Assimilation results for AIRS

atMETEOFRANCE

Thomas Auligné Florence Rabier

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP 28th June - 1st July 2004

ARPEGE : global spectral modelT358, C2.4, 41 vertical levelsAssociated grid: 25km (France) to 150km

324 Tbs (1/18 pixels) 4D-Var Data Assimilation Screening (obs-fg) 6-hour assimilation: **Minimisation** 00, 06, 12, 18 UTC **First Guess** Multi-incremental **ARPEGE NWP** T107 & T161, 41 L operational model

FOS

NESDIS

Met Office

Météo-France D.B.

INTRODUCTION

 Recent developments to assimilate AIRS into ARPEGE NWP model

✓ AIRS in parallel suite this summer.

✓ Further studies (cloudy radiances, CO2-slicing, ...)
 → cf. Lydie Lavanant presentation

CLOUD DETECTION

Information on a channel basis: ECMWF scheme (McNally & Watts, 2001)

ECMWF Workshop on Assimilation of high spectral resolution sounders in NWP → Data volume too big(for an operational start)

Arpège model is biased in stratosphere + 4DVar constraint on iterations → Focuses assimilation on stratosphere and not troposphere

CLOUD DETECTION

Information on a pixel basis:

 NESDIS scheme (Goldberg et al.) based on thresholds recomputed for ARPEGE model
 VIS/NIR image (day-time only) : less than 10% of clouds in pixel

CLOUD DETECTION

✓ VIS/NIR image (day-time only) : less than 5% of clouds in pixel

CHANNEL SELECTION

Channels in O₃ and SW bands, peaking above/near model cloud top (1hPa), at edges of scan, tropospheric channels over land are blacklisted

Data quality control: Gross check: 150 < Tb < 350 & (obs-guess) < 20

✓ First-guess check: $(obs_guess)^2 < \alpha (\sigma_o^2 + \sigma_b^2)$

ERROR STATISTICS TUNING $(\sigma_0 & \sigma_b)$

Observation error statistics:
 σ_o tuned for 12 bands of channels.

Background error statistics:
 σ_b tuned for each channel to remove residual
 "cold tail" (cloud contamination) in first-guess
 check.

ERROR STATISTICS TUNING $(\sigma_0 & \sigma_b)$

BIAS CORRECTION Motivation

 Systematic errors in instrument + forward model (interpolation, representativness, radiative transfert model) and adjoint (jacobian)

Errors in NWP model

→Bias in (Obs-Guess) departures in 4DVar assimilation system. Non constant in time & space (dependence to scan, air-mass). Channel dependent.

Need for bias correction scheme.

BIAS CORRECTION Implementation

 Flat bias correction for each channel calculated over all active data.

Harris & Kelly bias correction adapted for AIRS

 \rightarrow non optimal results

BIAS CORRECTION Implementation

 Harris & Kelly philosophy: use predictors from model guess to "correct" the observations. Separate bias correction for each channel.

 Non-linear regression.
 Learning process performed on dataset declared "active" in former screenings (full coherence with assimilation QC & cloud detection).

BIAS CORRECTION Implementation

BIAS CORRECTION Neural Network

Multi-layer perceptron for each channel. (92 inputs, 1 hidden layer, 1 output) Preconditioning: normalization (+PCA) of inputs \checkmark Learning process = minimize a cost function to calculate the weights defining the Network (RMS error between observed and calculated bias) \rightarrow Use M1QN3 minimizer to reach better convergence & faster. Regularization: trade between bias & variance performance "Weight smoothing" to stabilize Jacobians

BIAS CORRECTION Neural Network

BIAS CORRECTION Neural Network

92 PREDICTORS:

BIAS PREDICTION

Initial Obs-Guess

ECMWF Workshop on Assimilation of Window channel 787

Neural Network Bias Correction

ECMWF Workshop on Assimilation of Window channel 787 high spectral resolution sounders in NWP

Residual Bias

ECMWF Workshop on Assimilation of Window channel 787 METEO high spectral resolution sounders in NWP

Residual Bias after Flat Bias Correction

ECMWF Workshop on Assimilation of Window channel 787 METEO high spectral resolution sounders in NWP

Learning process using Obs-Guess for "active" data: very good ability of NN to predict Obs-Guess (even after learning over only one assimilation cycle) & good generalisation on independent datasets. (nearly Gaussian, low biased inputs to 4DVar)

BUT

✓ Correction of observation bias AND model bias.
 → kills most of the information useful for NWP (observations do not correct the model any more...)

