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Motivation (1)

B General problem for current AGCMs

B Cumulus parameterization
* One of ambiguous factors
« Statistical closure of cumulus

B Future AGCM

B Explicit treatment of each cloud

: not used!
: used!
B Explicit treatment of multi-scale interactions
 Each cloud scale > meso-scale = planetary scale

~ Global Clowd Resolving Wodel
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Motivation (2)

B Target resolutions

B 5 km orless in the horizontal direction
B Several 100 m in the vertical

B Strategy of dycore development

B Quasi-uniform grid

 Spectral method :
not efficient in high resolution simulations.
— Legendre transformation
— Massive data transfer between computer nodes

« Latitude-longitude grid :
the pole problem.
— Severe limitation of time interval by the CFL condition.

— To avoid the pole problem.
B Non-hydrostatic equations system
* Very high resolution in horizontal direction.

Next Generation Climate

Model



ERSGC

Model Hierarchy

B Global Shallow Water Model

 To examine the potential of icosahedral grid.
( Tomita et al. (2001,2002) J.Compt.Phys. )

— Test bed for development of numerical scheme ( 2.g. advection
scneme ) on the icosanedral grid.
B Regional Non-hydrostatic Model

« To examine a numerical non-hydrostatic scheme suitable to

climate model.
( Satoh(2002,2003) Mon.Wea.Rev.)

— Test bed for development and validation of new physical
pararmeterizations.

B Global Non-hydrostatic Model

- Base on our non-hydrostatic scheme

« Using the icosahedral grid configuration in the horizontal
direction.

( Tomita & Satoh (2004) Fluid Dyn.Res. )
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Grid Generation Method

(1) grid division level 1

B Grid generation

1. Start from the spherical
icosahedron.
(glevel-0)

2. Connection of the mid-
points of the geodesic arc
- 4 sub-triangle
(glevel-1)

3. Iteration of this process
-> A finer grid structure
(glevel-n)

STD-grid
B # of gridpoints

B 11 interations are requried
to obtain the 5km grid
interval.
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Gridl arrangement

Arakawa A-grid type

B Velocity, mass
« triangular vertices

A
;: B Control volume
o « Connection of center of triangles
"‘Q‘ — Hexagon
() — Pentagon at the icosahedral
..lrg", vertices
% Advantage

B Easy to implement

B Less computational mode

« Same number of grid points for
vel. and mass

Disadvantaqge
B Non-physical
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Glevel-3 grid & control volume 2-grid scale structure

 E.g. bad geostrophic adjustmen
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Horizontal differential operator

B e.g. Divergence
1. Vector : given at P,
u(f)
2. Interpolation of u at Q

au(FR)+ pu(P)+ 7’“(P1+mod(i,6))
a+pf+y

u(Q,)~
3. Gauss theorem

Ve u(PO) N A(PO) ;bi U(Qi) + u(2Q1+m0d(i,6)) on,

2nd order accuracy?
NO

- Allocation points is not gravitational center ( default grid )

Next Generation Climate Model



Error distribution of div U

B Error of div operator
B Large error on the original

icosahedral arc
 Fractal distribution
B Generation of grid noise

Area of CV

B Distribution of CV area

B Fractral distribution
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Modified Icosahedral Grid (1)

B Reconstruction of grid by spring dynamics
B To reduce the grid-noise

1. STD-grid :
Generated by the recursive grid
division.

2. SPRING DYNAMICS :
C

onnection of gricpoints by springs

6 P
> k(d, —d)e, —aw, =M il
i=1 dt

_
dt
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Modified Icosahedral Grid (1)

m_SPR-grid
B_Solve the spring dynamics
- The system calms down to the static balance

6 P
> k(d,—d)e, =0
i=l

B_Construction of CV
« Connection of the center of triangles

B One non-dimensional parameter (3
B_Natural length of spring

2ma

d =
'BIOXZZ_1

« Should be tuned!
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STD-grid convergence level = 1.34

A

1.0 '
0.0%).2 0.4 0.6 0.8 1.0 1.2

- g,

The standard grid B The spring grid
Imax/lmin = 1.34. Imax/lmin depends on S and glevel.
2>If £=1.2, Imax/imin > 1.24.
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Modified Icosahedral Grid (2)

B Gravitational-Centered Relocation
B To make the accuracy of numerical operators higher

SPR-grid:

Generated by the spring dynamics.
> @

CV:

Defined by connecting the GC of
triangle elements.

