Challenges in Satellite Data Monitoring at ECMWF

Gerald van der Grijn ECMWF Meteorological Operations Section

Thanks to the following persons who contributed in one way or the other to this presentation:

Jean-Noël Thépaut, Tony McNally, Graeme Kelly, Jonathan Smith

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP

Overview

• Why is there a challenge?

» Summary of satellite data usage at ECMWF» Importance of satellite data

• How is this challenge tackled?

» Summary of monitoring products

» Some Examples

• Future plans

Why is there a Challenge? – Satellite Data Coverage at ECMWF

June 28 - 1 July

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP

Why is there a Challenge? – Satellite Data Usage at ECMWF

- 1 x Airs (Aqua)
- 3 x AMSU-A (NOAA-15/16, AQUA)
- 2 x AMSU-B (NOAA-16/17)
- 1 x HIRS (NOAA-17)
- 3 x SSM/I (F-13/14/15)
- 5 x GRAD (GOES-9/10/12, MET-5/7)
- 1 x SBUV/2 (NOAA-16)
- 5 x AMV (GOES-10/12, MET-5/7, MODIS on Terra)
- QuikSCAT

June 28 – 1 July

- ENVISAT RA-2
- ERS-2 Scatterometer, RA-2, ASAR

Why is there a Challenge? – Current Data Counts 28R1 (25/06/04 00Z)

	Screer	ned		Assimilated			
• Synop:	276872	(0.39%)	• Synop:	39124	(1.51%)		
• Aircraft:	229994	(0.32%)	• Aircraft:	156720	(6.03%)		
• AMV's:	1641042	(2.31%)	• AMV's:	77194	(2.97%)		
• Dribu:	11392	(0.02%)	• Dribu:	3622	(0.14%)		
• Temp:	118240	(0.17%)	• Temp:	68181	(2.63%)		
• Pilot:	103910	(0.15%)	• Pilot:	60320	(2.32%)		
• UpperSat:	68274801	(96.26%)	• UpperSat:	1983481	(76.37%)		
• PAOB:	550	(0.00%)	• PAOB:	191	(0.01%)		
• Scat:	249464	(0.35%)	• Scat:	118494	(4.56%)		
TOTAL:	70.926.265		TOTAL:	2.597.327			
 ~ 99% of screened data come ~ 85% of assimilated data come from satellites 							
June 28 – 1 July ECMWF Workshop on Assimilation of high Slice							

Why is there a Challenge? – Importance of Satellite Data

Anomaly correlation of 500hPa height forecasts

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP

June 28 - 1 July

Why is there a Challenge?

- Satellite data represent by far the **largest volume** of data (and associated computing cost) used in the ECMWF data assimilation system.
- Satellite data have progressively become an essential part of the observing system used at ECMWF. Satellite data have recently caught up with radiosondes in terms of **forecast skill impact** over NH.
- Satellite data monitoring is essential in order to safeguard the **quality** of the observations used and to detect any **systematic errors** in the ECMWF forecast system.
- The usage of **future hyper-spectral instruments** (e.g. IASI on METOP) will increase the importance of a (semi-) automatic satellite data monitoring.

Overview

- Why is there a challenge?
 - » Summary of satellite data usage at ECMWF
 - » Importance of satellite data
- How is this challenge tackled?

