Hydrological Ensemble Prediction Experiment (HEPEX)

workshop, Reading, 8 – 10 March 2004

Evaluation of uncertainty propagation in an operational flash flood forecasting chain

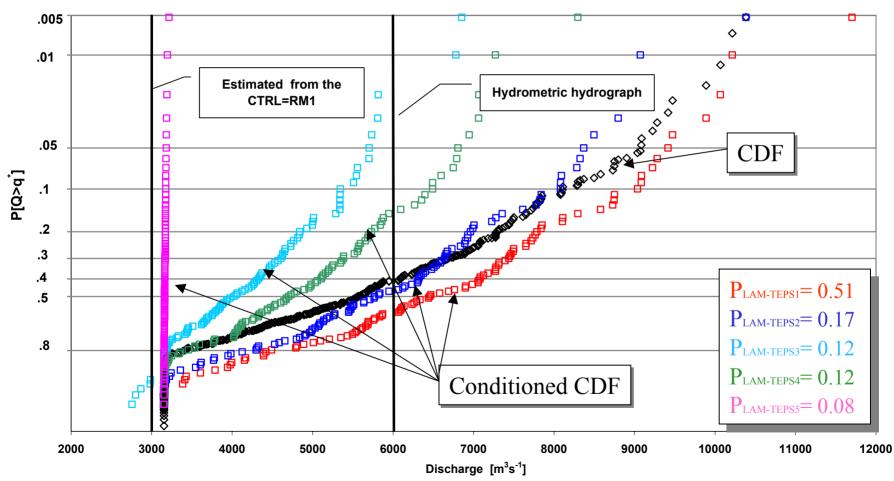
Boni, G., Ferraris L., Gabellani S., Parodi A., Provenzale A., Rebora N., Roth G., <u>Rudari R.</u>, Siccardi F. and von Hardenberg, J.

Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche, Italy (National Group for the defence from hydro-geological Disasters, Italy)

CIMA - Centro di ricerca Interuniversitario in Monitoraggio Ambientale (Centre for Environmental Monitoring Research), Italy

Important points for HEPEX

- Scales of interest (temporal and spatial) different from problem to problem: here short-term targeted to F-F Forecasting
- 2) Although targeted to some specific needs sketches out some of the problems identified by a large research group working in the fields: portability
- 3) It is developed together with end users and the structure will become the model of the future Civil protection organization in Italy

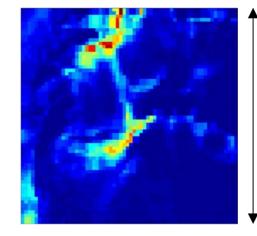

CONCLUSIONS

- 1) Get a better grip on user requirements and identify common an specific problems: promote common and then specific ones
- 2) Identify the most profitable schematisations at different scales
- 3) Think in a probabilistic way & present the results in such manner
- 4) Extensive use of data at any scale to reduce uncertainty
- 5) Deliver the probabilistic information in a correct and usable way: two-way education
- 6) Evaluate the added value due to the use of ensembles

Example of single site

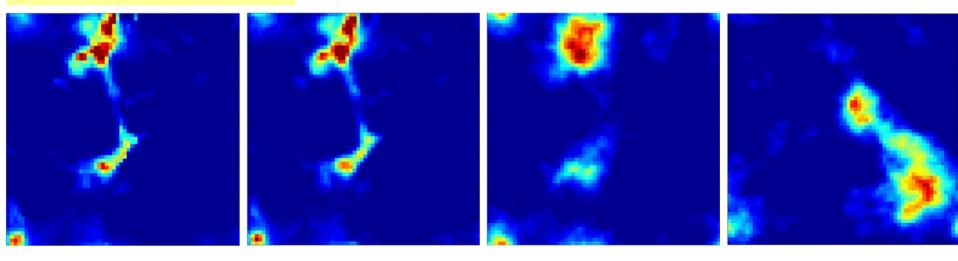
1994 Piemonte flood

Cumulative Distribution Function of peaks discharge in Tanaro at Montecastello for 5 LAM-TEPS


Ferraris, L., Rudari, R. and F. Siccardi, 2002

The uncertainty in the prediction of flash floods in the northern Mediterranean environment, Journal of Hydrometeorology.

RAINFARM model with phases


HEPEX workshop - Reading 8-10 march 2004

LOKAL

512 Km

RAINFARM model

All phases

16 phases (> 32 Km) 4 phases (> 128 Km)

NO phases

Data Assimilation is one way in which mdls can be used to optimise the use of data. DA describes a suite of techniques Signatures on in which time-dependent mdls are used to extract info from a wide range of partial environmental data in a balanced and LST dynamics optimum manner. DA can be used to asses the value/impact of particular observing systems and therefore their design. R_n R_n Efficiency of NET NET RADIATION Õ.O RADIATION Η I.F. turbulent LE Η SENSIBLE C ف SENSIBLE LATENT LATENT exchanges HEAT HEAT Atmosphere HEAT HEAT Atmosphere 0 FLUX FLUX FLUX FLUX Land GROUND Land GROUND G T_s FLUX FLUX LST LST Hour of day Hour of day **Partitioning** R_n R_n due to NET NET RADIATION RADIATION Η LE moisture Η LE LATENT SENSIBLE LATENT SENSIBLE availability HEAT HEAT Atmosphere HEAT Atmosphere HEAT FLUX FLUX FLUX FLUX Land Land GROUND T_s GROUND T_s WET DRY **FLUX** FLUX