2> A

SPR-GC-grid:

The grid points are moved to the
GC of CV.

> @

- The 2" order accuracy of numerical operator

is perfectly guaranteed at all of grid points.



- Area of CV

STD-grid

STD-grid
B Areaof CV

* Fractral distribution
due to recursive division

B Error of divergence
« Fractral distribution error
- Generation of grid noise

SPR-GC-grid
B Areaof CV
e  Smooth distribution

B Error of divergence
e  Smooth distribution
- Reduction of grid noise
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Improvement of accuracy of operator

SO0 B{V-u) : STD-grid —g}— | B Test function
h{V-u) : SPR-GC-grid —&1 | -
fm(?u}:irﬂ-gﬂd Al B Heikes & Randall(1995)
- Fad Vo1t .S'FR—GC—gﬂd -y B Error norm
B Global error
LoE-02 | 1.0 -x..0) ]
l,(x)= SN2
Ilx, (2,00
B Local error
_“ e max;,; ,|x(1,60)—x,(2,0)
Log-03 — : ; : * max_;, , X, (4,0)
glevel
STD-grid SPR-GC-grid
L_2 norm Almost 2nd-order(@®) Perfect 2nd-order(O)
I_inf norm Not 2nd order(A) Perfect 2nd-order(A)
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Test Case for SWM

B Shallow water equations
B Vector invariant form

_Z;_|_(]A(.V><v+f)f{><v:—V(gh+—vév) (D)
oh’ .

—+V-(hv)=0 2
o VY )

where h =h" +h

B A Standard Test Case
B Williamson et al. (1992, JCP)

« TEST CASE2
— Solid body rotation test

- TEST CASES
— Unsteady, nonlinear but deterministic test with mountain

Next Generation Climate Model -




TEST CASE 2 (1)

B Test configuration

B |nitial condition
« Solid body rotation
 Geostrophic balance
B Purpose

* How does the model
maintain the initial state~

H Integration time
- bSdays
H Monitor

B Time evolution of
L inf norm
of surface height

Next Generation Climate Model



TEST CASE 2

L.OE-02 |

LOE-03

1.0E-04

1.0E-05

Time evolution / _ norm —~
[
\W EE&MI
GC, ———

(L |
: I -Spﬂﬂg 'I—— .

0 1 2 3 . S

{days]

Numerical condition

Resolution : glevel-5

Integration : Sday

numerical diffusion :

none

(2)

STD-grid (---)
* No modification of grid
B Large error from the initial
stage

STD-GC-grid (---)

* Only GCR modification
B Small error just in 1 day
B Large error from 2 day
- Grid-noise

SPR-GC-grid (---)

 Spring dyn & GCR
B Small error during 5 days
- No grid-noise
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TEST CASE S

Result : glevel5 SPR-GC grid
without viscosity

(0) t=0 day (1) t=5 day

B Test Configuration

H Initial condition
Solid body rotation

Mountain at the mid-
latitude

Hintegration
15 days
B Purpose
Check the conservation

Total energy
I . 1
TE=—hv-v+—g(h’ —h
5 2g( 5)

Potential enstrophy

1
PENS =——(c+ f)*
Y (c+f)

No grid noise

Next Generation Climate Model
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Research Syste
for,Global Change

TEST CASE 5 (2)

B Grid refinement result ( SPR-GC grid )

B Resolution : glevel-4,5,6,7

B Numrical diffusion : NONE

Conservation of total energy g 1oy

1.0E-01

LOB-02 |
L.OB-03 L
LOB-04 |
LOB-05 |
1.0B-06 |
LOE-07 |

1.0E-0R

glevel dM ——
glevel S M ~——
glevel 6M - _
glevel 7 ‘ S .

