NATIONAL CENTERS for ENVIRONMENTAL PREDICTION

Environmental Modeling Center

THORPEX OBJECTIVES INTERNATIONAL PROGRAM

SCIENCE GOAL:

Promote research leading to new techniques in:

Observations (Collect data) Data assimilation (Prepare initial cond.) Forecasting (Run numerical model) Socioeconomic Applications (Post-process, add value, apply)

SCIENTIFIC RESEARCH MUST ENABLE SERVICE GOALS

SERVICE GOAL:

Accelerate improvements in utility of 1-14 day forecasts for high impact weather

THORPEX ANSWER:

Develop new paradigm for weather forecasting throughEnhanced collaboration:InternationallyAmong different disciplines

Between research & operations

3

Example: North American Ensemble Forecast System (NAEFS)

THORPEX ORGANIZATION

EXECUTIVE OVERSIGHTSCIENTIFIC DIRECTIONINTERNATIONAL LEVEL – LINK WITH WMOInternational Core Steering CommitteeMichel Beland (Co-chair)Louis Uccellini (US Representat.)Mel Shapiro & Alan Thorpe

INTNTL PROGRAM OFFICE UNDER WMO – IMPLEMENTATION PLAN

REGIONAL (NORTH AMERICAN) LEVEL – LINK WITH USWRP

Oversight provided by

North American members of International Core Steering Comm.

North American Science Steering Com

Co-chaired by David Parsons & Pierre Gauthier

NOAA LEVEL – LINK WITH CORPORATE MANAGEMENT

NOAA THORPEX USWRP Sub-Com.

L. Uccellini (Chair), M. Uhart,

M. Colton, and Jack Hayes

NOAA Science Steering Committee

Z. Toth (Chair, Program Manager)12 NOAA and outside members

THORPEX OBJECTIVES

NOAA'S ROLE

Existing NOAA, USWRP and other programs aimed at:

Short-range forecast problem: PACJET, IHOP, Cold Season Precip., etc.

Seasonal & climate forecast problem: CLIVAR, GAPP, etc.

THORPEX fills critical gap between short-range weather & climate programs:

NOAA'S SERVICE APLLICATION GOAL

Accelerate improvements in weather forecasts to facilitate issuance of skillful

- 3-7 day precipitation forecasts
- 8-14 day daily weather forecasts

THORPEX SOLUTION:

REVOLUTIONIZE NWP PROCESS

Invest in major new NWP program =>

Develop new NWP procedures

INTEGRATED, ADAPTIVE, USER CONTROLLABLE

- Return Pace of forecast improvement maintained/accelerated
- Assess costs and societal/economic benefits of new procedures
- Implement operationally most cost effective new methods Return – Enhanced operational capability Improved cost effectiveness

SCIENCE OBJECTIVE: REVOLUTIONIZE NWP PROCESS -INTEGRATED, ADAPTIVE, USER CONTROLLABLE

TRADITIONAL NWP

- Each discipline developed on its own Disjoint steps in forecast process
- Little or no feedback
- One-way flow of information
- Uncertainty in process ignored

TRADITIONAL NWP PROCESS

NEW NWP

Sub-systems developed in coordination End-to-end forecast process Strong feedback among components Two-way interaction Error/uncertainty accounted for

SERVICE GOAL: IMPROVE 3-14 DAY FORECASTS

INTEGRATED NWP PROCESS

NOAA THORPEX PROGRAM OVERVIEW – ACTIVITIES ANSWER SCIENCE QUESTIONS

Advance basic knowledge,

directed explicitly toward NWP applications

Each task conceived as part of overall program

DEVELOP NEW METHODS

Sub-system development Academic research Cross-cutting activities Academic + operational centers Observing System Simulation Experiments (OSSEs) Real-time test and demonstration Infrastructure / Core tasks Facilitate other activities - Strong agency involvement THORPEX Data Base

Operational Test Facility

RECOMMEND/PREPARE OPERATIONAL IMPLEMENTATION

Integral part of program Strong participation by operational centers

NOAA THORPEX PROGRAM OVERVIEW - DELIVERABLES

DELIVERABLES

COSTS

New forecast techniques Observing, data assimilation, forecasting, application tools Research Grant Program Integrated program - Four subareas & cross-cutting activities

Accelerated forecast improvements Operational Test Facility Integrated, adaptive, user controllable NWPSimulated forecast process; Database

Cost effective operational systemReal-time test/implementationBased on cost/benefit analysisData transmission, Computations,Enhanced user interfaceTraining

OVERALL MEASURE OF SUCCESS:

