
SSMIS 1D-VAR RETRIEVALS 

Godelieve Deblonde 

Meteorological Service of Canada, Dorval, Québec, Canada 

Summary 

Retrievals using synthetic background fields and observations for the SSMIS (Special Sensor Microwave Imager 
Sounder) instrument were obtained with the SSMIS1DVAR* (one-dimensional variational assimilation scheme) for 
non-precipitating skies over the oceans. Two retrieval techniques are implemented in the 1D-Var. Technique a is based 
on Phalippou (1996). With technique b, the natural logarithm of total water content (sum of specific humidity and 
liquid cloud water content) is a control variable. The impact of removing biases between the observed and forward 
modeled brightness temperatures is illustrated with technique a. It is also shown that in the presence of clouds, little 
temperature information can be extracted using technique a if the a priori cloud position is not well known. With 
technique b, temperature information can be extracted from the observations because it has some skill at positioning the 
cloud. 

*The SSMIS1DVAR is software developed by the NWP Satellite Application Facility. The bulk of the SSMIS1DVAR 
Version 1 software was developed by the author, in collaboration with S. J. English, as a visiting scientist at the Met 
Office. 

1. Introduction 

A stand-alone one dimensional variational assimilation scheme (1D-Var) was developed to compute 
retrievals from DMSP (Defense Military Satellite Project) SSMIS (Special Sensor Microwave 
Imager/Sounder) brightness temperatures (Tb’s). The SSMIS (scheduled for launch in October 2002) was 
designed to measure profiles of humidity, temperature, surface properties such as marine surface wind speed 
and cloud liquid water path.  

The 1D-Var scheme can be solved in cloudy but non-precipitating atmospheres using two different 
techniques. Technique a is based on Phalippou (1996). His scheme, originally designed for the DMSP SSM/I 
(Special Sensor Microwave Imager), retrieves profiles of natural logarithm of humidity (lnq), surface wind 
speed (SWS) and liquid water path (LWP). In the implementation of his method for the SSMIS, retrievals of 
temperature (T ) profiles were also added. Technique b, retrieves profiles of natural logarithm of total water 
content (sum of specific humidity q and cloud liquid water contents qL) and profiles of T and SWS. An 
empirical function governs how the total water content (qtotal) is split among its components. Cloud water is 
formed when the atmospheric relative humidity (RH) reaches a pre-set threshold value. Technique b has 
similarities to that presented in Rosenkranz (2001) for the NOAA AMSU-A/-B instruments (Advanced 
Microwave Sounding Unit). Blankenship et al. (2000) also presented a somewhat similar retrieval scheme, 
for humidity profiles only, that uses SSM/I integrated water vapor (IWV) (obtained from a regression 
equation) and the Tb’s of the SSM/T-2 (DMSP microwave moisture sounder) 183 GHz channels. 

The retrieval results presented here used the SSMIS channels with weighting functions that peak below 0.1 
hPa and are listed in Table 1. One of the main reasons for using simulated data is that it allows for a thorough 
testing and a more complete understanding of the retrieval scheme. 
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Table 1 SSMIS Channel Parameter Specification (provided by B. Burns, Aerojet). 

Channel # Center Freq. 
(GHz) 

1st IF, 2nd IF, 
bandwidth* per pass 
band (MHz) 

Polari
zation 

Ne∆T (K) for 
305 K Scene* 

(E+F)1/2 
(K) 

