Overview of the Numerics of the ECMWF
 Atmospheric Forecast Model

M. Hortal

ECMWF

Characteristics of the ECMWF model

- Hydrostatic shallow-atmosphere approximation
- Pressure-based hybrid vertical coordinate
- Two-time-level semi-Lagrangian semi-implicit time integration scheme
- Spectral horizontal representation (spherical harmonics)
- Pseudo-spectral (finite-element) vertical representation
- Transform method for computing non-linear terms using non-staggered grid
- Fourth order horizontal diffusion

Vertical coordinate

Pressure-based

 hybrid coordinate 0$$
\left\{\begin{array}{c}
p(\eta=0)=0 \\
p(\eta=1)=p_{s}
\end{array}\right.
$$

$$
\frac{\partial p}{\partial \eta}=\frac{d A(\eta)}{d \eta}+\frac{d B(\eta)}{d \eta} p_{s}
$$

$$
\int_{0}^{1} \frac{d A}{d \eta} d \eta=0 ; \quad \int_{0}^{1} \frac{d B}{d \eta} d \eta=1
$$

L60
L91

Model equations

- Momentum
pressure-gradient

$$
\frac{d \vec{V}_{h}}{d t}=-f \vec{k} \times \vec{V}_{h}-\nabla_{h} \phi-R_{d} T_{v} \nabla_{h} \ln p+P_{V}+K_{V}
$$

Discretized in vector form to avoid pole problems

- Thermodynamics

$$
\frac{d T}{d t}=\frac{\kappa T_{v} \omega}{(1+(\delta-1) q) p}+P_{T}+K_{T}
$$

- Hydrostatic
\vec{V}_{h} : horizontal wind vector
T_{v} : virtual temperature
∇_{h} :"horizontal" gradient
$\omega: \mathrm{p}$-coordinate vertical velocity $\kappa \equiv R_{d} / c_{p d}, \quad \delta \equiv c_{p \mathrm{v}} / c_{p d}$

$$
\phi=\phi_{s}-\int_{1}^{\eta} R_{d} T_{v} \frac{\partial}{\partial \eta}(\ln p) d \eta
$$

P_{V}, P_{T} : physical parameterization
K_{V}, K_{T} : horizontal diffusion

Model equations (cont)

- Continuity equation

$$
\frac{\partial}{\partial t}\left(\frac{\partial p}{\partial \eta}\right)+\nabla_{h} \cdot\left(\vec{V}_{h} \frac{\partial p}{\partial \eta}\right)+\frac{\partial}{\partial \eta}\left(\dot{\eta} \frac{\partial p}{\partial \eta}\right)=0
$$

- Humidity equation

$$
\frac{d q}{d t}=P_{q}
$$

- Ozone equation

$$
\frac{d r_{o_{3}}}{d t}=P_{o_{3}}
$$

Vertical integration of the continuity equation

$$
\begin{aligned}
& \frac{d}{d t}\left(\ln p_{s}\right)=\int_{0}^{1}(\frac{d B}{d \eta} \underbrace{\frac{\partial}{\partial t}\left(\ln p_{s}\right)}_{\text {where }}+\frac{d B}{d \eta} \vec{V}_{h} \cdot \nabla \ln p_{s}) d \eta \\
& \left.\ln p_{s}\right)=-\frac{1}{p_{s}} \int_{0}^{1} \nabla \cdot\left(\vec{V}_{h} \frac{\partial p}{\partial \eta}\right) d \eta
\end{aligned}
$$

$$
\omega=-\int_{0}^{\eta} \nabla \cdot\left(\vec{V}_{h} \frac{\partial p}{\partial \eta}\right) d \eta+\vec{V}_{h} \cdot \nabla p
$$

$$
\dot{\eta} \frac{\partial p}{\partial \eta}=-\frac{\partial p}{\partial t}-\int_{0}^{\eta} \nabla \cdot\left(\vec{V}_{h} \frac{\partial p}{\partial \eta}\right) d \eta
$$

Needed for the energy-conversion term in the thermodynamic eq.

