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Motivation for optimal state estimation

• Approximate two day error doubling times imply that reducing
analysis error could significantly increase forecast accuracy.

• Presently assimilation systems have errors approximately equal to
observational errors suggesting that the analysis is suboptimal.

• Improving the analysis is most effectively accomplished by imple-
menting approximate optimal state estimation which utilizes the
model to make the best use of observational resources.



Implementing optimal state estimation

• The high dimension of the error system is an obstacle because fore-
cast error structure information is crucial to implementing optimal
observer strategies.

• But in fact the dimension of the dynamically relevant error system
is manageably small.

• Problem is to obtain a reduced order error system and exploit it
to implement approximate optimal state estimation.

• Our approach to this problem uses balanced truncation to opti-
mally reduce the error system dimension and construct a reduced
order Kalman filter.

• Practical implementation of this optimal observation strategy ex-
ploits the restricted formal equivalence of the Kalman filter and
4D-Var to make use of existing operational forecast resources.



Optimally reducing forecast error system order

• Minimal dimension forecast error system must take account of er-
ror system dynamics in a way that grid point or harmonic functions
bases which are not problem specific can not.

• Examples of problem adaptive bases are the eigenmodes of the
system operator and the EOF’s identified by stochastically forcing
the system (POD).

• But the eigenmodes and EOF’s are generally not an optimal basis
for the dynamics.

• Both the EOF’s and SO’s must be retained in an optimally trun-
cated basis for the dynamics.



• The preferred response structures are obtained from the covariance
matrix:

P =

∫ ∞

0

eAt eA
†t dt ,

which satisfies the Lyapunov equation:

A P + P A† = − I .

The eigenvectors of P are the EOF’s.

• The preferred excitation structures are obtained from the stochas-
tic optimal matrix:

Q =

∫ ∞

0

eA
†t eAt dt ,

which satisfies the back Lyapunov equation:

A† Q + Q A = − I .

The eigenvectors of Q are the SO’s.



i) For non-normal systems: EOFs 6= SO’s

ii) Both EOF’s and SO’s must be retained in order to accurately
represent the dynamics.

iii) If the system is normal the SO’s and the EOF’s coincide (they are
identical to the eigenmodes of the system) and in that case a k order
truncation corresponds to retaining the k least damped modes of the
system.

(iv) This modal truncation is not optimal for non-normal systems in
which the SO’s, EOF’s and modes are not the same.

(v) If there were a coordinate system in which the EOF’s and the SO’s
become the same, then in that coordinate system we could proceed
with modal truncation as in normal systems. Such a transformation
exists and this procedure is called balancing and the coordinates in
which both the P and Q are transformed to a diagonal matrix Σ is
called the balanced realization (Moore, 1981; Zhou and Doyle, 1998).



Truncation of the dynamics

Consider the N order dynamical system:

dψ

dt
= Aψ

We seek a k order truncation of this N dimensional system:

dψk

dt
= Akψk

where Ak is the reduced k × k dynamical matrix, with k < N . This is
accomplished by the transformation:

ψ̃ = Xψk , ψk = Y†ψ̃

Y†X = Ik

with transformed operator:

Ak = Y† A X

in which X and Y simultaneously diagonalize P and Q. In transformed
coordinates:

Pk = Y† P Y , Qk = X† Q X .



A storm track model example
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The mean model storm track perturbation dynamics is governed by:

dψ

dt
= Aψ

A = ∇−2
(

− (Ug + z) Dx ∇2 − β Dx − r(x) ∇2
)

Discretize with 40 zonal harmonics and 10 levels in the vertical. Total
degrees of freedom: N = 400
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Figure 1: Zonal flow realization of the time dependent storm track model.

For reference the time dependent tangent linear storm track is ob-
tained by considering zonal wind of the form Ug +z+u(z, t). The linear
operator becomes A + A1(t) where A1(t) is the deviation operator:

A1(t) =
(

∇2
)−1

(

− u(z, t) Dx ∇2 +
d2u(z, t)

dz2
Dx

)

,

We consider a fluctuating zonal wind of form:

u(z, t) =
f1(t)

2
[1 − cos(πz/2)] +

f2(t)

2
[1 − cos(2πz)] + f3(t) sin(πz/2) + f4(t)z

2

where fi(t) is a red noise process with mean zero, standard deviation
0.5, and decorrelation time 1.5 days. The profiles were chosen to
give variance increasing with height, and also to lead to almost surely
westerly winds. Typical realizations of the resulting mean flow are
shown in Fig. 1.
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Figure 2: For the stable time mean storm track model. Top panels: The streamfunction of the
first and the 30th EOF. The first EOF accounts for 23 % of the maintained variance, the 30th
EOF accounts for 0.35 % of the variance. Bottom panels: The structure of the streamfunction
of the first and 30th Stochastic Optimal. The first SO is responsible for producing 19.7 % of
the maintained variance; the 30th SO is responsible for producing 0.48 % of the maintained
variance.
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Figure 3: For the stable time mean storm track model. Top left panel: the streamfunction of
the first basis vector of the expansion for the balanced truncation of the system. It is given
by the first column of X. Top right panel: the streamfunction of the tenth basis vector of the
expansion for the balanced truncation of the system. It is given by the tenth column of X.
Bottom left panel: the streamfunction of the biorthogonal of the first basis vector. It is given
by the first column of Y. Bottom right panel: the streamfunction of the tenth basis vector. It
is given by the tenth column of Y.
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Figure 4: For the stable time mean storm track model. The structure of the streamfunction
of the optimal perturbation that leads to the greatest energy growth at t = 10 (left panels),
and the evolved optimal streamfunction, which is the structure that these optimals evolve into
at the optimizing time t = 10 (right panels). The top panels are for the full system while the
bottom panels are for the order 60 balanced truncation.
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Figure 5: For the stable time mean storm track model: the maximum singular value of the
error system A−A60 as a function of frequency. The system A60 is an order 60 approximation
obtained from A by balanced truncation. The maximum of this curves is the H∞ error of the
order 60 balanced truncation which is found here to be 28.5. Also indicated with a straight
line is the theoretical minimum error of an order 60 truncation, which equals the first neglected
Hankel singular value Σ61 = 13.8. The balanced truncation is seen to be nearly optimal.



Assimilation as an observer system

Consider assimilating data taken from truth, xt. The forecast error
ef = xf − xt obeys the equation:

def

dt
= Aef + Q1/2wm ,

in which A is the unstable tangent linear operator and Q is the model
error covariance; wm is assumed to be a vector of temporally uncor-
related noise processes.

Introduce n observations, yob. The observations are defined in terms
of truth xt as:

yob = Hxt + R1/2wo

where R is the observational error covariance and wo is an n vector of
white noise processes.

Assimilate these observations to obtain an analysis xa with analysis
error ea = xa − xt satisfying the Luenberger observer system:

dea

dt
= Aea + K(yob − Hxa) + Q1/2wm

= (A − KH)ea + KR1/2wo + Q1/2wm .

The gain, K, is chosen to minimizes the analysis error variance < e2

a >.

As generalized stability of the tangent linear forecast system reveals
the potential for forecast failures due to initialization error or unre-
solved forcings, generalized stability analysis of the observer system
reveals the forcing structures that lead to failures in the analysis.



The case of an optimal observer

The K that minimizes the statistically steady analysis error variance
< e2

a > is the Kalman gain.

Let K be the asymptotic Kalman gain that results from continual
assimilation of observations associated with the observation matrix
H. The Kalman gain is:

K = PH†R−1 ,

with P the stabilizing solution of the algebraic Ricatti equation:

AP + PA† − PH†R−1HP + Q = 0 .

It is a property of the Kalman filter that the matrix P obtained as a
solution of the algebraic Ricatti equation is also the error covariance
of the observer system:

dea

dt
= (A − KH) ea + KR1/2wo + Q1/2wm .