 Non-Real time monitoring
 Some examples
- Future plans

http://www.ecmwf.int/products/forecasts/d/charts/monitoring/coverage/

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP

http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite

European Centre for Medium-Range Weather Forecasts		<u>Home</u> <u>Your F</u>	<u>Room Login C</u>	<u>iontact</u> <u>Feedbac</u>	<u>k Site Map Se</u>	arch:	
Mid tropospheric flow and bounde	About Us Overview Getting here Committees	Products Forecasts Order Data Order Software	Services Computing Archive PrepIFS	Research Modelling Reanalysis Seasonal	Publications Newsletters Manuals Library	News&Events Calendar Employment Open Tenders	
	Home > Products >	Forecasts > Data rec	eption statistics > S	iatellite data>			
	Satellite d	ata					
Other charts	These pages	show monitoring	n etatietice for	a variety of cate	llite data mostly	(radiances A	
<u>Data monitoring</u> <u>Monitoring of GUAN</u> <u>stations</u> <u>Radiances</u> Satellite data	large part of th data is monito	now monitorinț le data is "activ red passively.	e", i.e. used in	the operational	data assimilation	n. All other	Data monitoring statistics of active
Chart catalogue Page overview Find charts	 High res Advanc Advanc Special Atmosp Solar Ba Atmosp ENVISA ERS-2 n Geostat Quiksca 	solution Infrared ed Microwave 3 Sensor Microw heric InfraRed 3 ackscatter Ultra heric Motion Va AT monitoring nonitoring ionary RADianc at monitoring	Radiation Sou Sounding Unit Sounding Unit ave Imager (S Sounder (AIRS Violet radiome ectors (AMV)	Inder (HIRS) A (AMSU-A) B (AMSU-B) SM/I) SM/I) ter (SBUV/2)			and passive data. Statistics mainly based on comparison with the model First Guess.
8 05-04-2004			mete	orological supp	ort@ecmwf.int	© ECM	WF
	0 1 1 1	ECN	IWF Wo	rkshop on	Assimilati	on of high	Slide 1

spectral resolution sounders in NWP

June 28

JUIV

Summary maps

- Time series of averaged AIRS T_b departures from the model first guess.
- Statistics for the complete subset of 324 channels.
- Quick assessment made 'easy' and therefore useful for operational alert.

Note: Something else might be needed for IASI data!

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP

Statistics for Radiances from Aqua / AIRS

Channel = 1449, Used Data

Area: lon_w= 0.0, lon_e= 360.0, lat_n= 90.0, lat_s= -90.0 (over sea) EXP = 0001

Channel specific time series of area averages.

- For monitoring long-term evolution of departures and observations.
- In case of retrieval or calibration problems in the observation data or scientific changes in the ECMWF model they will show sudden jumps.
- Useful for detecting biases and slow drifts in the data.

Accurate scaling allows for detailed monitoring.

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP

spectral resolution sounders in NWP

Channel specific Hovmöller diagrams

STATISTICS FOR RADIANCES FROM AQUA / AIRS

- Another way of looking at longterm behaviour of the data and the model.
- Show the time evolution of zonal mean data.

Tackling this Challenge – Example

Both the model and the observation contribute to the First Guess departure and neither of them is 'true'. To separate these two sources it is helpful to

spectral resolution sounders in NWP

June 28 - 1 July

Both the model and the observation contribute to the First Guess departure and neither of them is 'true'. To separate these two sources it is helpful to

spectral resolution sounders in NWP

June 28 - 1 July

Both the model and the observation contribute to the First Guess departure and neither of them is 'true'. To separate these two sources it is helpful to

spectral resolution sounders in NWP

June 28 - 1 July

However, another high-spectral resolution infra-red sounder, similar to AIRS, is not available yet. This makes comparisons with similar independent observations not so straightforward.

30°W

30°F

90°E

120°E

50°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E

Mid Tropospheric Temperature AIRS 221 (14 micron) ← AMSU-A 5

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP

June 28 - 1 July

Tackling this Challenge – Comparing with Other Centres

By comparing data monitoring statistics between different centres one can make an assessment of the contribution of the model error in the departures.

However, monitoring plots should be in the same format to allow for easy comparisons.

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP

Overview

• Why is there a challenge?

» Summary of satellite data usage at ECMWF» Importance of satellite data

- How is this challenge tackled?
 » Non-Real time monitoring
 » Some examples
- Future plans

Future Plans – Automatic Alerts

More high-spectral resolution instruments are planned in the near future. As a result, thousands of more channels will be available for assimilation in NWP systems.

An automatic monitoring system will be essential to safeguard the quality of these data and to monitor the impact on the model.

Future Plans – Automatic Alerts

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP

June 28 - 1 July

Future Plans – Automatic Alerts

Signal detection based on statistics of past ~ 50 days

June 28 - 1 July

A variational bias correction technique is currently investigated at ECMWF. As such a system is designed to keep the bias close to zero one would also need to monitor the applied bias correction value itself.

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP