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Abstract

The dynamical core is a critical element of any atmospheric model. Its governing equations must include all relevant
dynamical terms, and the numerical formulae used to approximate them must be accurate, stable and efficient. Recent
research at the Met Office on dynamical cores is reviewed. Aspects covered include: properties of various equation sets;
vertical coordinates; semi-Lagrangian advection and conservation; trajectory computation and dynamical equivalence;
horizontal and vertical discretisation; and coupling of physical parametrisations to a dynamical core.

1 Introduction

The dynamical core is a critical element of any Numerical Weather Prediction (NWP) or climate-simulation
model. Essential to its performance is the form of the continuous governing equations and the numerical
formulae used to approximate them. A unified approach to NWP and climate modelling over a broad range of
scales imposes additional constraints.

The continuous equations need to be written in a form that allows the numerical approximation to be accurate
but also highly efficient in order to meet computational schedules. In addition, the numerical formulae must be
numerically stable for long time integrations. Improving the efficiency of the dynamical core whilst maintain-
ing, or even improving, accuracy allows optimisation of the model’s resolution for given computing time. This
aspect will be critical to the use of higher and higher resolution models. In addition, the underlying continuous
equations possess certain key conservation properties. If the numerical analogue of these equations is to be
accurate it should, as far as possible, preserve such properties. Research at the Met Office has therefore been
undertaken into the most appropriate form of the underlying continuous equations, and into the development
and exploitation of numerical schemes with improved accuracy and robustness. The approach being taken is to
continue to improve, where feasible, the existing dynamical core (Davies et al. (2004); Staniforth et al. (2004))
whilst providing a development path for its future replacement.

Given the page limitation for the papers of these proceedings, references to the literature are mostly limited to
published papers of recent work carried out at the Met Office. Relevant linkages to the broader literature are
however available in the papers cited herein.�
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2 Governing dynamical equations and vertical coordinates

2.1 Equation sets and their properties

When designing a dynamical core, it is important to identify an appropriate set of governing dynamical equa-
tions for subsequent discretisation. The very limited computing capability available in the early days of NWP
and climate modelling, together with inefficient explicit time discretisation schemes, led to the adoption of var-
ious approximations to the fully compressible fluid-dynamical equations. Today, all models still make some
kind of approximation to these equations, albeit far fewer than in the past. For example, on the one hand
most current global models are based on the hydrostatic primitive equations. As such: vertically-propagating
acoustic oscillations are absent via the hydrostatic assumption (this avoids the very restrictive timestep of
an explicit time discretisation of the terms responsible for their existence, but invalidates the equations for
many mesoscale flows); and the shallow-atmosphere assumption is made, which is based on simple scaling
arguments and implies omitting various Coriolis and metric terms for dynamical consistency. On the other
hand, current mesoscale models also make the shallow-atmosphere assumption but do not make the hydro-
static assumption: instead many of them filter out acoustic oscillations via the anelastic approximation. So
what equation set should one use for a dynamical core that is applicable at all scales?

It is highly desirable, if not essential, that the equations be dynamically consistent, i.e. that they possess con-
servation principles for energy, angular momentum and potential vorticity, and have a Lagrangian form of the
momentum equation. Staniforth (2001) and White et al. (2004) identify four such models, which correspond
to whether approximations of hydrostatic and shallow atmosphere type are, or are not, individually made (see
Table 1). The case for using the deep-atmosphere equations, i.e. not making the shallow-atmosphere ap-
proximation, primarily amounts to the desirability of retaining a complete representation of the Coriolis force,
including the 2Ωcosφ terms, where Ω is Earth’s rotation rate and φ is latitude. In White et al. (2004), it is
also shown that: the spherical-geopotential approximation (which is almost always made) prohibits latitudi-
nal variation of apparent gravity; making the shallow-atmosphere approximation implies that apparent gravity
should not vary as a function of r, distance from the Earth’s centre; and the deep-atmosphere equations require
apparent gravity to vary as 1 � r2.