In assimilation a sequential form of the filter is used.



The 4D-Var as an observer system

The 4D-Var assimilation is a special case of an observer in which a
background error covariance B is advanced for T units of time. The
error covariance is then:

P = eATBeA
†T ,

from which we calculate the gain:

K4D−V ar = PH†(HPH† + R)−1 .

The error in this time independent version is obtained by calculating
the variance

(A − K4D−V arH)P + P (A − K4D−V arH)† + K4D−V arRK†
4D−V ar + Q = 0 .

In assimilation studies 4D-Var is applied sequentially over assimilation
intervals of length T .



Reduced order error covariance estimate

The error covariance is advanced in the truncated space to obtain a
reduced Kalman gain. The observer system in reduced coordinates
is:

dek

dt
= (Ak − KkHk) ek + KkR

1/2

k wo − Q
1/2

k wm .

where the reduced analysis is ek = Y†ea for k << N and the reduced
k × k operator is:

Ak = Y†AX

The n observations, yob, are assimilated in the reduced space according
to:

yob = Hkxk + R1/2wo

where the reduced order observation matrix is:

Hk = H X

The error system in the reduced space is used to obtain the Kalman
gain Kk and propagate the error covariance,

Pk =< eke
T
k > .

The error covariance of the full system is then approximated from the
reduced covariance Pk by:

P = XPkX
†

This error covariance is used in 4D-Var.



Evaluation of optimal state estimation and
4D-Var as a function of the number of observations

In continual data assimilation as the number of observations n → ∞

the square error < e2

a > of the Kalman filter in the absence of model
error behaves as

< e2

a > ≈
1

n
,

and in the presence of model error as

< e2

a > ≈
1

n1/2
.

For 4D-Var with model error the error asymptotes to a finite value.

We demonstrate these results in the scalar error system:

def

dt
= aef + q1/2wm ,

and in the unstable storm track model with the background B for
4D-Var taken to be the identity matrix.
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Figure 6: Error in the scalar optimal observer system and a scalar system with an equivalent
4D-Var observer as a function of the number of observations. The gain in the optimal observer
is the asymptotic Kalman gain. The growth rate is a = 1/2 d−1, the observational error is 10 m.
The model error variance is q = 58 m2 d−1 resulting in a model induced error of 10 m after a
day. With q = 0 the error in both the observer system with the Kalman filter and the 4D-Var
falls as n−1/2. With q 6= 0 the error in the 4D-Var observer asymptotes to a constant value while
in the observer with the Kalman filter falls as n−1/4.



Error as a function of the number of observation
in the time mean storm track model
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Figure 7: Storm track model error for the optimal observer system and for an equivalent 4D-Var
system as a function of the number of observations. The gain in the optimal observer is the
asymptotic Kalman gain. The observational error variance is r = 100 m2 d. The model error
is chosen so that an r.m.s. error of 5 m accumulates in a day. With q = 0 the error in both
the observer system with the Kalman filter and the 4D-Var falls off as n−1/2 and eventually
becomes identical in both systems. With q 6= 0 the error in the 4D-Var observer asymptotes to
a constant value while in the observer with the Kalman filter falls off as n−1/4 (indicated with
the dashed curve). This time mean storm track error model is unstable and 4D-Var requires a
number of observations to become stable.



Localization of the Kalman gain by model error
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Figure 8: The asymptotic Kalman gain for observation at the center of the channel in the storm
track model. Top panel the gain for the case of no model error. Bottom panel the gain for the
case with model error. The model error q produces an r.m.s. model error of 5 m in a day. The
r.m.s. observational error is 10 m. The asymptotic Kalman gain has been calculated for the
time mean flow. Note that the model error leads to localization of the gain in the neighborhood
of the observations.



Evolution of the equivalent gain in 4D-Var
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Figure 9: Evolution of the gain associated with the observation marked with a star in 4D-Var
as a function of the assimilation interval in the unstable time mean storm track error model.
The background B matrix is the identity. As the assimilation interval increases 4D-Var gains
extend into the far field.