1 50.3 0.,0.,380. H 0.21 1.5 

2 52.8 0.,0.,388.8 H 0.2 0.4 

3 53.596 0.,0.,380. H 0.21 0.4 

4 54.4 0.,0.,382.5 H 0.20 0.4 

5 55.5 0.,0.,391.3 H 0.22 0.4 

6 57.29 0.,0.,330. H+V 0.26 0.4 

7 59.4 0.,0.,238.8 H+V 0.25 0.4 

8 150. 1250.,0.,1642. H 0.53 3.0 

9 183.31 6600.,0.,1526. H 0.56 3.0 

10 183.31 3000.,0.,1019. H 0.39 3.0 

11 183.31 1000.,0.,512.5 H 0.38 3.0 

12 19.35 0.,0.,355.0 H 0.35 2.4 

13 19.35 0.,0.,356.7 V 0.34 1.27 

14 22.235 0.,0.,407.5 V 0.45 1.44 

15 37.0 0.,0.,1615. H 0.26 3.00 

16 37.0 0.,0.,1545., V 0.22 1.34 

17 91.655 900.,0.,1418. V 0.19 1.74 

18 91.655 900.,0.,1411. H 0.19 3.75 

22 60.792668 357.892,5.5,2.62 H+V 0.58 0.64 

23 60.792668 357.892,16.,7.32 H+V 0.37 0.46 

24 60.792668 357.892,50.,26.5 H+V 0.38 0.47 

*Measured for this unit prior to launch 

2. 1D-Var methodology 

The a priori or background information of the atmosphere and surface (xb), and the measurements yo 

(observed Tb’s) are combined in a statistically optimal way to obtain an estimate of the most probable 
atmospheric state x. Gaussian error distributions (with zero mean) are assumed for both xb and yo and it is 
also assumed that the background and observation errors are uncorrelated. The most probable state is 
obtained by minimizing the cost function J(x) (e.g. Lorenc 1986). J(x) may be written as: 

 11 1( ) ( ) ( ) ( ( ))( ) ( (
2 2

b b T o oJ x x x B x x y H x E F y H x−= − − + − + −1 ))T−  (1) 

B, E and F are respectively, the background, the instrument, and the representativeness (includes forward 
modeling errors) error covariance matrices. The superscripts T and -1 denote transpose and inverse 
respectively. H(x) is the observation operator which here is the fast radiative transfer model RTTOV Version 
6.7. This version uses the fast surface emissivity model FASTEM2 (English and Hewison 1998, Deblonde 
and English 2000) and was adapted by the author for the SSMIS instrument. The Levenberg-Marquardt 
technique is used to find the minimum of the cost function. 
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For technique b, the control vector consists of a profile of T (at 43 levels ≤ 0.1 hPa), a profile of lnqtotal (at 22 
levels < 200 hPa) and SWS. q depends on qtotal as follows (Fig. 1): Let RHqtotal = qtotal/qsat, and constants 
RH1=0.95, RH2=1.05 and Csplit=0.5, where qsat is the specific humidity at saturation. Then for  

 [
1

2 1 1

2 1 2 1

:

:

: ( ( ))

qtotal total

qtotal sat split total sat

qtotal sat split

RH RH q q

]1RH RH RH q RH q C q RH q

RH RH q q RH C RH RH

< =

> ≥ = + −

≥ = + −

 (2) 

and qL=qtotal-q. Thus, once RHqtotal reaches a threshold value of RH1, the excess of qtotal over RH1qsat is split 
among q and qL. When RHqtotal exceeds RH2, then q remains fixed and the excess is taken by qL. 
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Figure 1 a) Dependence of q/qsat and qL/qsat on qtotal/qsat (qtotal=q+qL) . b) Derivatives of q and qL with 
respect to qtotal as a function of qtotal/qsat. The continuous line illustrates q and the dashed line qL. 

Retrievals were performed with simulated background fields xb and simulated brightness temperatures Tbo 
(or yo above) as in Eyre (1989). A sample size N of 3000 was used. Two true profiles (xtrue) were selected: the 
US standard atmosphere and a tropical atmosphere (IWV of respectively 14.2 and 41.3 kgm-2). Both profiles 
had SWS = 7 ms-1 which is roughly the globally averaged surface wind speed over the oceans. In technique a, 
where cloud water was added to the true profiles, q was replaced by its saturated value. All background 
fields contained the same cloud as the true profile. For technique b, where cloud water was added, q was 
saturated to only RH1 to avoid formation of cloud by this saturation step (Eq. 2). This step was followed by 
the addition of the cloud and qtotal was computed. The latter was then split among q and qL. Clouds in the 
background fields were determined using the splitting functions (Eq. 2) and varied from one profile to 
another since noise (see below) was added to the true profile of lnqtotal. 

The background error covariances for profiles of T and lnq, air temperature at 2 m, lnq at 2 m were obtained 
from the Met Office 1D-Var background error data set for two latitude bands: 30oS-30oN or TR and 30oN-
90oN or NH. Covariances between T and lnq or lnqtotal were set to zero (univariate analysis). For SWS 

background error, a value of 2 ms-1 was used. For technique a, the LWP background error was set to 0.2 
kgm-2. Such a large error value implies that the LWP is unconstrained by the background. For technique b, 
lnqtotal was assigned the same background error as lnq. The background error of the atmospheric pressure at 

2 m was set to 1 hPa for all cases. 