Deep Shallow
Nonhydrostatic Complete Euler equations Nonhydrostatic primitive

Hydrostatic Quasi-hydrostatic Hydrostatic primitive

Table 1: Equation sets for dynamical cores using Staniforth (2001)’s nomenclature .

The strategy adopted in Davies et al. (2004) has been to avoid unnecessary approximations. Accordingly,
the fully compressible, nonhydrostatic equations have been adopted, without making the shallow atmosphere
approximation (note though, that the spherical geopotential approximation remains). The Met Office uses
the Davies et al. (2004) dynamical core as the cornerstone of its unified model, which is used for NWP and
climate applications over a broad range of spatial scales, from global to mesoscale. It is believed to be the only
deep-atmosphere nonhydrostatic dynamical core currently used for terrestrial atmospheric modelling.

Normal-mode analysis provides further insight into the properties and validity of governing equation sets, e.g.
by identifying which terms should be treated time implicitly for computational stability. Until recently, such
studies made the shallow-atmosphere approximation and neglected the vertical variation of gravity. However
the Thuburn et al. (2002a,b) studies relax these two constraints. For terrestrial parameters, Thuburn et al.
(2002a) found that neither constraint has significant impact on the spatial form of the energetically significant
components of most normal modes, with only slight changes (less than 1%) in frequency. However, relaxing
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the shallow-atmosphere approximation does lead to significant changes in the tropical structure of internal
acoustic modes, primarily due to the presence of the 2Ωcos φ Coriolis terms - this could be important in the
presence of forcing, e.g. due to tropical convection. Relaxing the shallow-atmosphere approximation also
leads to nonzero vertical velocity and potential temperature fields for external acoustic and Rossby modes;
in contrast, these fields are identically zero when the shallow-atmosphere approximation is made. Inclusion
of realistic vertical variation in the gravitational acceleration leads to a small but systematic decrease in the
magnitude of normal mode frequencies, with the largest differences found being less than 1.5%.

Further insight into the role of the 2Ωcos φ terms, associated with the northward component of the Earth’s
rotation vector and a deep atmosphere, is provided in Thuburn et al. (2002b) by deriving normal modes for an
f � F plane, where f � 2Ωsin φ and F � 2Ωcos φ are both set constant. A particularly surprising result is that
the inclusion of the F terms gives rise, in planar geometry, to an additional kind of normal mode as well as the
usual Rossby, gravity, and acoustic modes. The additional modes are inertial in character, have frequency very
close to f , and have extremely strong vertical tilt. These modes, and the importance of the 2Ωcos φ terms for
dynamical cores, are further examined in Kasahara (2003).

For a finite-difference model to represent well the behaviour of the free atmosphere, it must capture accurately
the structures of the normal modes. Therefore, the structures of normal modes can have implications for
the choice of prognostic variables and grid staggering. Thuburn et al. (2002a) concluded that in the absence
of other considerations, density and temperature should be analytically eliminated in favour of pressure and
potential temperature as the prognostic thermodynamic variables, since the structure of density and temperature
for high vertical wavenumbers would not be accurately captured on either the horizontal velocity levels or the
vertical velocity levels. Also, potential temperature and vertical velocity should be staggered in the vertical
with respect to the other dynamic prognostic variables, the so-called Charney-Phillips grid.