SOCIO-ECONOMIC BENEFITS MUST OUTWEIGH OPERATIONAL COSTS

BACKGROUND MATERIAL

NORTH AMERICAN ENSEMBLE FORECAST SYSTEM PROJECT

GOALS: Accelerate improvements in operational weather forecasting through Canadian-US collaboration

Seamless (across boundary and in time) suite of products through joint Canadian-US operational ensemble forecast system

PARTICIPANTS:Meteorological Service of Canada (CMC, MRB)US National Weather Service (NCEP)

 PLANNED ACTIVITIES:
 Ensemble data exchange (June 2004)

 Research and Development -Statistical post-processing

 (2003-2007)
 -Product development

 -Verification/Evaluation

Operational implementation (in phases, 2004-2008)

POTENTIAL PROJECT EXPANSION / LINKS:

Shared interest with THORPEX goals of Improvements in operational forecasts International collaboration Expand bilateral NAEFS in future Entrain broader research community Multi-center / multi-national ensemble system: MOA with Japan Meteorological Agency

CROSS-CUTTING ACTIVITIES

- Integrating NWP procedures from four sub-systems
- **Observing System Simulation Experiments (OSSEs)**
- Data needs of NWP
 - What variables/resolution/accuracy required
 - Instrument/platform neutral assessment
- What instruments/platforms can provide data needs
 - Existing and new in-situ & remote platforms
 - Adaptive component to complement fixed network
 - Most cost effective solution
- Relative value of improvements in four sub-systems
 - Improvements in which sub-system offer best return?
 - Reallocation of resources
- Test of proposed operational configurations
 - Major field program if needed
 - Cost/benefit analysis Select most cost effective version

CORE TASKS

- Needed for efficient research & planned operations
- Strong agency involvement
- THORPEX data base (observations, forecasts)
 - Information Technology challenge
 - High data volume
 - Transmission
 - Storage of data
- Foster collaboration in critical areas
 - Workshops (Societal and economic impacts)
 - Joint proposals Interdisciplinary collaboration
 - Critical in past programs like FASTEX
- Test-bed Pathway from research to operations
 - Formal procedure for researchers to follow
 - Melting pot for new ideas
 - Venue for cross-cutting activities

NOAA THORPEX ORGANIZATIONAL CHART

NOAA THORPEX USWRP Sub-Committee

Louis Uccellini	(Chair)	NWS	Michael Uhart	OWAQ
Marie Colton		ORA/NESDIS	Jack Hayes	NWS

NOAA THORPEX Science Steering Committee

Zoltan Toth Chair, Program Manager NOAA/NWS

Observations:

Jaime DanielsNOAA/NESDIS Craig BishopNRLDavid EmmittSWAL.-P. RiishojgaardJCSDAThomas SchlatterNOAA/FSLChris VeldenCIMSS

Forecasting/Predictability:

Jim HansenMITJeff Whitaker/T. HamillNOAA/CDCGeorge KiladisNOAA/AL

Socioeconomic Applications:

Rebecca Morss Marty Ralph

Data Assimilation

NCAR NOAA/ERL

THORPEX: A GLOBAL ATMOSPHERIC RESEARCH PROGRAM

NOAA LONG-TERM RESEARCH PROGRAM

Scientific Guidance Provided by

NOAA THORPEX Science Steering Committee

Presentation prepared by Z. Toth

OBSERVING SYSTEM

- New in-situ and remote instruments/platforms to complement existing network
- Adaptive observing instruments/platforms
- For large data sets
 - Super-obing etc prior to OR within data assimil.

(Joint work with data assimilation)

Obs. error estimation (correlated/uncorrelated)

Observing system

DATA ASSIMILATION

- Improve techniques
 - Forward models, transfer codes
 - Thinning of data
 - Treatment of data with correlated errors
- Advanced methods to use flow dependent covariance
 - 4DVAR research, e.g., continual update of error covariance
 - Ensemble based techniques
 - Treatment of model errors
- Adaptive observing techniques
 - Quick use of targeted data ("pre-emptive" forecasting)
 - Methods in the presence of
 - Strong non-linearities
 - Model error
 - Effectiveness of targeted data in analyses/forecasts
 - Effect on climatological applications of data

- Observing system
- Data assimilation

FORECAST PROCEDURES

- Initial ensemble perturbations (Joint with data assimilation)
 - Role of non-modal behavior
- Separate model related error from initial value errors
 - Systematic vs. random errors
 - Atmospheric features most affected
- Critical model features responsible for different errors
 - Improve model formulation to reduce errors (Coupling techniques)
 - Techniques to account for remaining uncertainty in ensembles (physics, etc)
 - Adaptive modeling and ensemble techniques