Analysis error in a 4D-Var simulation of the tangent linear
storm track model as a function of the assimilation interval.

Perfect model and 16 observations.
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Figure 10: Analysis error of the time dependent storm track model with no model error. The data
is assimilated with 4D-Var over the assimilation interval of 12 h, 24 h and 96 h. The background
B is the identity. Also shown is the error obtained with sequential application of a Kalman
filter. Under the perfect model assumption 4D-Var becomes equivalent to a Kalman filter as the
assimilation interval increases. 16 observations are assimilated with r.m.s. observational error of
10 m. Note that assimilation failures are present in all the observer systems, but the excursions
are more pronounced in the 12 h 4D-Var. The analysis failures can be traced to optimal growth
in the observer system.



Approach of 4D-Var to Kalman filter as assimilation interval increases
Perfect model and 16 observations
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Figure 11: Error in 4D-Var assimilations in the time dependent storm track model with no model
error as a function of assimilation interval. Also shown is the error obtained with sequential
application of a Kalman filter. 16 observations are assimilated with r.m.s. observational error
of 10 m. As the assimilation interval tends to infinity the 4D-Var error approaches that of the
Kalman filter.



Analysis error in a 4D-Var simulation of the tangent linear
storm track model as a function of the assimilation interval.

With model error and 16 observations.
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Figure 12: Error in the time dependent storm track model with model error. The data is
assimilated with 4D-Var over the assimilation intervals of 12 h, 24 h and 96 h. The background
B is the identity. Also shown is the error obtained with sequential application of a Kalman
filter and a reduced Kalman filter (resulting from a truncation to 40 dof out of the 400 dof of
the system). The 4D-Var over 24 h performs nearly optimally. The far field loadings of the
gain associated with the longer interval 4D-Var leads to a degradation of the performance of
4D-Var. 16 observations are assimilated with r.m.s. observational error of 10 m. The model
error variance coefficient is q = 12 m2 d−1, so that a model error of 5 m accumulates in one day.



Approach of 4D-Var to Kalman filter as the number of observations increase
With model error and 40 observations
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Figure 13: As in Fig. 12 but with 40 observations. The error has decreased with the assimilation
of 40 observations. The assimilation intervals shown are 12 h and 96 h. The far field loadings
of the 4D-Var gain leads to a degradation of the performance of 4D-Var over 96 h.



Error in 4D-Var as a function of the assimilation interval
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Figure 14: R.m.s. error in 4D-Var assimilations in the time dependent storm track model with
model error as a function of assimilation interval. The best 4D-Var performance is achieved
in this example for assimilation over the interval 36 h. Also shown is the error obtained with
the Kalman filter. 40 observations are assimilated with r.m.s. observational error of 10 m; the
model error variance is q = 12 m2 d−1, so that a model error of 5 m accumulates in one day.



Snapshots of the gains of the Kalman filter with model error and of 4D-Var.
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Figure 15: Top panels: gain of the Kalman filter in sequential assimilation of 8 observations
in the time dependent storm track model with model error. Bottom panels: corresponding
gains obtained from 4D-Var. The gains of the Kalman filter remain concentrated near the
location of the observation. The corresponding gains obtained from 4D-Var are good over a
24 h assimilation interval. The model error variance coefficient is q = 12 m2 d−1, so that a
model error of 5 m accumulates in one day.