The principal tool used to develop approximate equation sets, and to assess their validity as a function of flow
regime, has been scale analysis which has proven quite subtle to apply. In Davies et al. (2003), it is shown that
normal-mode analysis provides a useful complementary tool for assessing the validity of various anelastic,
hydrostatic and pseudo-incompressible equation sets for both small- and large-scale flows, and leads to the
following conclusions. Whilst of key importance for small-scale theoretical studies and process modelling, the
anelastic equations are not recommended for either operational numerical weather prediction or climate simu-
lation at any scale. The pseudo-incompressible set appears to be viable for numerical weather prediction, but
only at short horizontal scales. For global nonhydrostatic modelling, only the fully compressible equations are
suitable. Advances in numerical techniques in the past decade (e.g. Tanguay et al. (1990), Davies et al. (2004)),
allow these to be integrated in a computationally efficient manner. Note however that stability with implicit
and semi-implicit timestepping and long timesteps is achieved by spuriously retarding the fast-propagating
modes responsible for the timestep limitations of explicit schemes. Should fast-propagating oscillations carry
non-negligible energy for a given application, then the timestep would have to be shortened in order to properly
represent the physics, and the timestep advantage over an explicit treatment might be lost.

2.2 Vertical coordinates

Once an equation set for a dynamical core has been chosen, the next issue to be addressed is a suitable choice
of vertical coordinate. The hydrostatic primitive equations were reviewed and analysed in Kasahara (1974)
using a generalised vertical coordinate, defined to be any variable which is a single-valued monotonic func-
tion of geometric height. This influential review has proven to be a valuable reference, much cited by at-
mospheric modellers, but is not directly applicable to nonhydrostatic equation sets nor to deep-atmosphere
ones. Consequently Staniforth & Wood (2003) extended Kasahara (1974)’s analysis by: relaxing the hydro-
static and shallow-atmosphere assumptions; no longer constraining the upper boundary to be a coordinate
surface, to permit more general upper boundary conditions; and examining axial angular momentum conser-
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vation to determine its sensitivity to the choice of upper boundary condition. This leads to a formulation of the
deep-atmosphere nonhydrostatic Euler equations using a generalised vertical coordinate which includes, as a
special case, the formulation of the Met Office’s new dynamical core (Davies et al. (2004)) in a height-based
terrain-following coordinate. The derived energy and axial angular momentum budgets would facilitate the
development of conserving finite-difference schemes for deep-atmosphere models.

It is found for a generalised vertical coordinate that the implied principles of energy and axial angular momen-
tum conservation (in the absence of zonal mechanical forcing and mountain torque) depend on the form of the
upper boundary. In particular, for a modelled atmosphere of finite extent, global energy conservation is only
obtained for a rigid lid, fixed in space and time. To additionally conserve global axial angular momentum,
the height of the lid cannot vary with longitude. This result has been shown to be independent of whether the
atmosphere is shallow or deep, and hydrostatic or nonhydrostatic. In particular, models that impose a material
surface with constant (non-zero) pressure at the upper boundary, do not conserve total energy and axial angu-
lar momentum, although they may possess an energy-like invariant. This is consistent with, and generalises,
Kasahara (1974)’s analysis for a shallow hydrostatic atmosphere. There it was demonstrated that total energy
is conserved for a rigid lid in height coordinates. However it is not generally conserved for an isobaric lid in
pressure coordinates, but it was shown that a pseudo-energy invariant exists instead.

Today’s atmospheric models are usually formulated in terms of terrain-following coordinates. For shallow-
atmosphere hydrostatic models it is natural and convenient to use pressure as the vertical coordinate (i.e. an
isobaric coordinate), which has the advantage of making the continuity equation a diagnostic relation. Laprise
(1992) introduced a family of “terrain-following hydrostatic-pressure” coordinates, also referred to therein as
mass coordinates. This approach is valid for nonhydrostatic shallow atmospheres, retains the acoustic modes,
and leads to a diagnostic continuity equation with no need for any approximations other than those of a shallow
atmosphere. A simple example is

η � π � πT

πS � x ��� πT 	 (1)

where

π � x 	 z 	 t �
� πT � � zT

z
gρ  x 	 z � 	 t � dz ����� ∂π

∂ z � � ρg � 	 (2)

is “hydrostatic pressure”, z is geometric height, x is horizontal position vector, and πT is constant. For a hydro-
static shallow atmosphere, the η coordinate (1) reduces to the traditional coordinate σ � � p � pS ��� � pS � pT � ,
since π reduces to total pressure p in the hydrostatic limit.

