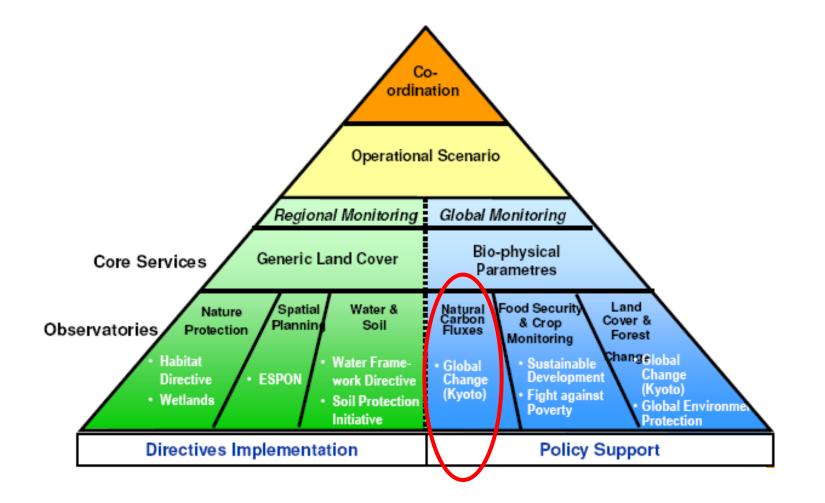


Observatory of Natural Carbon fluxes

Jean-Christophe Calvet and the geoland / ONC Team

November 2004



ONC overview

ONC tools

ONC implementation

ONC first results

ONC – Observatory of Natural Carbon fluxes

Objectives

- Transpose the tools used for weather forecast to the monitoring of vegetation : Real-time monitoring based on modelling, in situ data, RS data assimilation, at the global scale.
- Validation of the system by using field campaigns.

Users

 Int'l organisations in charge of assessing the Carbon Balance and consulting political decision makers (IGBP, IGOS-P, PIK, GCP)

Policies/Directives

- UN Framework Convention on Climate Change
- Kyoto protocol

Product / Service

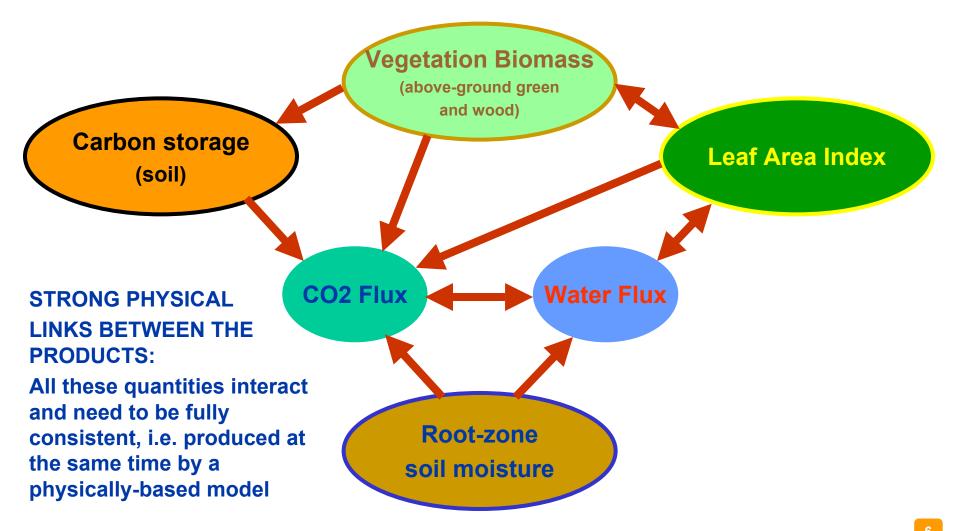
- Global assimilation of RS products in order to monitor water & carbon fluxes on land (downscaling of models to regional scale enabled through higher resolution of input parametres)
- Linking global models (with high resolution in time) and national Kyoto estimates (cross-validation potential)

• Research LSCE, KNMI, ALTERRA

• Service Providers : ECMWF, METEO-FRANCE

• Associated Users LSCE

<u>Users</u> IGBP, IGOS-P, PIK, GCP


ONC – Observatory of Natural Carbon fluxes

Products

- The terrestrial biospheric CO₂ flux at the soil-vegetation-atmosphere interface
- The water flux at the soil-vegetation-atmosphere interface
- The vegetation biomass
- The leaf area index
- The root-zone soil moisture
- The carbon storage.