Using the error covariance from the reduced Kalman filter with model error
in 4D-Var makes the 12 h 4D-Var nearly optimal
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Figure 16: Error in a simulation of the time dependent storm track model with model error.
Panel (a): comparison of the errors in a 12 h and 24 h 4D-Var with the error in the full Kalman
filter. Panel (b): comparison of the error in a 24 h 4D-Var with the error in a 12 h 4D-Var in
which the isotropic static B has been preconditioned with the error covariance obtained from
a reduced rank Kalman filter with balanced truncation. The reduced rank Kalman filter has
been obtained with model error. In the truncated system 40 dof have been retained out of
the 400 dof of the system. The isotropic B introduced to the reduced rank covariance has
amplitude equal to the smallest eigenvalue of the reduced rank covariance. Also shown is the
error resulting from the Kalman filter. The 12 h 4D-Var performance is nearly optimal. Panel
(c): comparison of the error in a 24 h 4D-Var with the error in a 24 h 4D-Var in which the
isotropic static B has been preconditioned with the error covariance obtained from the reduced
Kalman filter. The 24 h 4D-Var preconditioned with the covariance from the reduced Kalman
filter propagates the covariance without model error longer and its performance is worse than
that of the corresponding 12 h 4D-Var. Panel (d): r.m.s. error in 4D-Var assimilations in the
time dependent storm track model with model error as a function of assimilation interval. Also
shown is the error obtained with sequential application of a Kalman filter and the error from
the 12 h 4D-Var which was preconditioned with the reduced rank covariance. 16 observations
are assimilated with r.m.s. observational error of 10 m. The model error variance coefficient is
q = 12 m2 d−1, so that a model error of 5 m accumulates after a day.



Using the reduced error covariance from the reduced Kalman filter
with no model error in 4D-Var degrades 4D-Var performance
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Figure 17: Error in a simulation of the time dependent storm track error model with model
error. Panel (a): comparison of the error in a 12 h 4D-Var with the error in a 12 h 4D-Var in
which the isotropic static B has been preconditioned with the error covariance obtained from
a reduced rank Kalman filter with balanced truncation. The reduced rank Kalman filter has
been obtained with no model error. In the truncated system 40 dof have been retained out
of the 400 dof of the system. The isotropic B introduced to the reduced rank covariance has
amplitude equal to the smallest eigenvalue of the reduced rank covariance. Also shown is the
error resulting from the Kalman filter. The introduction of the covariance from the reduced
model with mo model error degrades the performance of the 4D-Var. Panel (b): comparison
of the error in a 24 h 4D-Var with the error in a 24 h 4D-Var in which the isotropic static
B has been preconditioned with the error covariance obtained from the reduced rank Kalman
filter with balanced truncation with no model error. Also shown is the error resulting from the
Kalman filter. The introduction of the covariance from the reduced model with no model error
degrades the performance of 4D-Var and makes this 24 h 4D-Var perform like the 12 h 4D-Var,
indicating that the reduced rank covariance with its far field loadings dominates the gains in
the 4D-Var. 16 observations are assimilated with r.m.s. observational error of 10 m. The model
error variance coefficient is q = 12 m2 d−1, so that a model error of 5 m accumulates in one day.











CONCLUSIONS

• Implementing optimal observer strategies requires that the state
dependent error structure be accurately estimated. However, the
high state dimension of the forecast system presents an obstacle to
determining the state dependent error covariance.

• The dynamically relevant dimension of the forecast error system is
far smaller than the state dimension and this fact can be exploited
to obtain a reduced order forecast error system from which the
state dependent error structure can be obtained.

• Assimilation systems can be usefully analyzed as Luenberger ob-
servers. The observer system is stable but with transient growth.
The generalized stability analysis of the observer reveals the po-
tential for analysis failures.

• In the presence of model error as the number of observations in-
creases and redundancy in the observations is attained the r.m.s.
analysis error in a Kalman filter assimilation decreases with obser-
vation number, n, as n−1/4. In 4D-Var under similar conditions the
analysis error asymptotes to a constant value.

• The gain in a perfect model has far field loadings. The presence of
model error localizes the gains.

• Covariances from the reduced order system may be used to precon-
dition the background B in 4D-Var. If model error is introduced
in the propagation of the reduced rank covariance the 12 h 4D-Var
performs nearly optimally. On the other hand when the reduced
covariance is obtained with no model error the performance of the
preconditioned 4D-Var is degraded.