Using the Staniforth & Wood (2003) analysis, Wood & Staniforth (2003) showed that Laprise (1992)’s terrain-
following coordinate η , based on hydrostatic pressure π for the shallow-atmosphere Euler equations, can be
generalised to the deep-atmosphere Euler equations. Whereas for a shallow atmosphere, Laprise (1992)’s
terrain-following coordinate can be interpreted as being either based on “hydrostatic pressure” or on mass, the
generalisation to deep atmospheres is such that the analogous quantity is based on mass and not on pressure.
This is because for a deep atmosphere, the cross-sectional areal element increases with height but is constant
for a shallow atmosphere, resulting in different volume elements. A consequent benefit of Wood & Staniforth
(2003)’s mass-based generalisation of Laprise (1992)’s coordinate is that an existing (shallow-atmosphere)
hydrostatic primitive-equations model that uses a pressure-based terrain-following vertical coordinate, could
be modified for nonhydrostatic deep-atmosphere applications, without the need to substantially change the
scientific and computing infrastructure in which it is embedded.

2.3 Energetics

As mentioned above, Staniforth & Wood (2003) have shown, in the absence of external momentum and thermal
forcing and net surface torque, that deep (and shallow) atmospheres of finite extent are only guaranteed to
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globally conserve energy and axial angular momentum if a rigid lid upper boundary condition is applied.
Otherwise energy is not conserved. Elastic isobaric upper lids (i.e. the lid is a specified isobaric surface) are
however popular and have merit. The presence of global invariants provides a constraint on the system which
can be useful when designing effective numerical schemes. An energy-like invariant is known to exist for
shallow hydrostatic atmospheres with an elastic isobaric lid. In Staniforth et al. (2003b), a generalisation of
this invariant is derived. It is (E � pT � ρ), where pT � pT � λ 	 φ � is the pressure at the lid, and ρ is density.
This energy-like invariant: (i) is valid independently of whether the atmosphere is assumed deep or shallow,
and hydrostatic or nonhydrostatic; and (ii) subsumes previous shallow-atmosphere energy-like invariants in the
atmospheric literature. Note that whilst ρE � pT is globally conserved (in the sense that its volume integral is
an invariant of the system) with an elastic isobaric lid, the true total energy ρE of the system is not conserved.
The difference between the two, viz. the contribution of pT � λ 	 φ � , represents the work done by the stationary
pressure applied at the upper surface as the volume of the atmosphere below it changes.

An important practical issue, raised but left unanswered in Staniforth et al. (2003b), is whether it is better to
impose a rigid or an elastic lid for an atmosphere of finite extent. When the atmosphere undergoes heating, is
it better to consider that this is done at constant pressure or at constant volume? The answer is not obvious.

3 Discretisation of the dynamical equations

3.1 Semi-Lagrangian discretisation

3.1.1 Semi-Lagrangian advection and conservation

Semi-Lagrangian (SL) schemes are widely used for the advection component of many modern operational
atmospheric models due to their increased efficiency and stability compared to Eulerian schemes - see Stani-
forth & Côté (1991). However, a common disadvantage of interpolating SL schemes is the lack of mass and
tracer conservation. Though mass conservation may not be critical for short period NWP simulations, it is
very important for long period simulations such as those of climate studies. Over a long simulation period,
the total mass can drift significantly if no correction is applied. Hence, SL schemes which are inherently mass
conserving are desirable. The challenge is to not only achieve inherent conservation, but to do so whilst min-
imising the additional cost over that of a traditional interpolating SL scheme. This motivated the development
of Zerroukat et al. (2002)’s Semi-Lagrangian Inherently-Conserving and Efficient (SLICE) algorithm.