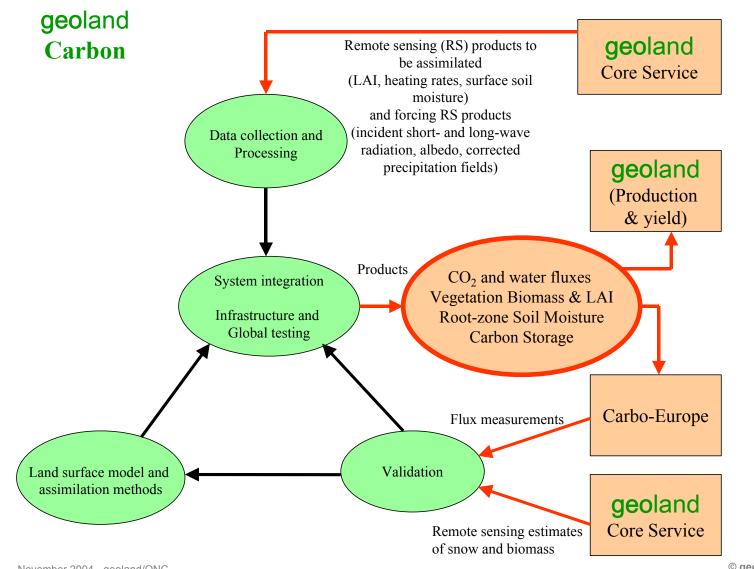
SPATIAL RESOLUTION: 1/2 degree

ONC – Observatory of Natural Carbon fluxes

Geoland/ONC tentative operational scenario

- Near operational global system at ECMWF (2007-)
- Longer term: regional system (France, Western Europe?) at Météo-France

□ Work plan

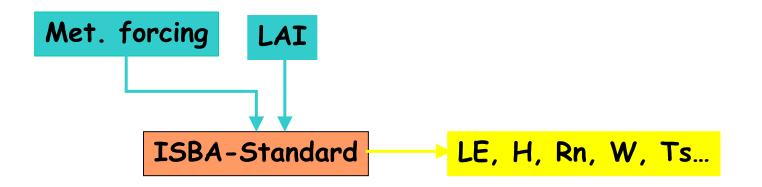

•	Start	-> 01/2004
•	Model & Assimilation testing (field experiment(s))	-> 03/2005
•	Integration of the assimilation system at ECMWF	-> 03/2005
•	Validation of the integrated system	-> 04/2006
•	Pre-operational integration	-> 12/2006

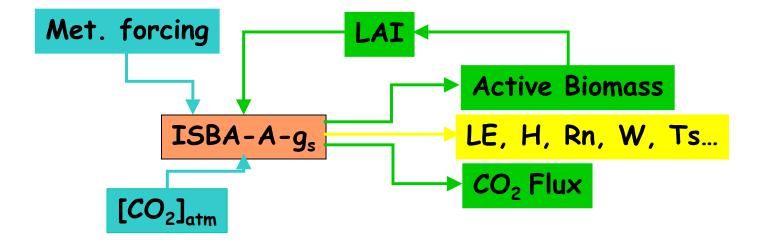
Requirements

- Remote sensing products (CSP): LAI, heating rates, surface soil moisture, albedo, precipitation rate, incident radiation,...
- Atmospheric forcing (ECMWF): air temperature & humidity, wind speed, precipitation rate, incident radiation

□ Links to other GMES-related activities

- HALO (SSA): coordinate atmosphere ocean land components and prepare the operational GMES (>2007)
- GMES IPs: GEMS, EURORISK, WATER-IP?