------

Conservation of potential enstrohpy nNso|

1.0E-01

1.OE-02 ¢
1.OE-03 ¢
1.0E-04 ¢
1.OE-05 ¢

glevel AM ——
glevel SM ~——
glevel M -
glevel M ——

Error : reduction by a factor of 4
= in the 2nd order
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Design of our non-hydrostatic modeling

B Governing equation
B Full compressible system
« Acoustic wave - Planetary wave
B Flux form

* Finite Volume Method
« Conservation of mass and energy

B Deep atmosphere
* Including all metrics terms and Coriolis terms

B Solver

B Split explicit method
 Slow mode : Large time step
« Fast mode : small time step

B HEVI ( Horizontal Explicit & Vertical Implicit )
* 1D-Helmholtz equation

Next Generation Climate Model




Governing Equations

€< L.H.S. : FAST MODE - < R.H.S.: SLOW M
O Ryv, YO [ VZ2+G3-& = 0
ot y 0&E\ G ¥
ﬁw+w£+i(G3 Ll ADV, +F, . .
ot y 0 y
0 0 P
EW_i_]/z aé G1/2}/2 +Rg = ADV +FCorzollzs
QE-FVh' th + g h VZ2+G3-&
ot y ) o0&l \G ¥
Vh Vh£ i G - W 2 a 1/]: 9 +Wg - Qheat
R y 0& ¥ 8§ G
B Prognostic variables B Metrics
° denSity R:}/zGl/zp G1/2 :(%j
- horizontal momentumy, - 26", v, 05 sy
- vertical momentum  _ G2, G’ =(Vig)
* internal energy E=7G"pen £ = H(z-z,)

r A
DE =

(1)
(2)

)

(4)
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Temporal Scheme (RK2)

A:t B:t+ Azt C:t+At
S(A)
At At At

‘ At | time
= “ >
~—t S~
AT

A'c Afc Afc AT AT At AT
S(B)

Assumption : the variable at t=A is known.

> Obtain the slow mode tendency S(A). HEVI solver
1. 1Ast step:

Integration of the prog. var. by using S(A) from A to B.

» Obtain the tentative values at t=B.

» Obtain the slow mode tendency S(B) at t=B.
2. 2nd step:

Returning to A, Integration of the prqg.var. from Ato C

by using S(B).

- Obtain the variables at t=C

Next Generation Climate Model
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Small Step Integration

In small step integration, there are 3 steps:

1. Horizontal Explicit Step h

> -Update of.hc.mzontal momentum _ HEVI
2. Vertical Implicit Step

» Updates of vertical momentum and density. )

3. Energy Correction Step
> Update of energy

B Horizontal Explicit Step

 Horizontal momentum is updated explicitly by

t+nAt (¢, or t+At/2]
Vi AT = AT 4 A7 [_ " i((f EJ] ' (%j
4 85 V4 at slow mode

Fast mode Slow mode :
given

Next Generation Climate Model




P Small Step Integration (2)
B Vertical Implicit Step

 The equations of R,W, and E can be written as:

Rt+(n+1)Az- _Rt+nAr a Wt+(n+1)Ar
— GR

AT + ag G1/2 (6)

Wt+(n+1)Az- _ Wt+nAz- 5 8 Pt+(n+1)Ar
+ +Rt+(n+1)A‘r _ G 7
Az o0&\ G 8 - 0
t+(n+))Ar _ pt+nAz t+(n+l)At
P A P n aaé |:(WG1/2 ]C§t+nAz':| +&Wt+(n+l)AT§ — %GE (8)
4 v v

— Coupling Egs.(6), (7), and (8), we can obtain the 1D-Helmholtz
equation for W :

t+(n+l)Ar t+(n+l)At t+(n+l)Az t+(n+l)Az
d 2 - ‘ 1/12 2 ‘ (Arzcszmmr d 1/2 j o i[Afz Rd gW 1/2_2 j +A7? g ‘ [W 1/2 J
y o\ G y” 0& G o0& C, Gy v OF G

= R.H.S.(source term) 9)

- Eq.9) > W
- Eq.6) > R
> E

. Eq.(8)



Small Step Integration (3)

B Energy Correction Step

(Total eng.) = (Internal eng.) + (Kinetic eng.) + (Potential eng.)
 We consider the equation of total energy

0 A\ 0 w A\
—E Vi |llh+k+®)— |+—|(h+k+D +G-—|| = 0

where £, =py’G"(e, +k+®)
« Additionally, Eq.(10) is solved as

Et+(n+1)Az' . Et+nAT
total — ~total

t+(n+l)Ar
—A{Vh-{(h+k+(b)w}+a{(h+k+®)( Wl//z +G? Vh)ﬂ
o G

/4 /4
— Written by a flux form.
> The Kinetic energy and potential energy:
= Known by previous step.
* Recalculate the internal energy:

