

The ICON project: development of a unified model using triangular geodesic grids Max-Planck-Institut für Meteorologie Max Planck Institute for Meteorology

Ein Institut der Max-Planck-Gesellschaft An Institute of the Max Planck Society

ICON: ICOsahedral grid, Nonhdyrostatic unified (NWP+ climate+chemistry) model

- ICON development team: E.Roeckner, D.Majewski, L.B., H. Frank, M.Giorgetta, T.Heinze, L.Kornblueh, P.Ripodas, B.Ritter, W.Sawyer, P.Sanders, U.Schulzweida
- •Discussions and/or joint work: N.Botta, F. Giraldo, J.Klemp, R.Klein, D.LeRoux, D.Randall, T.Ringler, H.Tomita

Outline

- Overview of the ICON development project and of the project goals
- Model equations and discretization approach
- Preliminary results of a shallow water model
- •Vertical discretization
- Outlook on future work

Desired features for a new model

•Unique framework for large/small scale, lower/upper atmospheric dynamics

•**Consistency** between **conservative** discrete tracer advection and continuity equation

•Mass conservative local grid refinement approach without spurious interface effects: building block for a multiscale model

Concept of discretization approach

•Achieve the same accuracy and efficiency of advanced NWP models...

•...but preserve some discrete equivalents of global invariants relevant to geophysical flow...

•...and narrow the gap with Computational Fluid Dynamics (CFD) models.

Nonhydrostatic, compressible flow

$$\frac{\partial \rho}{\partial t} + \nabla \bullet (\rho \mathbf{u}) = 0$$
$$\frac{\partial \mathbf{u}}{\partial t} + \eta \times \mathbf{u} = -\nabla K - \frac{1}{\rho} \nabla p - \nabla \Phi$$
$$\frac{\partial (\rho \varepsilon)}{\partial t} + \nabla \bullet \left[(\rho \varepsilon + p) \mathbf{u} \right] = -\nabla \bullet \mathbf{R}$$

Shallow water flow

Geodesic icosahedral grids

- Solve the pole
 problem
 Special case of
 Delaunay
 triangulation
- Local grid refinement
 Multiscale modelling

Data structures for grid representation Indirect addressing that preserves data locality

Parallelization: horizontal data decomposition

Ein Institut der Max-Planck-Gesellschaft An Institute of the Max Planck Society

Consistent fluxes at coarse/fine interface

Edwards JCP 1996, Bornemann and Deuflhard Num.Math.1996, B. and Rosatti, IJNMF 2002

Spatial discretization

•Finite volume discretization with triangular control volumes: triangular C grid oronoi •Delau

proper

Spatial discretization, properties

- •Vorticity at triangle vertices: discrete Helmholtz decomposition (Nicolaides 1992)
- •No spurious vorticity production
- •**Raviart Thomas** reconstruction of velocity, average onto edge for tangential component

 $\mathbf{u}(\mathbf{x}) = \mathbf{u}_0 + \alpha \mathbf{x}$

Discrete shallow water system

$\frac{\partial u_l}{\partial t} = -(\zeta + f)_l v_l - \delta_v (K + gh)_l$

 $\frac{\partial (c_i H_i)}{\partial t} = -\sum_{l \in C(i)} c_l u_l H_l \sigma_{i,l}$

Discrete wave dispersion analysis

- •**Stationary** geostrophic solution, no spurious pressure modes
- •Two physical gravity wave modes
- •Two **spurious** gravity wave modes: frequencies always **higher** than physical ones

Dispersion plot, physical mode

Less good wavenumber space than quad C
Zero group velocity at high wavenumbers

Discrete global invariants

- Mass conservation, **consistent** discretizations of continuity equation and tracer transport
- •Potential vorticity conservation, no spurious vorticity production
- •Potential enstrophy conserving variant, energy conserving variant: Sadourny JAS 1975

Random initial data, f plane

Relative vorticity after 1000 days integration with random initial data (numerical test carried out by Todd Ringler, CSU)

Semi-implicit time discretization

$$u_{l}^{n+1} = u_{l}^{n} - \Delta t (\widetilde{\zeta}^{n+1/2} + f)_{l} v_{l}^{n+1/2} - \Delta t \delta_{v} (\widetilde{K}^{n+1/2} + gh^{n+1/2})_{l}$$

$$h_{i}^{n+1} = h_{i}^{n} - \Delta t \sum_{l \in C(i)} u_{l}^{n+1/2} H_{l}^{n} \sigma_{i,l}$$

Idealized vortex, day 2

Maximum resolution 40 km

Maximum gravity wave Courant number 7

(dt=900 s)

Rossby Haurwitz wave, day 10

Flow over a mountain, day 10

Flow over a mountain: relative vorticity, day 10

Colour shading: ICON model results

Black contours: NCAR reference spectral model

Ein Institut der Max-Planck-Gesellschaft An Institute of the Max Planck Society

Height field error at day 15

dx≈120 km, dt = 900 s

$dx \approx 60 \text{ km}, dt = 90 \text{ s}$

Error at day 15, convergence test

TEST CASE 5. L2 NORM AT DAY 15. NCAR SSWM T213/dt=90s as reference^{*}

NCAR SSWM: T42, T63, T106 and T170; ICON: refinement levels 4 to 8, optimized grids;

^{*}black dashed line: reference as in NCAR Tech.Notes: T213/dt=360s

"Shallowness is the greatest vice"

Oscar Wilde

Options for vertical discretization

- Hybrid pressure vertical coordinate + new horizontal discretization: preliminary 3D hydrostatic ICON model
- •**Terrain following** normalized height coordinate + new horizontal discretization: **first choice** for operational nonhydrostatic model

•Non normalized height coordinate: cut cells (B., JCP 2000, Rosatti and B., Proc. ICFD, 2004)

Nonhydrostatic coastal modelling

•Results: G.Lang, Bundesanstalt für Wasserbau, Germany

•Numerical model: Casulli and Walters, IJNMF, 2000

Ein Institut der Max-Planck-Gesellschaft An Institute of the Max Planck Society

Cut cells + RBF interpolation

Terrain following model (LM)

Ein Institut der Max-Planck-Gesellschaft An Institute of the Max Planck Society

Cut cell nonhydrostatic dynamical core (ARPA Bologna)

Computational advantages of cut cells

	CPU time for 1 hour	CPU time solver	COMM time solver		Residual 1% of initial value	Residual 0.1% of initial value	Residual 0.01% of initial value
				S	6 iter	21 iter	50 iter
S	88.95 s	45.03 s	11.95 s	Ι			
E				S	8 iter	17 iter	21 iter
SI Z	56.40 s	26.16 s	5.12 s	I Z			

Simulations run by D.Cesari (ARPA Bologna)

Ein Institut der Max-Planck-Gesellschaft An Institute of the Max Planck Society

Future work

- •Shallow water model on locally refined grids: optimized data structure and parallelization
- •Hydrostatic, 3D model on locally refined grids
- Coupling to existing MPI-M/DWD physics packages, impact of spurious modes on simulations with full physics

•Sensitivity of results to local refinement