\rightarrow Bad results in NWP trials 🙁

BIAS CORRECTION NN fit to Obs-Analysis

Learning process using Obs-Ana for "active" data, predictors generated from analysis state vector.

 Advantages:
 Analysis closer to "true" state. NN scheme will predict less model bias (e.q. systematic error).

Unfortunately...Analysis is also biased.

BIAS CORRECTION NN fit to Obs-Analysis

Temperature Analysis - ECMWF

Temperature Analysis - RS

BIAS CORRECTION NN fit to Obs-Analysis

✓NN bias correction creates a dataset
 homogeneous with NWP analysis
 → AIRS observations confort the analysis in its own bias.

 \rightarrow Bias amplification.

What is the best estimate for NN bias correction learning ?

ECMWF analysis ?!!! Same observation operator \rightarrow close obs bias IFS analysis is less biased than ARPEGE

Learning process using Obs-Ana(ECMWF) for "active" data, predictors generated from ECMWF analysis state vector interpolated to ARPEGE grid (vertical&horiz).

✓Unfortunately...
 Meteo-France does not correct RadioSondes bias yet.
 →biased above 100hPa

BIAS CORRECTION NN fit to Obs-Analysis(ECMWF)

Very big increments in stratosphere

VarQC)

BIAS CORRECTION NN fit to Obs-Analysis(ECMWF)

✓ Very big increments in stratosphere
 → AIRS versus RS, AMSU-A, AMSU-B, HIRS
 → focuses 4DVar to upper levels, less minimization in troposphere
 → structure fonctions (B matrix) bring unphysical increments downwards into the troposphere

Forecast

1 case...

Geopotential bias difference in increments

How to make analysis increments "digestable" to the assimilation

system?

 Need for observation dataset compatible with ARPEGE analysis
 Observations must drag the assimilation towards the "true" state.

→For each channel: NN bias correction (learning w/r Obs-Analysis(ARPEGE)) + α * Constant bias(Arpege - ECMWF)

 BIAS CORRECTION

 NN fit Obs-Analysis+α*B(Arpege -ECMWF)

Quick & dirty experiment: ✓ α=0.4 ✓ NN learning over one assimilation cycle, then set constant.

 $\checkmark \sigma_o$ drastically increased for upper-level channels

Assimilation period :12 days
 Reference:Arpege (AMSU-A&B, HIRS, EARS, QuikSCAT, VarQC)

Can we distinguish model bias from observation/forward model bias ?

Analysis bias seems to spread with forecast range

Temperature Bias & RMS w/r to Radiosondes

BIAS CORRECTION NN fit Obs-Analysis+β*(OMA-OMF)

 \rightarrow modelize analysis bias by: β * Bias Growth

Quick & dirty experiment: Ana_bias = β * (Guess_bias – Ana_bias)

 \rightarrow Ana_bias= β * (OMA – OMF)

 $\checkmark\beta=0.5$

 Assimilation period :9 days
 Reference:Arpege (AMSU-A&B, HIRS, EARS, QuikSCAT, VarQC)

VERIF = RS

Humidity

CONCLUSION & PERSPECTIVES

Neural Network bias correction scheme needs more tuning ($\alpha \& \beta$). Good start to separate observation bias from model/analysis bias.

NN bias correction should be more robust with learning process over a longer period for total bias & updated learning model/analysis bias.

CONCLUSION & PERSPECTIVES

Need for RadioSondes bias correction in upper levels (and updated bias corrections for AMSU & HIRS)

Extra thinning might be necessary for AIRS to be consistent with other observations&model. AIRS σ_{o} shall be increased in order to reduce analysis increment variability due to AIRS.