Values of (E+F)1/2 are listed in Table 1. The errors for channels 12 to 18 (SSM/I like channels) and channels 
8 to 11 (similar to SSM/T-2) were taken from (Deblonde 2001) and are based on observation minus forecast 
(6h forecast Tb’s computed with RTTOV) statistics of Tb’s. For the remaining channels, error estimates are 
based on English (1999). 
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The normalized computed error (NCE) is defined as:  

 1/ 2

( )sol true

ii

SD x xNCE
B
−

=  (3) 

where the superscript sol refers to the 1D-Var solution. For a given y = x1 -x2, Bias (x1-x2) and SD (x1-x2) are 
defined as follows: 

 
1

1( )
N

i
i

Bias y y
N =

= ∑  (4) 

 2

1

1( ) ( )
1

N

i
i

SD y y y
N =

=
− ∑ −  (5) 

3. Results 

The 1D-Var was solved with technique a using as true profile the cloudless tropical profile with NH 
background errors (Experiment NCa1, a list of experiments is provided in Table 2). With the background and 
observation errors as specified, a very low value of NCE (0.16) was obtained for IWV and indicates a very 
large impact of the observations since the solution error is much lower than the background error. Several of 
the SSMIS window channels (low optical depth) are very sensitive to IWV. As shown in Fig. 2b, Bias(lnqsol-
lnqtrue) is not zero for all heights but Bias(IWVsol-IWVtrue) for NCa1 is small (0.08 kgm-2). 

In the 1D-var formulation used here, it is assumed that the background error of lnq follows a Gaussian 
distribution. Hence the corresponding background error distribution of q is not Gaussian and is skewed. If 
one simplifies the 1D-Var problem by assuming that lnq is retrieved at a single level, then 

 2ln ln (0, )b true
bq q N σ= +  (6) 

and it can be shown that the mean of qb over the ensemble of profiles is given by: 

  (7) 
2 / 2bb trueq q eσ< >=

where <…> indicates an ensemble mean. For σb=0.5, which is a typical value of lnq background error, this 
corresponds to a mean bias of 13% for qb with respect to qtrue. This is why Bias(IWVb-IWVtrue) is not zero. 
IWV is related to q via a linear operator. Bias(IWVb-IWVtrue) for NCa1 is 3.15 kgm-2. 

For the US standard true profile experiment (relatively dry profile), biases between the observations and the 
forward model Tb’s (computed from the background fields) or <Tbo-Tb(xb)> were computed when it was 
assumed that either the background error distribution of lnq is Gaussian or that of q is Gaussian. For the 
latter case, B(lnq) was first converted to B(q). Mean, variance and skewness of the distribution of Tbo-Tb(xb) 
for these assumptions are listed in Table 3 for the moisture sensitive window channels. The variances of Tbo-
Tb(xb) for both cases are close, indicating that both distributions have a similar variability as is required for 
the intercomparison to be valid. The distribution of Tbo-Tb(xb) is considerably more Gaussian (lower values 
of skewness and visual inspection of the distributions) if the background errors of q are assumed Gaussian 
rather than those of lnq. This is due to a more linear dependence for the window channels of Tb on q rather 
than lnq. When the same assumption is made with the true tropical profile (larger non-linear dependence of 
Tb on moisture), the same conclusion applies but only for the few most transparent channels. 

Table 2 List of Experiments. NH background errors were used for all experiments. 

Experiment Retrieval 
Tech. 