- Observing system
- Data assimilation
- Forecast procedures

SOCIO-ECONOMIC APPLICATIONS

- Probabilistic forecasting
 - Statistical post-processing
 - New procedures for intermediate and end users
- Add-on costs of new THORPEX NWP process
 - Cost of data from multi-use satellite platforms (Joint with Observtns.)
- Incremental societal/economic benefits of new NWP process
 - New NWP verification measure
- Societal aspects of new adaptive NWP procedures
 - Equitable use of NWP resources, how adaptive procedures applied nationally and internationally

NEW NWP PARADIGM - 1

INTEGRATED NWP

Based on better understanding of forecast process

- Sub-systems developed in coordintation
- End-to-end forecast process
- Strong feedback

• Error/uncertainty accounted for at each

INTEGRATED NWP PROCESS

NEW NWP PARADIGM - 2

Integrated

ADAPTIVE

Based on more detailed understanding of natural processes

- Allows more differentiated, case dependent methods/procedures
- Exmples
 - Observations Adaptive platform collects data to fill gaps due to clouds
 - Data assimilation Flow dependent forecast error estimates
 - Forecasting Situation dependent modeling algorithms -

e.g., hurricane relocation

 Applications – Probabilistic forecast reflects all forecast info => ultimate adaptation of user procedures to weather

NEW NWP PARADIGM - 3

Integrated Adaptive

USER CONTROLLABLE

Based on:

- 2-way interactions (improved forecast process)
- Adaptive approach (better understanding of nature)
- Forecast process
 - Traditionally driven by FIXED user requirements
 - Now responsive to CHANGING user needs
- User needs connected to observational, data assimilation, and forecast systems
 - Dynamical analysis of nature & forecast process
 - New, NWP model based tools
 - Fully interactive forecast process
- Example: User identifies critical forecast weather event

Special observational or forecast procedures Improved targeted forecast

LINK WITH NOAA MISSION GOAL

NOAA'S 3rd MISSION GOAL – sounds like excerpt from **THORPEX doc.**:

NOAA will "provide integrated observations, predictions, and advice for decision makers to manage... environmental resources".

Mission strategies and measures of success

directly correspond with

THORPEX Sub-program areas:

NOAA MISSION STRATEGY

Monitor and Observe Understand and Describe Assess and Predict Engage, Advise, and Inform

THORPEX FORECAST COMPONENTS

Observations Data Assimilation Forecasting Socio-economic Applications

Different Line Offices responsible for various forecast components –

NEED FOR NEW MATRIX MANAGEMENT CONCEPT FOR INTEGRATION

LINK WITH NWS STIP PROCESS

National Weather Service (NWS) -

NOAA's operational weather forecast provider

NWS Science and Technology Infusion Plan (STIP) –

Operational requirements should motivate all service oriented research Research must have thread to operations & Credible path to operational implementation

SCIENTIFIC RESEARCH MUST ENABLE SERVICE GOALS

THORPEX seeks advanced knowledge on two fronts: Nature (atmospheric and related processes)

Forecast procedures (OBS, DA, FCST & SA techniques)

Integrating knowledge from two areas leads to new forecast paradigm of

INTEGRATED, ADAPTIVE, AND USER CONTROLLABLE FCST PROCESS

THORPEX:

A GLOBAL ATMOSPHERIC RESEARCH PROGRAM OVERVIEW OF NOAA'S THORPEX-RELATED ACTIVITIES ACCOMPLISHMENTS:

- Contributed to International Science Plan
- Contributes to forming THORPEX International Program Office (Under WMO auspices in Geneva)
- Contributes to North American Implementation Plan
- Formed NOAA THORPEX Science Steering Committee
- Developed NOAA THORPEX Long-Term Research Plan

ONGOING EFFORT:

- Evaluation of research proposals in response to AO
- Atlantic Regional Campaign

OUTSTANDING ISSUES:

- Funding for AO unresolved
- Funding for Operational Test Facility (FTO) needed

NOAA'S INVOLVEMENT IN THORPEX

- 1998-99 Discussions started with involvement of NOAA scientists
- Apr 2000 First International Meeting
- Mar 2002 First Workshop, International Science Steering Committee formed
- Aug 2002 NOAA Tiger Team Meeting
- Oct 2002 NOAA THORPEX Planning Meeting
- Nov 2002 1st Draft NOAA THORPEX Science and Implementation Plan
- Jan 2003 NOAA THORPEX Science Steering Committee formed
- Feb 2003 Pacific TOST Experiment
- Jun 2003 First NOAA THORPEX Announcement of Opportunity
- Sep 2003 25 Full Proposals received, evaluation ongoing
- Oct-Dec 03 Atlantic Regional Campaign