EHmDAT _ pre(nt)Az _pt+(n+1)Ar7/2G1/2 (kt+(n+1)Ar n (D)

total
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Large Step Integration

B Large step tendecy has 2 main parts:

1. Coliolis term
» Formulated straightforward.

2. Advection term

« We should take some care to this term because of curvature
of the earth

B Advection of momentum

B The advection term of V 2 and W is calculated as follows.
1. Construct the 3-dimensional momentum V using Vrand W.
2. Express this vector as 3 components as (V7,V2,V3) in a fixed
coordinate.
» These components are scalars.

3. Obtain a vector which contains 3 divergences as its
components.

> (V-wV,V-w,V,V-wV)  where v, =V, /(G"*¥*p)
4. Split again to a horizontal vector and a vertial components.
> ADV,,ADV,

Next Generation Climate Model



Test results of 3D-model




Held & Suarez Dynamicall Core Exp.(1)

B Test configuration

B Radiation
« We use a simple radiation as Newtonian Cooling of
temperature field :
G k@ )NT=T.) : ky =k, +(k —k, Jmax| 0,Z=2% |cos* ¢
dt ! l-o,
where o, = 0.7, k, =1/40[/day], k, =1/4[/ day]
« Equilibrium temperature is zonally symmetric as:

T, = max[ZOOK, {3 15K - (AT), sin® ¢ — (A6). 1og[£j cos’ 4(&) ]
Po Po

where (AT) = 60K, (A6), =10K
B Surface fricrion

« Surface friction is imposed in the lower atmosphere as a
Rayleigh damping :

N b ©T-T,) : & =kfmax(o,a_0b]

dr l-o,

« where k, =1/1[/day]

Next Generation Climate Model



Held & Suarez. Dynamical Core Exp.(2)

B Objective

H After 1200 days integration, the climatoloqy in the 1000
days are checked.

B The results obtained are compared with other models.

B Model used

B AFES(AGCM For Earth Simulator)
« Based on the CCSR/NIES spectral model.
 T319L32( resolvable scale = 120km on the equator).

B NICAM( Nonhydrostatic Icosahedral Atmospheric Model )

* Glevel-7L32( grid intv. = 60km on the equator)

Next Generation Climate Model



.
Q Held & Suarez Dynamical Core Exp.(3)

B Snapshot results ( T and vn fields after 1200 days)
1 l“ B_ Upper atmosphere

(z=10.5km)

! 2. 14402

The westerly jet in the
mid-latitude and the
baroclinic instability is
well simulated

2.10e+02

2.06e+02

3.09e+02

I B Lower atmosphere
2.97e+02

(z=0.5km)

2.86e+02

The easterly wind near
e the equatorial region
is well simulated.

Next Generation Climate Model L
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B Zonal mean of zonal wind

AFES(T319L32) NICAM(glevel7-1.32)

[hPa]
8

pressure

—45 (I) 4|5
latitude[deg]

'—\DOO--]G\'J\&"JJM—
8 8 8 8 8 8 g 2 38 o
\alllllllll

B No significant difference
 The location & intensity of jet is almost same.




B Zonal mean of eddy heat flux( v'T’)

AFES(T319L32) NICAM(glevel7-1.32)

[—

T

)5

essure[hPa]
8

A
i

3 ) 90 -90 -45 0 45
latitude[deg] latitude[deg]

5 )

‘-‘-_‘_‘_-_-_‘—-———__
p

g 8 8 8 8

B Almost same intensity for both models
B Acceptable difference!




Lifecycle experiment of baroclinic wave (1)

D

100

200

300F 73— —— — 1
sy I
= 400 £
E" /£
S 500F
@ !
o »
= BODf /

700}

I

800 ok

800

1000 :

D 30N EON SON

Initial balance state in the northern
hemisphere. Potential temperature
& zonal wind profile

B Test Configuration

(Polvani et al, submitted to MWR)

B Zonal jet in the northern
hemisphere

- max speed : 50 [m/s]

B Thermal wind balance in
the horizontal

B Hydrostatic balance in the
vertical.

B A thermal disturbance of
cosine bell in the mid-
latitude.