True Profile Clouds in 
true profile 

Cloud Top/ Bottom 
pressure (hPa)/ - 
LWP (kgm-2) 

Comment 
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NCa1 A Tropical No  bias not removed 

NCa2 A Tropical No  bias removed 

Ca3 A US Standard Yes 700/750/0.3 CSF* from BG 
cloud 

Ca4 A US Standard Yes 700/750/0.3 CSF from BG RH 

Ca5 A US Standard Yes 750/950/0.5 CSF from BG cloud 

Ca6 A US Standard Yes 750/950/0.5 CSF from BG RH 

Cb7 B Tropical Yes 750/950/0.19  

Cb8 B Tropical Yes 700/750/0.27  

*BG= Background, CSF= Cloud Structure Function, RH=Relative Humidity. 
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Figure 2 Temperature and lnq profile retrieval errors for a cloudless true tropical profile with NH 
background errors for Experiment NCa1 (no bias removed --triangles) and NCa2 (bias removed --X 
signs). a) Bias(Tsol-Ttrue) is on the left of the figure and SD (Tsol-Ttrue) on the right. b) same as in a) but for 
lnq. 

Table 3 Tbo-Tb(xb) statistics for choosing either a Gaussian distribution for background error of lnq (first 
entries) or q (second entries). US standard atmosphere with NH background errors. 

SSMIS Channel # Mean Variance Skewness 
1 -0.67,  -0.17 3.24,  2.82 -0.95,  -0.093 

12 -1.57,  -0.16 20.42,  19.86 -0.78,  0.029 

13 -0.82,  -0.091 5.68,  5.48 -0.800,  0.016 

14 -1.61,  0.0146 22.14,  23.93 -0.57,  0.18 

15 -1.38,  -0.32 13.56,  11.87 -0.96,  -0.092 

16 -0.657,  -0.156 3.10,  .70 -0.97,  -0.10 

17 -1.23,  -0.22 12.83,  12.58 -0.605,  0.127 

18 -3.43,  -0.57 94.03,  93.108 -0.59,  0.144 

Before computing the retrievals, one may remove the biases computed above (<Tbo-Tb(xb)> with background 
errors of lnq assumed Gaussian) for each channel as is done in an operational context (e.g Harris and Kelly 
2001). Experiment NCa1 was re-executed but with biases removed first. Retrieval results for this experiment 
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(NCa2) are illustrated in Fig. 2. The SD of T and lnq hardly changed but the bias in IWVsol changed from 
0.083 to 2.419 kgm-2 and the bias of IWVb =3.153 kgm-2 is closer to that of IWVsol. However, a bias in SWS 
and LWP retrievals have now also been introduced. As shown in Fig. 2, removing the bias in Tb’s has not 
eliminated the bias of lnq as a function of height. The bias correction has changed the mean retrieved value 
of IWV while the redistribution of IWV with height is controlled both by the background error statistics and 
the non-linear dependencies of Tb on lnq. The non-linearity of the problem increases with the size of the 
background errors. Only the 150 GHz channel and channels that sample the 183 GHz water vapor absorption 
line do humidity sounding for the tropical profile here in question. Furthermore, the maximum sensitivity of 
the 183 GHz channels to humidity is considerably less than that of the window channels. All the other 
humidity sensitive channels are window channels that sense integrated humidity and therefore do not provide 
much information on its vertical distribution. 

With technique a, the impact of the a priori knowledge of cloud position was tested. With this technique, 
only LWP is solved for. The cloud structure function (CSF) defined as qL

b/LWPb, which determines the cloud 
position, remains constant during the minimization (to find the minimum of Eq. 1). For synthetic retrievals, it 
is also assumed that the background cloud is always the true one. Since the LWP background error was set to 
a large value, the retrieved LWP will be different for each sample since Gaussian noise was added to the 
observations. 

With retrievals of real observations, a cloud is not always present in the background and to allow cloud 
formation, the CSF has to be non-zero for at least one level. When there is no cloud in the background field, 
a non-zero CSF is created at levels where the RH profile exceeds a preset threshold value. If the RH of the 
given background profile does not exceed the specified threshold at any of the levels, then a non-zero CSF is 
created for the 3 levels above 975 hPa. Several levels are introduced to help with smoothness of jacobians. 

To illustrate the impact of the knowledge of the cloud position (thus CSF) using synthetic retrievals, the CSF 
was obtained solely with the two approaches listed in the above paragraph. This allows for cloud be formed 
in the wrong position. This experiment was tested for two cloud types: (A) LWP 0.3 kgm-2 situated between 
700 and 750 hPa and (B) LWP=0.5 kgm-2 situated between 750 and 950 hPa. For experiments with cloud 
type A (Ca3 –control and Ca4 test case), retrieval results in Fig. 3 show that when the knowledge of cloud 
position is not good then very little temperature information can be obtained from the observations. 
However, retrievals for other variables such as the lnq profile, IWV and SWS are only slightly deteriorated. 
This points to the independence between the temperature and the other variables. For the deeper and heavier 
cloud case, cloud type B, (Ca5—control and Ca6 –test case), the retrievals are affected in a similar way as 
for the cloud type A experiment (Fig. 3). 