ONC overview

ONC tools

ONC implementation

ONC first results



Atmosphere

November 2004 - geoland/ONC

ONC – Observatory of Natural Carbon fluxes

Assimilation of Remote Sensing data

- Goal: Reduce the error of the system by using the CSP products
- **Error source**
 - Model
 - Observations
 - Initialisation of (very slow) soil carbon
 - Atmospheric forcing (e.g. precipitation, radiation)
 - Model parameters
 - Land use map
 - Scaling

Error reduction by using satellite data

• Model

- -> Bias reduction
- -> Precipitation + Radiation (CSP products)

• Model parameters

Atmospheric forcing

- Land use map
- Scaling

- -> Assimilation of CSP products
- -> New issues of ECOCLIMAP
- -> Tiling
- + analysis of biomass by assimilation of CSP products

ONC overview

ONC tools

ONC implementation

ONC first results

Existing Models

- TESSEL: operational at ECMWF, no photosynthesis, no biomass, no soil carbon, no wood
- ISBA-A-gs: research at Météo-France, photosynthesis, biomass, no soil carbon, no wood
- ORCHIDEE: research at LSCE, photosynthesis, biomass, soil carbon, wood

□ Modelling objective

- ISBA-A-gs: research at Météo-France, photosynthesis, biomass, soil carbon, wood
- C-TESSEL: operational at ECMWF, photosynthesis, biomass, soil carbon, wood
- Method:

Photosynthesis, biomass	ISBA-A-gs	-> C-TESSEL
Soil carbon, wood	ORCHIDEE	-> ISBA-A-gs
Photosynthesis, biomass, soil carbon, wood	ISBA-A-gs	-> C-TESSEL

ONC – Observatory of Natural Carbon fluxes

□ Methods integration & testing (WP6310)

- Leader: Bart van den Hurk (KNMI)
- Models
- Assimilation methods

□ System integration & infrastructure (WP6320)

- Leader: Pedro Viterbo (ECMWF)
- Data collection & modelling
- Integration of the assimilation system
- Pre-operational integration

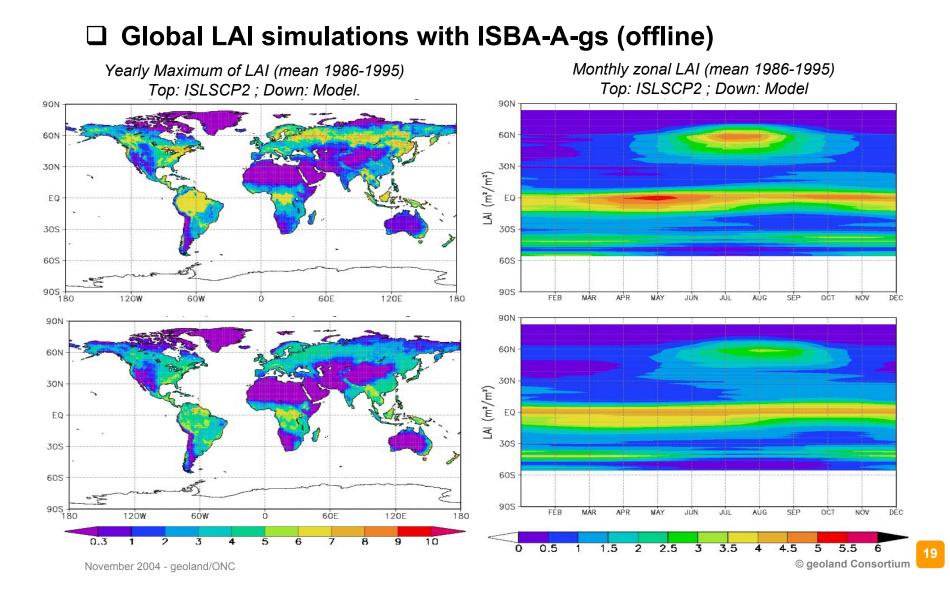
□ Validation of the integrated system (WP6120)

- Leader: Eddy Moors (ALTERRA)
- Validation Methods
- Link with other projects (e.g. CarboEurope, CarboInvent)