There are two ingredients. The first is to rewrite the Eulerian flux form

∂ρ
∂ t � ∇ � � ρu � � 0 	 (3)

where ρ is a scalar field transported by velocity u, in a finite-volume Lagrangian form

D
Dt

�
∂V

ρdV � 0 � Mn � 1
a � Mn

d 	 (4)

where ∂V is a fluid parcel or Lagrangian control volume, Mn � 1
a is its mass at time � n � 1 � ∆t centred on

the arrival location xa, and Mn
d its mass at time n∆t centred on the departure location xd . The second is to

adapt Purser & Leslie (1991)’s cascade remapping strategy to very efficiently decompose a two-dimensional
remapping problem (from Eulerian control volumes to Lagrangian ones, or vice-versa) into a number of much-
simpler one-dimensional remapping problems - see Zerroukat et al. (2002) for details. An important property
of cascade remapping is that it preserves characteristics of the flow, thus minimising splitting errors. Overall,
it is found that in addition to exactly conserving mass, the SLICE algorithm is also competitive with standard
non-conserving semi-Lagrangian schemes from the viewpoints of both computational efficiency and accuracy.
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Zerroukat et al. (2002)’s algorithm in planar geometry has been extended to spherical geometry in Zerroukat
et al. (2004). It has no restriction on Courant numbers and again achieves comparable, or better accuracy, as
standard non-conserving and other published conserving SL schemes over the sphere. It remains to extend the
scheme to three dimensions. The algorithmic complexity has been a major design constraint with the view to
achieving this extension in a straightforward and flexible way without a major computational overhead.
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Figure 1: Solutions, projected on a tangent plane, after 64 timesteps for non smooth deformational flow on
a sphere - see Zerroukat et al. (2004) and Zerroukat et al. (2005) for definition of problem and parameters.

A simple further extension of the SLICE algorithm is described in Zerroukat et al. (2005) which allows mono-
tonicity (and positive-definiteness) to be efficiently imposed in both planar and spherical geometry. This ex-
tension operates by first identifying where monotonicity is violated (the detection stage), and by then locally
reducing the order of the piecewise polynomial used in the remapping algorithm until monotonicity is re-
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gained (the reduction stage). A global minimum and/or a global maximum can similarly be imposed and
positive-definiteness is achieved by setting the global minimum to be zero. The resulting monotonicity scheme
has been applied to various test cases. Illustrative comparative results for the challenging, non-smooth, defor-
mational problem on the sphere are displayed in Fig. 1.

3.1.2 Trajectories and dynamical equivalence

A crucial component of any SL scheme is the computation of the trajectories (or displacement vector) via
numerical approximation of Dx � Dt � u � x 	 t � , where x is now three-dimensional position vector. This has an
important influence on the stability and accuracy of the discretisation of the governing equations. Analytically
White (2003) shows that the departure-point and momentum equations, given respectively by

Dx
Dt � u � x 	 t � 	 Du

Dt � F 	 (5)

where F is the local force per unit mass, convey the same information as the departure-point, angular momen-
tum and scalar-product equations

Dx
Dt � u � x 	 t � 	 D � x � u �

Dt � x � F 	 D � x � u �
Dt � u2 � x � F � (6)

He refers to this property as dynamical equivalence.

The conditions under which this also holds for discrete forms of these equation sets are analysed in White
(2003) and Staniforth et al. (2003a). For time-centred discretisations, White (2003) shows that once a rule has
been chosen for the approximation of trajectory time-averages of vector and scalar products, dynamical equiv-
alence implies a particular discrete form of the departure-point equation. For time-decentred discretisations,
Staniforth et al. (2003a) identify two types of discretisation of the departure-point equation which preserve
dynamical equivalence: some existing discretisations are then found to be approximations to them. It is also
shown how to incorporate physical forcings and/or predictor-corrector dynamics into the formulation. Fur-
thermore, two simple model problems (for solid-body rotation and wave motion) are used to provide further
insight into the accuracy and stability properties of various departure-point schemes, including: dynamically-
equivalent schemes; approximations to these; and several existing schemes.

