

where J is the cost function, x the model state (soil moisture content, SMC), xb the model background state, 
B the background error covariance matrix, n the number of observations over the assimilation interval, Y the 
observed state (LST), H the observation operator (to transform the soil moisture state to LST), and R the 

error covariance matrix for observation errors. We then apply the following assumptions: 

1) For given surface forcing, we assume that LST is mainly a function of SMC, and hence for each 
assimilation interval, a functional relationship T(SMC) exists, which is the observation operator H. 

2) The Noah LSM can be linearized around xi = Mi Mi-1…M1x1; its background state can be written as 
a succession of linear operators Mi. 

3) The observation operator can be linearized around a state variable x, and hence 

  (2) 

We then apply these additional simplifying assumptions during each 6-hour mid-day assimilation window: 

a) M = I (the identity matrix), i.e. total evaporation does not change total soil moisture by more than 
one percent (Note: we do not assimilate if there is precipitation.) 

b) Hi = [d(LSTi)/d(SMCi)], the rate of change of LST with soil moisture is approximately constant 
during any given day’s assimilation interval and is estimated numerically, resulting in an estimate 
for the 6-hour mean . 

c) B, R = I for the estimation of the cost function with adjusted units. Weighting coefficients are 
chosen based on empirical evidence of time scales. This leads to the following gradient of the cost 
function (without the background term): 

  (3) 

The cost function for the analysis increment has a minimum where the gradient equals zero. Therefore the 
sum of the differences has to be zero, leading to 

  (4) 
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where xb is the background state at t=1. This is the update equation for the case of perfect measurements and 

zero background weight. One can set adjustment timescales using fractions of the increment, e.g. 50% here. 

 

 
Figure 11 Soil moisture (volumetric) at assimilation-start time of 01 May 98 (top 5 rows) and after three 
assimilating weeks on 21 May 98 (bottom 5 rows). Left to right, columns 1-4 depict soil layers 1-4 (0-10, 
10-40, 40-100, 100-200 cm). In each 5-row set: Row 1 = Control run (no assimilation, no degraded 
forcing, no degraded initial conditions), Row 5 = Degraded Benchmark run (no assimilation, zero 
precipitation after 01 March 98), Row 2 = as in Degraded Benchmark, except assimilates LST of Control 
run as of 01 May and thereafter, Row 3 = as in Row 3, except with added degradation of all soil moisture 
set to wilting point on 01 May, Row 4 = as in Row 3, except assimilated LST is GOES LST. 

This method was used in the Noah LSM to assimilate 1) identical-twin control-run LST and 2) GOES 
satellite LST over the entire NLDAS CONUS domain during daily, 6-hour mid-day intervals over five 
months beginning 01 May 98. No soil moisture was assimilated in the bottom soil layer (layer 4, 100-200 
cm). We examine the ability of the LST assimilation to overcome two severe degradations that we impose in 
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the assimilation runs: a) zero precipitation everywhere at all times from 01 May onward and b) initial soil 
moisture set to wilting point everywhere on 01 May. Additionally, in a second run assimilating control-run 
LST, we impose less severe but still dry initial conditions on 01 May by taking them from a non-assimilating 
benchmark run with zero precipitation after 01 Mar 98. Figure 11 presents the results. 

Both the top and bottom half of Figure 11 depict five runs in five rows, of which Row 1 is the control, Rows 
2, 3, 4 are the three assimilation runs, and Row 5 is a non-assimilating benchmark with zero precipitation. 
The top half of Figure 11 shows the dry initial states imposed on all three assimilation runs. The bottom half 
shows how quickly (by three weeks) the assimilating runs recharge (moisten) the dry initial soil states and 
overcome the zero precipitation forcing. As expected, the two runs assimilating the control-run LST agree 
most closely with the control run. The run assimilating the GOES LST develops a moist bias compared to 
the control, likely from the modest cool bias noted in the GOES LST in Figure 9. Future efforts will pursue 
bias corrections for the GOES LST. 
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