Needed for the semi-Lagrangian trajectory computation

Vertical integration (finite elements)

$$
F(\eta)=\int_{0}^{\eta} f(x) d x
$$

can be approximated as

$$
\sum_{i=K_{1}}^{K_{2}} C_{i} d_{i}(\eta) \approx \sum_{i=M_{1}}^{M_{2}} c_{i} \int_{0}^{\eta} e_{i}(x) d x
$$

and, applying the Galerkin method:

$$
\begin{aligned}
& \sum_{i=K_{1}}^{K_{2}} C_{i} \int_{0}^{1} t_{j}(x) d_{i}(x) d x=\sum_{i=M_{1}}^{M_{2}} c_{i} \int_{0}^{1}\left(t_{j}(x) \int_{0}^{x} e_{i}(y) d y\right) d x \quad \text { for } N_{1} \leq j \leq N_{2} \\
& \underline{\underline{\mathbf{A}} \overrightarrow{\mathbf{C}}}=\underline{\underline{\mathbf{B}}} \overrightarrow{\mathbf{c}} \Rightarrow \overrightarrow{\mathbf{C}}=\underline{\underline{\mathbf{A}^{-1}}} \underline{\underline{\mathbf{B}}} \overrightarrow{\mathbf{c}} \\
& \overrightarrow{\mathbf{c}}=\underline{\underline{S}}^{-1} \overrightarrow{\mathbf{f}} \quad \overrightarrow{\mathbf{F}}=\underline{\underline{\mathbf{P}}} \overrightarrow{\mathbf{C}}
\end{aligned}
$$

Cubic B-splines for the vertical discretization

Basis elements for the representation of the integral

Advantages of the finite-element scheme in the vertical

- $8^{\text {th }}$ order accuracy using cubic basis functions
\rightarrow Very accurate computation of the pressure-gradient term in conjunction with the spectral computation of horizontal derivatives
\Rightarrow More accurate vertical velocity for the semi-Lagrangian trajectory computation
- Improved ozone conservation
- Reduced vertical noise in stratosphere

Smaller error in the computation of the integrals than using the finite-element scheme in differential form
(Private communication by Staniforth \& Wood)

$$
f=\frac{\partial F}{\partial \eta}
$$

The spectral horizontal representation

Advantages of the spectral method

- Spherical harmonics are eigenfunctions of the Laplace operator:

$$
\nabla^{2} Y_{n}^{m}=-\frac{n(n+1)}{a^{2}} Y_{n}^{m}
$$

\rightarrow The solution of a Helmholtz equation is straightforward
\rightarrow The application of a high-order diffusion is very easy

- Horizontal derivatives are computed analytically
\Rightarrow The computation of the pressure-gradient term is very accurate
- But:
\rightarrow The computational cost of the Legendre transforms increases more rapidly with resolution than the rest of the model

The full and the reduced Gaussian grids

Semi-implicit time integration

$$
\begin{aligned}
& \text { Define } \quad \Delta_{t t} X \equiv 0.5\left(X^{+}+X^{-}\right)-X^{0} \\
& \frac{d \vec{V}}{d t}=R H S_{V}+\Delta_{t t}(\overbrace{\underset{\sim}{\gamma} \nabla_{h} T+R_{d} T_{r} \nabla_{h}\left(\ln p_{s}\right)})\} \begin{array}{l}
\begin{array}{l}
\text { Linearized pressure-gradient } \\
\text { usina a reference etemperature } \\
T_{r} \text { and a reference sufface pressure } \\
\text { (pss)}
\end{array} \\
\hline
\end{array} \\
& \frac{d T}{d t}=R H S_{T}+\Delta_{t t}(\underset{\sim}{\tau}) \\
& \frac{d}{d t}\left(\ln p_{s}\right)=R H S_{p}+\Delta_{t t}(\underset{\sim}{v} D) \\
& \Rightarrow\left(\underset{\tilde{I}}{\mathbf{I}}+\underset{\tilde{\sim}}{\boldsymbol{\Gamma}} \nabla_{h}^{2}\right) D^{+}=\tilde{D} \\
& \text { Vertically coupled set of Helmholtz equations } \\
& (\underset{\sim}{\gamma} X)_{\eta}=-\int_{1}^{\eta} R_{d} X \frac{d}{d \eta^{\prime}}\left(\ln p_{r}\right) d \eta^{\prime} \\
& (\underset{\sim}{\tau} X)_{\eta}=\kappa T_{r}\left(\frac{1}{p_{r}}\right) \int_{\eta}^{\eta} X \frac{d p_{r}}{d \eta^{\prime}} d \eta^{\prime} \\
& \underset{\sim}{v} X=\frac{1}{\left(p_{s}\right)_{r}} \int_{0}^{1} X \frac{d p_{r}}{d \eta} d \eta \\
& \underset{\sim}{\Gamma} \equiv \underset{\sim}{\gamma} \underset{\sim}{\tau}+R_{d} T_{r} \underline{\sim}
\end{aligned}
$$