3.2 Horizontal discretisation

3.2.1 Variable horizontal resolution

Like many meteorological organisations, regional forecasting and climate applications at the Met Office cur-
rently use a non-interacting or one-way nesting strategy, whereby a lower-resolution configuration of its model
provides the lateral boundary conditions for a higher-resolution configuration run over a region of interest. It is
well known - e.g. Staniforth (1997) - that there are a number of theoretical and practical problems associated
with this approach. Côté et al. (1998) argue that it is preferable to use a fully-interacting variable-resolution
(stretched grid) strategy, whereby a single global model is integrated with resolution focussed on a uniform-
resolution sub-domain of a rotated lat-lon mesh. Following the successful implementation of this strategy for
operational forecasting at the Canadian Meteorological Centre, the Met Office’s dynamical core has there-
fore been generalised to variable resolution - see Staniforth et al. (2004) for details. Implementation of this
generalisation is currently underway at the Joint Centre for Mesoscale Meteorology at Reading University.
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3.2.2 Conservation and Rossby-mode propagation on the sphere

Spatial discretisations of the linearised shallow-water equations on a spherical C-grid are considered in Thuburn
& Staniforth (2004). Constraints are derived therein that ensure conservation of mass, angular momentum and
energy, and generalise previous published results to the case of non-uniform and rotated grids (but restricted
to the linearised equations). Grids with either meridional velocity v stored at the poles, or azimuthal velocity
u and free-surface height h, are considered. Energy conservation is shown to be problematic for grids with
u and h stored at the poles. It is also found that an inappropriate averaging of the Coriolis terms leads to a
misrepresentation of the Rossby modes with shortest meridional scale. The appropriate averaging is shown to
not only address this problem but to be compatible with the constraints required for conservation.

3.3 Vertical discretisation

3.3.1 Analysis of a new finite-element vertical discretisation

The choice of vertical discretisation method is an important aspect of designing a dynamical core, the most pop-
ular being the use of low-order finite differences with a variety of vertical staggerings of dependent variables.
Recently, Untch & Hortal (2004) have proposed a new high-order finite-element (FE) vertical discretisation
scheme for a hydrostatic primitive equation model using a terrain-following pressure-based vertical coordinate
and an unstaggered grid. This motivated its mathematical analysis in Staniforth & Wood (2004).

The essence of the scheme is an accurate FE algorithm for evaluating vertical integrals using either linear or
cubic splines, that Untch & Hortal (2004) respectively denote “linear FE” and “cubic FE”. They also describe
and evaluate two further methods: a finite-difference based scheme; and a “cubic collocation” scheme. The
cubic collocation scheme first constructs a cubic-spline interpolant of the integrand and then analytically inte-
grates it. Untch & Hortal (2004) observed that: (a) the empirically estimated truncation errors of the linear FE
and cubic collocation schemes are both of order 4; (b) the measured errors of these two schemes are not only of
the same order but identical (to the two significant figures given); and (c) the empirically estimated truncation
error of the cubic FE scheme is of order 8. In addition to explaining these results, Staniforth & Wood (2004)’s
analysis shows that: (d) the truncation errors of the linear FE and cubic FE schemes are respectively four and
eight times smaller than those obtained by applying FE’s to the differential form of the equations instead of to
the integral form; and (e) the cubic FE scheme is formally equivalent for uniform resolution to a new “heptic
collocation” scheme, where a seventh-order spline is analytically integrated.

3.3.2 Discrete normal-mode analysis

Normal modes are fundamental solutions of linearisations of equation sets and are useful in a number of
contexts. As mentioned above, they can be used to assess the validity of various equation sets as a function of
scale (Davies et al. (2003)), and also to guide the choice of prognostic variables and vertical grid staggering
(Thuburn et al. (2002a)). In Staniforth et al. (2004), spatially continuous normal modes are used to examine
the stability properties of the Davies et al. (2004) dynamical core by solving a derived polynomial dispersion
relation. Such an approach focusses on the stability characteristics of the time discretisation and has the virtue
of simplicity, but neglects the impact of the spatial discretisation, including non-uniform resolution, and the
application of boundary conditions. These may however be included using the framework of matrix stability
analysis.