\ 4
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B Domain decomposition

1. By connecting two
neighboring icosahedral
triangles, 10 rectangles are
constructed. (rlevel-0)

2. For each of rectangles, 4
sub-rectangles are
generated by connecting
the diagonal mid-points.

(rlevel-1)

3. The process is repeated.
(rlevel-n)

Next Generation Climate Model



Computational strategy(2)

B Example (rlevel-1)
B # of region : 40
B # of process : 10

B Situation:

B Polar region:
Less computation

B Equatorial region:
much computation

B Each process
B manage same color
regions
B Cover from the polar

region and equatorial
region.

Avoid the load imbalance

Next Generation Climate Model
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B Structure in one region
B |cosahedral grid
- Unstructured grid?
B Treatment as structured
grid
-> Fortran 2D array
-> vectorized efficiently!

H 2D array 2 1D array

B Higher vector operation
length

Next Generation Climate Model
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- Computational Performance (1)

for,Global Change

H Computational performance

B Depend on the many things
«  Computer architecture, degree of code tuning.....

H Rough comparison
between GPM & SM

 AFES as one of spectral models
« NICAM as one of gridpoint models
« Both models are well tuned on the Earth Simulator.

B Performance on the Earth Simulator

B Earth Simulator

 Massively parallel super-computer
based on NEC SX-6 architecture.

— 640 computational nocdles.

— 8 vector-processors in each of nodes.

—  Peak performance of 1CPU : 8GFLOPS

— Total peak performance : 8X8X640 = 40TFLOPS

B Target simulations for the measurement
« 1 day simulation of Held & Suarez dynamical core experiment

Next Generation Climate Model



Computational Performance (2)

B Scalability of our model (NICAM)

R Configuration

i i ac ua Speed-u —9— i - =

1600 o B senoummnusnes idez ISBLnd UB . ° Horlzontal resolutlon - gleve|_8

* Vertical layers : 100

- P 1) A SO U S S S a

3 Fixed

£ * The used computer nodes

| increases from 10 to 80.

200 - Results
- —_———————————— Green : ideal speed-up Im_e

Red . actual speed-up line

Number of PNs

=2 good scalability!
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Computational Performance (3)

B Performance against the horizontal resolution

The elapse time should increase by a factor of 2.

g level Number of PNs
(grid intv.) | (peak performance)
6 5
(120km) (320GFLOPS)
7 20
(60km) (1280GFLOPS)
8 80
(30km) (5120GFLOPS)
9 320
(15km) (20480GFLOPS)
Configuration

As the glevel increases,
# of gridpoints : X 4
# of CPUs : X4

Time intv. - 1/2
®

Average Time GFLOPS
[msec] (ratio to peak[%])

169 140
(43.8)

169 558
(43.6)

169 2229
(43.5)

169 8916

Results

Actually, the elapse time
increases by a factor of 2.




Computational Performance;(4)

B Comparison of performance between SM & GPM
B Discussion point

 Which is computationally efficient?
— Computer performance depends on many things.
— This attempt is just one example.

B Condition
« Vertical layer : 32
 Horizontal resolution : T160 -> T2560 (AFES)
Gl-6 > GI-10 (NICAM)

80 nodes of ES
« Only dynamical core ( without any physical processes )
B Estimation method

* There are two factors for estimations.
— Elapse time of 1 time step
— Available time step Dt

» By considering two factors,

Estimation of elapse time of 1 day simulation.

Next Generation Climate Model
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Computationall Performance (4)

B Elapse time of 1step for NICAM and AFES

10000

Elapse time for 1 time step [msec] on ES({ 80 nodes ) [ A F E S( qgreen |ine)
5 Elapse time increases
in the sense O(n3).

- Legendre
transformation

B NI CAM(redline)
Elapse time increases
in the sense O(n2).

B |n all resolutions,

Walapeg i sope  APES(hr Sy el | NICAM is faster than

160 320 640 1280 2560 5120
(250km)  (125km)  (B3km)  (31km)  (15.6km)  (7.8km) AF ES .
Truncation wavenumber N (Resolvable scale A,..)

1000

100

10

Next Generation Climate Model



ERSGC

Computational Performance (5)

B To consider 4-grid scale as a resolvable scale.