FIRST 18 months	WP 6310	WP 6320			
Title	Methods integration	Processing line			
Leader	Bart van den Hurk (KNMI)	Pedro Viterbo (ECMWF)			
Staff	Voogt (KNMI) Jarlan, Gibelin, Munoz (METEO-F) Viovy (LSCE)	Lafont (ECMWF) Demarty (LSCE) Gibelin (METEO-F)			
Contributors	ECMWF (Tessel) METEO-F (ISBA-A-gs) LSCE (Orchidee) ALTERRA (validation)	LSCE (assimilation into Orchidee) METEO-F (help implementation of C-Tessel, interface with CSP)			
Objectives	Update Tessel Test 0D & 2D Test Assimilation	Implementation and testing of a near-operational assimilation system at a global scale			
Products	C-Tessel	Software for assimilation			
Maturity	Tessel, Isba-A-gs, Orchidee run at a global scale	Assimilation of Ta & qa already operational, ELDAS			
Challenges	C-Tessel >= Tessel ?	Quality of forcing & RS products			

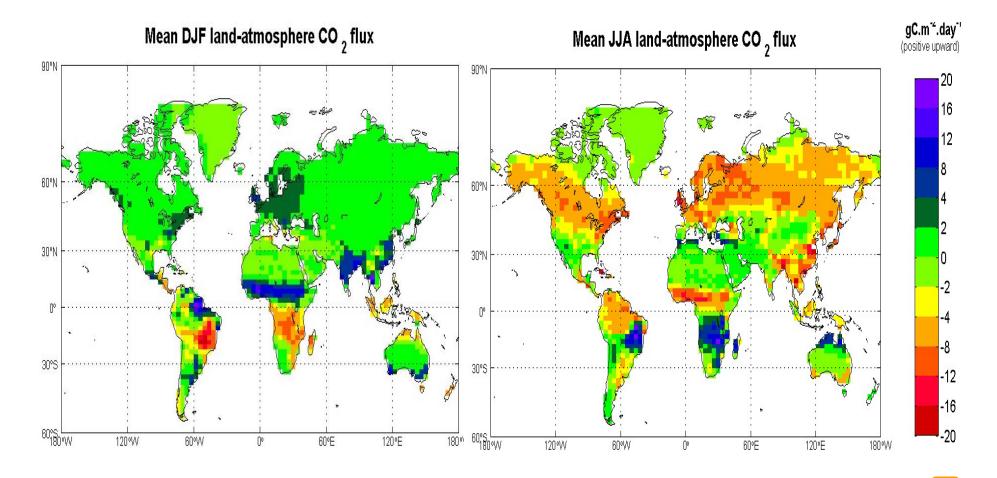
ONC overview

ONC tools


ONC implementation

ONC first results

ONC – Observatory of Natural Carbon fluxes


□ Parameters of ISBA-A-gs at a global scale

Vegetation type	$g_m^*(mm/s)$	$ au_M(j)$	f_{0}^{*}	$D^*_{max}(g kg^{-1})$	$g_c (mm/s)$	$e(m^2 kg^{-1}\%^{-1})$	$f(m^2 kg^{-1})$	N_L (%)
C3 Crops	0.58	60	0.95	121	0.25	3.79	9.84	3.3
C4 crops	3.1	60	0.6	109	0.15	7.68	-4.33	1.9
Irrigated C4 crops	3.1	60	0.6	109	0.15	7.68	-4.33	1.9
C3 grasslands	0.58	90	0.95	121	0.25	5.56	6.73	2.4
C4 grasslands	3.1	90	0.6	109	0.15	7.68	-4.33	1.9
Irrigated C3 crops	0.58	90	0.95	121	0.25	5.56	6.73	2.4
Coniferous forests	1.8	365	0.59	128	0	4.85	-0.24	1.5
Evergreen forests	3.3	365	0.5	105	0.15	4.83	2.53	1.2
Deciduous forests	3.	230	0.51	109	0.15	4.83	2.53	2.4
								Leaf N
Max leaf time span						is Flasheity p		18

□ Global CO₂ flux simulations with ORCHIDEE

November 2004 - geoland/ONC

ONC overview

ONC tools

ONC implementation

ONC first results

ONC – Observatory of Natural Carbon fluxes

□ Main goal of geoland/ONC

 The main objective of ONC is to build a GMES near-operational service at ECMWF

□ ONC will build on past research projects and existing expertise

- Modeling: TESSEL, ISBA-A-gs, ORCHIDEE (ECMWF, Météo-France, LSCE)
- Assimilation: ELDAS (FP5)
- Mapping & tiling: ECOCLIMAP (Météo-France)

□ Transpose ONC at the regional scale?

• Probably a post-geoland objective