Thus, with technique a, if the a priori cloud position is not well known, little temperature information (except 
well above the cloud) is to be expected in cloudy skies, while the retrievals of the other fields are reasonably 
accurate. 
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Figure 3 Effect of knowledge of a priori cloud position. Temperature and lnq profile retrieval errors for a 
cloudy true US standard profile with NH background errors for Experiments Ca3 and Ca5 (with CSF 
from background cloud or control cases) and Ca4 and Ca6 (with CSF from background RH or test 
cases). Triangles are used for Ca3, plus signs for Ca4, diamonds for Ca5 and X signs for Ca6. In a) and 
c) Bias is on the left of the figure and SD on the right. b) Temperature Normalized Computed Error, d) 
lnq Normalized Computed errors.  

Fig. 4 illustrates retrieval statistics for experiments with technique b for two different cloud types and for a 
tropical profile with NH background errors. Cb7 has a thicker true cloud (750 to 950hPa) than Cb8 (700 to 
750 hPa) and the LWP values are respectively 0.19 kgm-2 and 0.27 kgm-2. The LWP amounts are different 
from technique a experiments because of the way clouds are generated (Eq. 2). As for the cloudless true 
profile case, not all sample profiles converge (divergence percentage for Cb7 = 24% and Cb8 =18%) and the 
number of diverging cases is substantially larger (~ 10% for cloudless cases). As a result, the sample set is 
incomplete and statistics are available for only a subset of the ensemble of profiles. Nevertheless, the 
solutions are similar to those obtained with technique a (compare Fig. 3 experiments Ca3 and Ca4 and those 
of Fig. 4). However, with technique b, a CSF did not have to be used and it is possible to retrieve 
temperature even in the presence of clouds (Fig 4 b). As for technique a, where large biases in lnq were 
found at cloud height (Fig. 3c), large biases in lnqtotal are also generated at cloud height with technique b 
(Fig. 4c). Fig. 5 illustrates histograms of retrieved LWP for Cb7 and Cb8. The LWP tends to be 
overestimated and a few cases have large retrievals of LWP. Most of these cases correspond to cases with 
cloud formation at the surface which are mitigated with technique a. This could also be done for technique b. 

4. Conclusions 

Retrievals using synthetic background fields and observations were investigated for the SSMIS instrument 
for non-precipitating conditions over the oceans. The main reasons for using synthetic data was to verify the 
correctness of the implementation of the 1D-Var scheme and to investigate the behavior of retrievals using a 
new technique. Also, at this time, the SSMIS instrument is scheduled for launch in the fall. 
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Figure 4 Same statistics as in Fig. 3 but for Experiments Cb8 (triangles) and Cb7 (plus signs). The true 
profile is the tropical profile with NH background errors are used. 
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Figure 5 Histograms of cloud liquid water path (kgm-2) for Experiments Cb8 (continuous line) and Cb7 
(dashed line). 

Two retrieval techniques were implemented in the 1D-Var and were extensively tested. The control variables 
for the two techniques were the same except for the following: in technique a, profiles of lnq and LWP are 
control variables and, in technique b, lnqtotal is a control variable where qtotal is the sum of specific humidity 
and liquid cloud water content. Functions were also defined that specify how qtotal is split among its two 
components. Essentially, excess water vapor over saturation leads to cloud formation. 

First, the impact of removing biases between the observed and forward modeled Tb’s was discussed. 
Secondly, for cloudy true profiles, it was shown that little temperature information (except well above the 
clouds) can be extracted with technique a if the a priori cloud position is not well known. Technique b 
however, allows for some temperature retrieval from the observations because it has some skill at positioning 
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the cloud. This is the main advantage of using technique b. This comes at a cost though by considerably 
increasing the number of iterations before convergence of the minimization problem is reached and a 
considerable number of cases do not converge. 
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