Elapse time for 1 time step [msec] on ES( 80 nodes )

10000
B Resolution correspondance
glevel-7 2> T160
1000
glevel-8 - T320
- The red line shifts to
. the blue line.
e B Cross point
iy ]
; NICAM(Ly—24r) —l— ] resolvable scale : 30km
N slope N? slope ANFIE:SA(I\%((EJSL:Zﬂg “‘E‘“
10 160 32IO 6:10 1 2I80 25‘;50 51I20
(250km)  (125km)  (B3km) (31km)  (15.6km)  (7.8km)

Truncation wavenumber N (Resolvable scale A,..)
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B_ Available time step At & 1 day simulation time

NICAM al7 gld al9 gl10 gl11
At 450 225 113 57 29
1day time | 6.70 321 210 1519 12200
AFES T159 | T319 1639 11279 T2559
At 400 200 100 50 25
1day time | 8.02 27.9 184 1884 24930

 Available At : comparable between two model.

* By considering the 1step time measuremet,

Next Generation Climate

Model



Strategy of development of physics

B Problem in the early development stage

B Dfficult to do trial and error in 3.5km grid
« Limitation of computer resource

H Solution

B Reduce the earth radius
* e.g. R=6400km - 640km

B Use a stretched grid
 Make the gridpoints clustered in a region intersted

by an appropriate transformation function
— Schmidt transformation
» Isotropic transformation

We can fast develop the cloud resolvinag model
by the combination of these strateqies.

\ 4
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- Example of stretchedi grid

for,Global Change

B Default grid : glevel-6

B 120km grid intv.
« Homogenious

‘v
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Pl e

Stretched grid

B After the transformation

* Grid interval :
— 120km > 12km

1.2k orid Interval
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Squall-line-experiment by stretched grid
Total hydrometeor|[g/kg] and velocity field

total hydrom et@ulti-cel] structure
o SN A et I\\} ?
S ‘ ] ¢ i\ /5
14000 a—s .'.“’ - - [ 7_/_[(_:_-..1

W R T:jj,/ffﬁﬁ
| \ v R T
12000- - ‘ %"ﬁ! — . .
| . Main features of tropical
—_— | j mantili \j squall-line can be captured

b

i A e L o]
N A M1 S e s :
. Al \ JHL LN i
fe— e — — — — ‘——v“—lll' 1_—‘ —U—g-g_ T / \; :—;—4—1—4—;—;—
e st d S ._Qi{«/,h 7 T RS
ADIDIDEDIDED ARV VDD 111/ AV D) 5
01 - — s J\ ! < Y\\ Jd{ — — — —
. - - - « «-1—.“—‘—‘”“H +—¢ y__ ll‘\n + 4 — -
Rear-lnﬂow « + = € I3 - = —— | - +
¥ < < « \L— < <
« & & & * ‘B-J > r > «\ 50_}' 3 < 4
4 & & &# ® % € € = > L < l"/l" EY < o
4 4 4 4 4 ¥ T ¥ 4 0o/ v a » > £ o5
Ak E s S T A : f S48 — gy
2000 4 A A a : : : : 4 A .6 :: > : :o:
Y o4 4 3 0 3 o7 o> 4 a > » > > » + > > & <
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Summary(1)

B We have developed a new dynamical core based on
non-hydrostatic system using the icosahedral grid.
B In this scheme, the mass and total energy are numerically
conserved for the long time climate simulations.
B We performed many test cases such as the Held &
Suarez dynamical core experiment.

B Comparing with the results of the spectral model AFES,
our model generated the almost same results.

B The computational performance of our model was
measured on the Earth Simulator.

B We obtained an ideal scalability and a good sustained
performance ( 40% of peak performance ).

B Comparing with the performance of AFES ( as one of
spectral model ), we guess that gridpoint models may be
superior to spectral models in the higher resolution than
30km resolvable scale.

Next Generation Climate Model



Summary(2)

B It’s difficult to do trial and error for tuning the
microphysics scheme in the development stage.
B For this purpose, we use a stretched icosahedral grid by
the Schmidt transformation.
B We have shown the application of the stretched
grid to the tropical squall line case.
B Lin et al.(1983) scheme generates the reasonable squall
line qualitatively
B After enough assesment of the scheme, we will
perform the global cloud resolving runs.
B Aqua Plant Experiment
B Realistic topography run

Next Generation Climate Model
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