For a given temporal and spatial discretisation, the matrix stability analysis proceeds by first linearising the
discretisations about a basic state, and then expressing the resulting set of linear difference equations as
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Axn � 1 � Bxn. Here the matrices A and B together define the vertical discretisation, xn ��� u 	 v	 w	 θ 	 ρ 	 π � Tis the transpose of the model’s discrete state vector at time level n, and u ��� u1 	 u2 	 ����� � T is the vector of values
of u at the set of discrete vertical levels z � z1 	 z2 	 ����� , with similar definitions for the other model variables v,
w, θ , ρ and π . The generalised discrete eigenproblem Bxn � λAxn is obtained by setting xn � 1 � λxn, and the
discretisation is stable provided  λ  "! 1.

In Cordero et al. (2002), this framework is used to assess the impact of using different implementations of ver-
tical boundary conditions in a one-dimensional (column model) version of the Davies et al. (2004) dynamical
core. In Cordero et al. (2004), the impact of (one- and two-term) extrapolated trajectory schemes on the stabil-
ity properties of centred semi-implicit semi-Lagrangian schemes is similarly analysed. It is found that, in the
absence of any controlling mechanism, both extrapolated trajectory schemes are unstable. Additionally they
can significantly distort the vertical structure of the modes. Though not studied there, the analogous distortion
of Rossby and gravity waves could be expected to be deleterious to a forecast model.

4 Physics-dynamics coupling

Physics parametrisation packages are key elements in the success of numerical weather and climate prediction
models. The accuracy and complexity of these schemes continues to increase apace. Similarly, the accuracy
of dynamical cores has continued to steadily improve. However, a chain is only as strong as its weakest link,
e.g. two 2nd-order components coupled in a 1st-order manner imply a 1st-order model. The link coupling the
physics package to the inviscid, adiabatic dynamical core has received little attention. It is therefore important
for the continued improvement of models that the virtues and vices of the various strategies employed in such
coupling are well understood, and that the vices are addressed.

In numerical models a distinction is usually made between fast and slow timescales because of differing stabil-
ity considerations. An explicit time discretisation generally has the virtue of simplicity. For a slow timescale
process, computational efficiency is usually not hindered by an associated stability-limited timestep and an
O � ∆t � accurate discretisation therefore arguably suffices. However, for a fast timescale process, an explicit
time-discretisation generally unduly limits the timestep due to an overly-restrictive stability condition. There-
fore a more costly implicit time-discretisation is usually adopted. Even so, whilst this can address the stability
issue, if the resulting discretisation is only O � ∆t � accurate, then the timestep may still be unduly limited due
to time truncation error. This motivates an O  ∆t2 � - accurate implicit time discretisation of fast processes.

However, in a model there are several distinct processes (e.g. the dynamical core and each component of the
physics package) each with their own timescale(s). The use of an implicit scheme to solve simultaneously for
the time tendency of the complete model, though appealing, is currently prohibitively expensive, at least in
an operational setting, and is likely to remain so for the foreseeable future. This is because of the expense of
solving a modified Helmholtz problem which consists of contributions from both the dynamics and the physics
package. The solution is to apply some form of splitting in which the time tendency due to the different el-
ements of a model are evaluated separately, and then combined in some way to generate the complete model
tendency. All operational models employ some form of splitting. The problem is that splitting in general intro-
duces errors additional to the truncation errors associated with each individual process. With large timesteps,
of the size permitted by semi-implicit semi-Lagrangian schemes, such errors can dominate the model error.
The question is therefore: “How to determine the optimal way of performing such splitting?”

