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The Met Office’s Unified Model

Unified Model (UM) in that single model for:

Operational forecasts at
– Mesoscale (resolution approx. 10km)

– Global scale (resolution approx. 50km)

Global and regional climate predictions (resolution 
approx. 100km, run for 10-100 years)

+ Research mode (1km - 10m) and single column 
model
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Operational Requirement

Current global model:

Forecast to 6 days

Time step = 20 minutes ⇒ 432 time steps

Resolution = 432x325x38 = 5.3M grid points

To run in 90 minute slot, including data assimilation 
and output
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Design Requirements
Highly efficient
Yet robust (numerically stable) for both 

– weather forecasting
– long term climate integrations

Accurate for scales of interest 
– second-order or better 
– balance spatial and temporal truncation errors

Conservative
– ideally preserve all conservation properties 
– at best aim for important ones – mass (species), angular 

momentum, energy, PV

Flexible
– long term development path



6

Geometry

Irregular surface ``removed’’ via simple vertical co-
ordinate transformation

Atmosphere then spheroidal shell

Simple geometry not afforded to
– engineering flows

– oceanography

Capitalise and solve global system in spherical polar co-
ordinates

BUT - the pole problem!                                       
∆x=900m  ⇒ CFL=(4/3)xpropagation speed!
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Modes of Response

1 Rossby (meteorological/slow) mode:
– Synoptically most important

– Inertia/Coriolis ⇒ Cs∼U

2 Gravity modes:
– Mesoscale/local interest

– Inertia/buoyancy ⇒ Cs ∼U± 50ms-1 (∼ U±320ms-1 external)

2 Acoustic modes:
– Little meteorological interest

– Inertia/compressibility ⇒ Cs ∼U ± 320ms-1
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Challenge!

How to stably discretise equations

Whilst accurately capturing modes of interest

In a finite time?

Primarily a temporal discretisation problem

Solution (Robert 1981, Staniforth& Côté MWR 1991) is 
to combine

– semi-implicit and

– semi-Lagrangian schemes

But even then…
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Key design ingredients

Equation set
– Form of equations/approximations etc

– Choice of prognostic variables

– Vertical coordinate

– Impact on conservation issues

Temporal discretization
– Handle fast terms implicitly

– Nonlinear terms

– Helmholtz solver
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Spatial discretization
– Choice of finite representation

– Staggering in horizontal and vertical

– Stretched grid: horizontal as well as vertical

– Conservation properties

– Boundary conditions

Semi-Lagrangian aspects
– Couples time and space

– Impact on conservation

– Trajectory calculations

Coupling to Physics
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Some specific topics

Continuous Aspects
– Equation set

– Vertical coordinate

– Energetics

Discrete Aspects
– Conservative Semi-Lagrangian advection

– Semi-Lagrangian trajectories 

» Accuracy – dynamical equivalence

» Stability – discrete normal mode analysis

Coupling the dynamical core to the physics
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(1) The Equation Set

All models approximate the full equations
– Specifically all make spherical-geopotential approximation

Almost all models make the shallow atmosphere 
approximation
Almost all operational global models make the 
hydrostatic approximation (filters horizontally 
propagating acoustic modes)
Desirable (essential?) that approximated equation set 
is dynamically consistent in the sense (White et al) it:

– Possesses conservation principles for energy, angular 
momentum and potential vorticity

– Has a Lagrangian form of the momentum equation
– White et al (2004) discuss 4 such models used operationally
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“Unapproximated” Equation Set

tan 2 sin
co

cos
s

2r pd v uuw w
r r

cD u v S
Dt r

uv θφ
φ λ

φφ ∂Π ⎛ ⎞− + Ω⎜ ⎟
⎝

Ω +
∂ ⎠

− − = +

2 ta n 2 s in p d vr c v w
r r

u
r

D v u S
D t

θφ φ
φ

∂ Π+ + Ω + = +
∂

⎛ ⎞− ⎜ ⎟
⎝ ⎠

{ }
{

( )2 2

2 c o s w
p d

r
vc

r r
g

u v
u SD w

D t r
θ φ∂ Π ∂ Φ+ + =

∂ ∂
≈

+
+ Ω +

( )2 2cos cos 0
cos

r
y y

D u v w
Dt r

r r
r r

ρ φ ρ φ
λ φ φ

⎛ ⎞⎡ ⎤∂ ∂ ∂⎡ ⎤+ + + =⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦⎣ ⎦⎝ ⎠

rD S
Dt

θθ =



14

Equation Set Options

 Deep Shallow 
(r  a, neglect boxed terms) 