Semi-Lagrangian advection (1)

1D advection equation without RHS:

$$
\frac{d \varphi}{d t}=0 \Rightarrow \frac{\varphi\left(x_{j}, t+\Delta t\right)-\varphi\left(x_{*}, t\right)}{\Delta t}=0
$$

$$
\varphi\left(x_{j}, t+\Delta t\right)=\varphi\left(x_{*}, t\right)
$$

In the Lagrangian point of view, time is the only independent variable (position should be consistent with time)

Stability analysis: absolutely stable if the value of $\eta\left(x_{*}, t\right)$ is computed by interpolation using the surrounding grid points.

Finding the departure point x_{*} in the linear case:

$$
\frac{d x}{d t}=U_{0} \Rightarrow \frac{x_{j}-x_{*}}{\Delta t}=U_{0} \quad \longleftrightarrow \quad x_{*}=x_{j}-U_{0} \Delta t
$$

Semi-Lagrangian advection (2)

Three time level scheme with RHS :

$$
\frac{\varphi^{A}(t+\Delta t)-\varphi^{D}(t-\Delta t)}{2 \Delta t}=R^{M}(t)
$$

Centered second order accurate scheme

Disadvantages of three-time-level schemes:

- Less efficient than two-time-level schemes
- Computational mode

Semi-Lagrangian advection (3)

Two time level second order accurate schemes :

$$
\frac{\varphi^{A}(t+\Delta t)-\varphi^{D}(t)}{\Delta t}=R^{M}\left(t+\frac{\Delta t}{2}\right) \quad \text { with } \quad R\left(t+\frac{\Delta t}{2}\right) \approx \frac{3}{2} R(t)-\frac{1}{2} R(t-\Delta t)
$$

Unstable

Forecast 200 hPa T from 1997/01/04

Stable extrapolation two-time-level semi-Lagrangian (SETTLS):

$$
\varphi^{4}(t+\Delta t) \approx \varphi^{D}(t)+\Delta t \cdot\left(\frac{d \varphi}{d t}\right)_{t}^{D}+\frac{(\Delta t)^{2}}{2} \cdot\left(\frac{d^{2} \varphi}{d t^{2}}\right)_{A V}
$$

where $\left(\frac{d \varphi}{d t}\right)_{t}^{D}=R^{D}(t) \quad$ and $\quad\left(\frac{d^{2} \varphi}{d t^{2}}\right)_{A V}=\left(\frac{d R}{d t}\right)_{A V} \approx \frac{R^{4}(t)-R^{D}(t-\Delta t)}{\Delta t}$

$$
\varphi^{A}(t+\Delta t)=\varphi^{D}(t)+\frac{\Delta t}{2} \cdot\left(R^{A}(t)+\{2 R(t)-R(t-\Delta t)\}^{D}\right)
$$

Forecast 200 hPa T from 1997/01/04 using SETTLS

Spherical geometry in the semiLagrangian advection

Trajectory calculation

Tangent plane projection

Interpolations in the semi-Lagrangian (1) quasi-monotone Lagrange quasi-cubic interpolation

$$
\varphi(x)=\sum_{i=1}^{4} C_{i}(x) \varphi_{i} \quad \text { with the weights } \quad C_{i}(x)=\frac{\prod_{k \neq i}^{4}\left(x-x_{k}\right)}{\prod_{k \neq i}^{4}\left(x_{i}-x_{k}\right)}
$$

Quasi-monotone procedure:

Quasi-monotone interpolation is used in the horizontal for all variables and in the vertical for q and $\mathrm{r}_{\mathrm{O} 3}$