A methodology for analysing the numerical properties of such splitting schemes is developed in Staniforth et
al. (2002a,b). A canonical problem is introduced to idealise both the dynamics (with terms to represent both
fast and slow propagating modes), and the parametrisations of fast and slow, oscillatory and damped, physical
processes. It permits the examination of a broad set of physics-dynamics coupling issues, whilst keeping the
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analysis tractable. Any given coupling scheme can be assessed in terms of its numerical stability and of the
accuracy of both its transient and steady-state responses.

For the reasons discussed above, fully implicit coupling is impracticable, as is fully explicit coupling due to
timestep restrictions. A popular approach is “split-implicit” coupling in which a dynamics predictor is fol-
lowed by a physics corrector. It addresses the stability issue of an explicit coupling whilst keeping the physics
discretisation distinct from the dynamics discretisation. However, using the framework of Staniforth et al.
(2002a,b), it is found that the steady-state solution is corrupted and the forced response can be spuriously
amplified by an order-of-magnitude. This motivated the “symmetrised split-implicit” coupling in which two
physics discretisations are arranged symmetrically around a dynamics sub-step. The analysis shows that this
addresses the stability and accuracy deficiencies of an explicit coupling whilst still correctly representing the
exact steady-state solution for constant forcing. It also keeps the physics discretisation distinct from the dy-
namics one. It partially shares the disadvantage of the fully implicit model inasmuch as the second physics
sub-step is an implicit discretisation of the highly nonlinear physics. However the usual column-based physical
parametrisations are such that the discrete set of nonlinear equations can be solved column-by-column, greatly
reducing the computational cost.

This early work was done in the context of a physics package comprising only one component. In a typical
model, however, there are at least four distinct components, each with different characteristics. The work
of Dubal et al. (2004, 2005) therefore extends the above-described framework to examine the coupling of
a mix of physical parametrisations of various damping and oscillatory processes associated with a range of
timescales. Various coupling strategies have been examined but none has been found which performs uni-
formly well. Only rather general conclusions can be drawn. For example, there are two generic splitting
schemes: sequential-splitting, in which the model’s tendency is updated sequentially using the tendency due
to each physics component in turn; and parallel-splitting, in which the model’s tendency is updated simply
by summing, independently, the tendencies of each physics component. It is found that sequential splitting
is more flexible in its ability to eliminate splitting errors than parallel splitting. A disadvantage is that the
sequential approach is sensitive to the order in which the physics components are applied. In practice a mix
of sequential schemes for the fast timescale physics, and parallel schemes for the slow timescale ones, appears
to optimise the overall coupling strategy. It is then found that the slower processes, such as radiation, should
appear near the centre of the timestep, with the faster processes, such as boundary layer diffusion, coupled
implicitly at the end of the timestep.

The framework of Staniforth et al. (2002a,b) can also be used to analyse the problem of spurious computational
resonance in a semi-implicit semi-Lagrangian model. Traditionally, this has arisen in the presence of stationary
spatial forcing, specifically that due to orography (Rivest et al. (1994)). In this case, spurious resonance
is absent when a Courant number restriction on timestep is satisfied. Staniforth et al. (2002a) show that
time-dependent forcing, such as that due to the physics package, can also give rise to spurious resonance.
Importantly though, the Courant number limitation on the timestep is then twice as restrictive as that for
stationary forcing, thereby exacerbating the problem of spurious computational resonance with long timesteps.

5 Conclusion

A unified approach to NWP and climate modelling for multiscale applications implies a strong constraint on
the design of a dynamical core. The continuous system requires consideration of a suitable equation set and
vertical coordinate. Semi-implicit SL methods are a proven approach for the discrete system. However further
consideration still needs to be given to aspects such as: conservation; vertical discretisation; stability and
accuracy of departure-point computation; and the coupling with physical parametrisations. Recent research at
the Met Office on these dynamical core issues is reviewed herein.
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