PCA based information content studies from high spectral resolution infrared observations

P. Antonelli, H. Revercomb, R. Knuteson, Larry Sromovsky, A. Huang, Ray Garcia, Ben Howell D, Tobin, F. Best CIMSS/SSEC, UW-Madison

> R. Episcopo, L. Galdi, M. di Bisceglie University of Sannio, Italy

Langley Research Center

W. Smith NASA Langley (retired)

Questions we are trying to answer

- What is the impact of PCA on hyperspectral IR data?
 - Estimation of the Information Loss
 - Noise reduction
- What do the Principal Components represent?
 - Statistical meaning
 - Physical meaning
- What are the benefits and risks in applying PCA to hyperspectral IR data for noise filtering?
 - How should it be applied?
 - When should it be applied?

Outline

- PCA used to Filter out random component of instrument Noise (PNF)
 - Theory
- Application of PNF to simulated data
 - Aircraft FTS data
- Application of PNF to real data
 - Airborne FTS and Spaceborne Grating observations
- Conclusions

Noise Filter Problem

 $L_{obs}(v) = L_{atm}(v) + \eta(v)$

Find F such that: $L_{est}(v) = F(L_{obs}(v))$

With minimal Estimation Errors: $EE(v)=L_{est}(v)-L_{atm}(v)$

MMSE If S=cov(η) and R=cov(L_{atm}) are known, the optimal linear filter in the least square sense is F=R(R+S)⁻¹

$$L_{est}(v) = P(L_{obs}(v))$$

PCA

Useful Quantities

- Estimation Error (EE): difference between noise free and filtered signals
- Atmospheric Information Loss (AIL): difference between noise free signal before and after filtering
- Reconstructed Noise (RN): noise signal after filtering
- Reconstruction Residuals (RR): difference between observed signal before and after filtering

PCA Noise Filter: Implementation Strategy

 Normalize each spectrum L_{obs} by estimated Noise Equivalent Radiance

 Derive the Principal Components from observations (Eigenfunctions of Covariance Matrix of dependent L_{obs})

Project each L_{obs} onto PCs

Estimate noise normalized signal (L_{est}) by retaining only N_t PCs

Remove normalization

Noise Reduction Factor (NRF) After Noise Normalization data: $\sigma_i=1 \forall i$

Original space: $\Phi^2 = \Sigma \sigma_j^2 = N$ j=1,...,N

Reduced space: $\Gamma^2 = \Sigma \sigma_j^2 = N_t$ $j=1,...,N_t$

Noise Reduction Factor (NRF) NRF=sqrt(Φ^2/Γ^2)=sqrt(N/N_t)

PNF on Simulated Data

- Quantification of:
 - Atmospheric Information Loss (AIL)
 - Reconstructed instrument Noise (RN)
- Comparison between:
 - Accuracy of PNF (PCA Noise Filter)
 - Accuracy of MMSE (Minimum Mean Square Error from Estimation Theory)
- Verification importance of:
 - Noise normalization
 - Importance of large training sets

Training Set

- 10000 raob profiles collected over South Africa (REGIONAL or Local DATASET)
- Clear Sky radiances only, simulated with LBLRTM 8.1 and convoluted at Scanning-HIS resolution (.5 cm⁻¹)
- Noise RMS estimated from observed instrument noise (Scanning-HIS, 7 Sep 2000)

Training Set Simulated Data

REGIONAL TRAINING SET July-October / 1990-2000 **Over South-East African Countries**

30[°] E

40[°] E

EE vs RN

Correlation in RN

Correlation in AIL

PCA Rms(RN) PCA Rms(RN)

PCA Rms(AIL) PCA Rms(AIL)

<Rms(AIL)>

<Rms(RN)>

PNF approaches theoretical limits defined Linear Estimation Theory

Importance of Noise Normalization

Noise Normalization changes noise distribution along different PCs

PCs With Noise Normalization

Importance of Noise Normalization

Noise Normalization increases NRF and decreases Atm. Info Loss

Training Set Size

More Noise Variance explained by high order PCs (large values of N_t)

Importance of Noise Normalization

Large Training Sets* increase NRF and decrease Atm. Info Loss

Conclusions on PNF impact on Simulated Data

- In RMS sense PNF approaches optimal values defined by Linear Estimation Theory for both AIL and RN
- RMS of AIL and RN are about 7 times^{*} smaller that RMS of Original Noise
- Noise normalization and Large Training Sets improve filter efficiency and accuracy

* This Value depends on the specific instrument used

- ER-2 (cruise altitude: 20 km), its instruments are above 94% of the earth's atmosphere
 - NAST-I (FTS, 3.7-16 microns @ .25 cm⁻¹)
 - S-HIS (FTS, 3.3-18 microns @ .5 cm⁻¹)
- AQUA (Orbit altitude 705 km)
 - AIRS (Grating, 3.7-15.4 microns, resolving power 1200)

Training Set: S-HIS from SAFARI 2000

The Noise Filter Effect

Filtered-Unfiltered for almost overlapping FOVs over Ocean

Unfiltered

Filtered

Filtered-Unfiltered single FOV over Ocean

Filtered and Unfiltered data for almost overlapping FOVs over Fire

Filtered-Unfiltered for almost overlapping FOVs over Fire

Unfiltered data for 10 FOVs over Fire

Unfiltered data for 10 FOVs after Fire

Filtered data for 10 FOVs after Fire

Courtesy of MAS team

Poorly Estimated

Properly Estimated

Importance Dependent Training

Training Set with Blue Spike

Training Set without Blue Spike

wavenumber [cm⁻¹]

Importance of Noise Normalization

rms(RR)/rms(Noise)

Noise normalization avoids fitting noise where noise level is high

PNF used for noise estimation

Noise estimation with PNF still not objective!

AIRS on Mount Etna

Signal Variance Granule 123, 28 Oct 2002

Cloudy Clear All

AIRS noise

Eigenvalues of Obs covariance Matrix

Larger Training with more redundant observation == Smaller FOVs

AIRS channel differences

Filter vs Unfiltered

Features over Northern Africa and Southern Italy are visible after filtering

AIRS channel differences

Filter vs Unfiltered

Striping is removed and features over Northern Africa are visible after filtering

Sensitivity to SO₂

Work initiated by Larrabee Straw And Dave Tobin

SO₂ emitted by Mount Etna

1414.008-1376.886 cm⁻¹

c1:1376.886, c2:1414.008

Fraction of Energy per PCs

SO₂ Concentration

PCC8-PCC11

Conclusions

- PCA by taking advantage of redundancy reduces random component of Instrument noise (PNF)
- Both AIL and RN approach the optimal value defined by Linear Estimation Theory
- For simulated data (presented case) AIL and RN are 7 times smaller that original noise
- Both AIL and RN are correlated in wavenumber space
- Most difficult cases, observation highly deviant from mean, are properly treated if PCs are derived in Dependent Mode

Conclusions

- Noise normalization and large training set enhance accuracy and efficiency of PNF
- If not available, estimate of random component of instrument noise can be obtained by applying PCA to observations
- With real data (AIRS) achieved NR factor is between 4 and 5
- PNF is not quite ready to be used as Black Box, it requires tuning and monitoring of Reconstruction Residuals

Ongoing Work

- Characterization of AIL and RN spectral correlation
- Investigation of physical meaning of PCs

Thanks!

Questions?