Modified continuity \& thermodynamic equations

Continuity equation

$$
\frac{d}{d t}\left(\ln p_{s}\right) \equiv \frac{d}{d t}\left(l^{*}+l^{\prime}\right)=[R H S]
$$

$$
\text { where } \quad l^{*}=-\frac{\phi_{s}}{R_{d} \bar{T}} \Rightarrow \frac{d l^{\prime}}{d t}=[R H S]+\frac{1}{R_{d} \bar{T}} \vec{V}_{h} \cdot \nabla \phi_{s}
$$

Reduces mass loss: $\mathrm{D}+10 \quad \Delta \bar{p}_{s}$ from 0.59 hPa to 0.02 hPa at T106L31

Thermodynamic equation $\frac{d\left(T-T_{b}\right)}{d t}=[R H S]_{T}-\left(\vec{V}_{h} \cdot \nabla T_{b}\right)-\dot{\eta} \frac{\partial T_{b}}{\partial \eta}$
with $\quad T_{b}=-\left(p_{s} \frac{\partial p}{\partial p_{s}} \frac{\partial T}{\partial p}\right)_{\text {ref }} \cdot \frac{\phi_{s}}{R_{d} \bar{T}}$
Reduces noise over orography.

Interpolations in the semi-Lagrangian (2)

- Linear and smoothing interpolations:

Linear interpolation is applied to the velocities needed in the trajectory computation and to the RHS of the forecast equations.
Smoothing interpolation is applied to the vertical velocity in the stratosphere.

10 hPa Geopotential

As above but using smoothing interpolation for the vertical velocity

12 hour forecast from initial data of 2002-12-28 at 12

Treatment of the Coriolis term

- Advective treatment:

$$
f \vec{k} \times \vec{V}_{h}=2 \vec{\Omega} \times \frac{d \vec{R}}{d t} \Rightarrow \quad \frac{d \vec{V}_{h}}{d t}+f \vec{k} \times \vec{V}_{h} \rightarrow \frac{d}{d t}\left(\vec{V}_{h}+2 \vec{\Omega} \times \vec{R}\right)
$$

- Implicit treatment :

$$
\frac{\vec{V}_{h}^{+}-\vec{V}_{h}^{0}}{\Delta t}=-f \vec{k} \times 0.5\left(\vec{V}_{h}^{+}+\vec{V}_{h}^{0}\right)+\ldots
$$

Physical parameterizations

Coupled with the semi-Lagrangian scheme (details in talk by A. Beljaars)

Horizontal diffusion
 $$
\frac{\partial X}{\partial t}=-K \nabla^{4} X
$$

- Implicit solution in spectral space

$$
\begin{gathered}
\frac{X_{n, m}(t+\Delta t)-X_{n, m}(t)}{\Delta t}=-K \nabla^{4} X_{n, m}(t+\Delta t)=-K\left(\frac{n(n+1)}{a^{2}}\right)^{2} X_{n, m}(t+\Delta t) \\
=>\quad X_{n, m}(t+\Delta t)=X_{n, m}(t) \frac{1}{1+K \Delta t\left(\frac{n(n+1)}{a^{2}}\right)^{2}}
\end{gathered}
$$

- Analytical solution in spectral space

$$
\frac{\partial X_{n, m}}{\partial t}=-K\left(\frac{n(n+1)}{a^{2}}\right)^{2} X_{n, m} \Rightarrow \quad X_{n, m}(t+\Delta t)=X_{n, m}(t) e^{-K \Delta t\left(\frac{n(n+1)}{a^{2}}\right)^{2}}
$$

Summary of the numerics in the ECMWF atmospheric model

- Two-time-level semi-Lagrangian advection
- SETTLS scheme
- Quasi-monotone quasi-cubic interpolation
- Linear and smoothing interpolation for trajectories
- Modified continuity \& thermodynamic equations
- Semi-implicit treatment of linearized adjustment terms
-Cubic finite elements for the vertical integrals
- Spectral horizontal Helmholtz solver (and derivative comp.)
- Linear reduced Gaussian grid

Semi-Lagrangian coupling of physics and dynamics

Future developments

- Non-hydrostatic version of the model
- Improve semi-Lagrangian interpolation
- Spectral representation by double Fourier series
- Improve conservation of advected quantities
- Study the influence of boundary conditions
- for the semi-Lagrangian advection
- for the vertical finite-element representation
- Investigate noise on vorticity over orography (aliasing?)

> THANK YOU for your attention!