Non-hydrostatic Complete equations 

(Met Office from 2002) 

Non-hydrostatic shallow 

(Eg Tanguay et al/GEM) 

Hydrostatic 
(neglect Dw/Dt) 

Quasi-hydrostatic 

(Met Office 1991-2002)

Hydrostatic primitive     

(Eg ECMWF) 
 

 

[Staniforth 2001; White et al 2004]
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Normal mode analysis

Normal mode analysis useful tool for studying 
fundamental properties of the equations

Solutions of linearised, unforced equations

Provide insight into impact of approximations to the 
equations 

Davies et al (2003) studied impact of hydrostatic and 
anelastic approximations

Thuburn et al (2002) applied technique to investigate 
impact of gravity varying as 1/r2 vs. constant and of 
deep vs. shallow:



16

Vertical variation of gravity ⇒ small (<1.5%) 
systematic decrease in frequency of normal modes

Deep ⇒ nonzero w and θ perturbations for external 
Rossby and external acoustic modes (shallow = 0)

No significant impact on spatial form of energetically 
important modes…

…with only slight changes in frequency (1%)

Significant changes in tropical structure of internal 
acoustic modes (relevant to forced case, eg tropical 
convection)
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Normal mode structure:
Deep vs Shallow

Latitude-height structure of longest meridional wavelength 
2nd internal acoustic mode

[Thuburn et al 2002]

Deep Shallow
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Using the unapproximated
equations

Met Office philosophy: use unapproximated
equations; use numerics to do “filtering”

Fully compressible, nonhydrostatic models do not 
filter the acoustic modes

– Have to be handled implicitly if wish to avoid severe 
restriction on time step

Deep atmosphere models have twice as many Coriolis
terms to handle

– Larger stencil if terms handled implicitly which stability 
requires for two-time-level scheme

But, more accurate; more general (eg planetary 
atmospheres)
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(2) Vertical Coordinate

Hydrostatic models mostly use pressure as vertical 
coordinate

– Simplifies equations (eq. of state diagnostic, density no 
longer appears in pressure gradient terms)

– Reflects large scale dynamics of atmosphere

Laprise (1992) defined a hydrostatic pressure (or 
equivalently mass) based coordinate 

– Plays the same role (and same advantages) in non-
hydrostatic models but limited to shallow atmospheres

Full equations = nonhydrostatic and deep (no 
shallow-atmosphere approximation)
So pressure-based coordinate not an option (without 
approximation)?
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But! full equations in generalized vertical coordinates 
⇒ can define a mass-based coordinate (∏) for deep 
atmospheres with same properties as Laprise’s
shallow atmosphere hydrostatic pressure (π):

Integrating this in height ⇒ ∏ ∝ mass of air in 
(diverging) column above given point

Deep atmosphere distinguishes between mass and 
hydrostatic pressure viewpoints

2
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ρ
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[Wood and Staniforth 2003]
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With this development, pressure-like coordinate 
possible

Natural upper boundary = elastic upper lid

What are the implications for energetics?

In absence of forcing:

For a rigid lid (rT=constant), as for Met Office height-
based model,

T
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(3) Energetics (continuous)
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For elastic lid (pT=pT(λ,φ) independent of time)

This is non-hydrostatic, non-shallow generalisation of 
Kasahara (1974)’s invariant:

Also generalizes invariant energy forms of: 
– Laprise and Girard (1990) and Arakawa and Konor (1996) 

[hydrostatic, shallow] 
– Laprise (1992) [non-hydrostatic, shallow] 
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[Staniforth et al 2003]
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(4) Semi-Lagrangian advection
Discretize advective derivative as

= arrival (grid) point

= departure point (solve               ) 

= upstream displacement vector

No explicit stability constraints

Two aspects to semi-Lagrangian schemes
– 1) Evaluation of displacements/departure points

– 2) Evaluation of function at departure point
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Semi-Lagrangian schemes allow enhanced stability 
and accurate handling of meteorologically important 
slow mode

Finite-difference interpolating form dissipative in 
nature (due to interpolation for second aspect)

Two approaches to obtaining conserving forms:
– A posteriori correction schemes (more or less ad hoc)

– Finite-volume approach

⇒ SLICE: Semi-Lagrangian Inherently Conserving and Efficient

SL & Conservation 
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Two ingredients:
– Rewrite Eulerian flux form

in finite-volume Lagrangian form

– Use Cascade remapping to enable split  of 1 n-dimensional
redistribution into n one-dimensional ones

» [Cascade interpolation preserves characteristics of flow 
and hence minimises splitting error.]
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Smooth Deformational Flow

[Zerroukat et al 2004]

SLICE-S BiCubic
SL

Analytic
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Key component of any semi-Lagrangian scheme is the 
calculation of the trajectories (displacement vector):

This together with the momentum equation

⇒ angular momentum conservation

Can a discrete form preserve this property?

( ),d t
dt

=r u r

d
dt
× = ≡ ×r u G r F

d
dt

=u F

(5) Trajectories: dynamical equivalence
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Discrete form requires estimate of trajectory mid-point 
velocity. Assume a form:

Then algebraic manipulation of discrete equations ⇒
Interpolation, α=1/2, preserves “dynamical equivalence”

Not so for one-term, α=0, and two-term extrapolation:

Will see later that interpolation scheme has other 
advantages
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[White 2003; Staniforth et al 2003]



29

Normal mode is fundamental solution of equation set

Discrete normal modes characterize discretization:
– Stability

– Accuracy

Linearize free equations

Eigen problem obtained by setting 

Stable if

In general need to solve large matrix problem 
numerically

[ ]1 ; Tn n+ = ≡Ax Bx x u, v,w,θ,ρ,π
1n nλ+ =x x

n nλ=Bx Ax
1λ ≤

(6) Discrete Normal mode analysis
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Impact of trajectory calculation on 
acoustic mode stability

Analytic result

1λ =
Two term
extrapolation

One term
extrapolation

Interpolation

Stable

Unstable

1st Internal Mode
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Impact of trajectory calculation on 
acoustic mode structure

Analytic result

Two term
extrapolation

One term
extrapolation

Interpolation

Semi-implicit 
scheme 
slows fast 
modes

Extrapolation 
introduces 
spurious 
nodes

[Cordero et al 2002 & 2004]
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(7) Physics-Dynamics Coupling
Weakest link? Two 2nd order schemes coupled in 1st

order way ⇒ 1st order model

Aim is to provide simple framework in which to 
investigate numerics of coupling scheme:

– Stability

– Accuracy

– Spurious Resonance

– Steady-state (slow mode)

Dynamics + 1 Physics (basic method inc. advection)

2 Physics (sequential vs parallel)

Multiple physics (mixed sequential/parallel)
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Model problem with multiple time-scales
One slow (time-scale » time-step) & one fast (time-scale time-

step) process:

Apply Symmetrized Sequential-Split method:
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[Staniforth et al 2002a&b]
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Example: Timestep sensitivity

∆t=1 s ∆t=2 s

Two timescales: fast (2π/10 s) and slow (2π s)
2nd order (η=ξ1=1/2)

Off-centred (η=ξ1=3/4)

Fully implicit (η=ξ1=1) 

[Dubal et al 2004]
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Summary
Global Unified Modelling approach implies strong 
constraint on model design

Continuous system requires consideration of:
– Equation set

– Vertical coordinate

– Energetics

Discrete system:
– Semi-Lagrangian semi-implicit proven approach

But consideration still needs to be given to:
– Conservation

– Vertical discretization (eg Untch & Hortal 2004)

– Stability and accuracy of departure point calculations

– Coupling of dynamics to physics


