GEOMETRIC INTEGRATION AND ITS APPLICATIONS

C.J. Budd! and M.D. Piggott?

Abstract

This paper aims to give an introduction to the relatively new field of geometric in-
tegration. During the course of looking at a series of examples, ideas and techniques
are introduced. Effective numerical methods for challenging problems are described.
These methods aim to preserve certain geometric structures inherent in the underlying
problem such as symplecticity, conservation laws and Lie group symmetries.

KEY WORDS: Numerical methods, qualitative behaviour, Hamiltonian systems, singularity
capturing, meteorology, frontogenesis.

1 Introduction

The modern study of natural phenomena described by ordinary or partial differential
equations usually requires a significant application of computational effort and to under-
stand the design and operation of computer algorithms, numerical analysis is essential.
A huge amount of effort over the past fifty years (and earlier) has thus been applied to
the research of numerical methods for differential equations. This research has led to
many ingenious algorithms and associated codes for the computation of solutions to such
differential equations. Most of these algorithms are based upon the natural technique of
discretising the equation in such a way as to keep the local truncation -errors associated
with the discretisation as small as possible. The resulting discrete systems are then solved
with carefully designed linear and nonlinear solvers. When coupled with effective error
control strategies these methods can often lead to very accurate solutions of the associated
differential equations, provided that the times for integration are not long and the solution
remains reasonably smooth.

However, methods based on the analysis of local truncation errors do not necessarily re-
spect, or even take into account, the qualitative and global features of the problem or
equation. It can be argued that in some situations these global structures tell us more
about the underlying problem than the local information given by the expression of the
problem in terms of differentials. The recent growth of geometric integration has, in
contrast, led to the development of numerical methods which systematically incorporate
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qualitative information of the underlying problem into thier structure. As it is often
unclear a-priori what the correct qualitative features of a problem are (and it is highly
unlikely that one numerical method can preserve all of them), geometric integration neces-
sarily involves a dialogue between numerical analysts, applied mathematicians, engineers
and scientists.

Some of the above comments may be exemplified by the following diagram. Given a
differential equation which we seek to approximate using a numerical method, the left
hand side of the diagram represents the use of classical method of approximating the
equation, whereas the right hand side displays the geometric integration philosophy.

| Differential equation ‘

N

Tdentify qualtitative features
(global)

|

Design numerical method to
| Careful error control | specifically capture these
(global)
¥
Less general purpose but
potentially very effective
method

Careful discretisation (local)

General purpose black box
method

The aim of this paper is to introduce and explain, some ideas, methods, and techniques
used in the field of geometric integration, basing our discussion around several carefully
chosen examples. We further aim to discuss how some of the mentioned ideas could be used
in problems arising in the fields of meteorology and numerical weather prediction. This
discussion is necessarily incomplete and further details of geometric integration can be
found in the recent reviews and discussions listed in the following references [5, 29, 18, 7].

The remainder of this paper is organised as follows. In Section 2 we present an, obviously
not exhaustive, description of some of the qualitative properties of differential equations
and problems that we have in mind. In Section 3 we review some model problems, and
suitable geometric integration based numerical methods, which currently appear in the
geometric integration literature. In Section 4 we look ahead to some model problems
arising in meteorology for which geometric based ideas can be beneficial. We briefly
discuss what possible impacts geometric integration could have on their computational
analysis. Finally, in section 5 we present some concluding remarks.

2 Qualitative properties

In this section we shall briefly look at some of the qualitative and global features of a
system described by a differential equation which we have in mind when we talk about
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geometric integration. The discussions of such qualitative features will, out of necessity
(and the vast complexity of possible behaviours of solutions of differential equations), be
very brief and introductory. We shall wherever possible include references to material
where much further information may be found.

2.1 A Partial Listing

There are many possible qualitative features which may be present in the systems modelled
by ordinary or partial differential equations. We shall not attempt to give a complete
listing, however below we give a partial listing which covers a wide variety of possibilities
and mention how the different qualitative properties may be linked to one another.

1. Conservation laws Underlying many systems are conservation laws. These may in-
clude the conservation of total quantities (usually integrals over the domain in which
the system evolves) such as mass, energy and momentum, or instead quantities which
are conserved along particle trajectories and flows such as fluid density or potential
vorticity. The loss of energy in a system describing planetary motion will inevitably
lead to the planet so modelled spiralling into the sun, which is clearly incorrect
qualitatively. Similarly it is widely accepted [14] that in large scale modelling of
the oceans and atmosphere it is essential to conserve potential vorticty to retain the
overall qualitative dynamics of the solution. The above are conservation laws asso-
ciated directly with the solution, however, for Hamiltonian problems we may also
have the conservation of symplectic structures in phase space and volume preser-
vation in divergence-free systems which are conservation laws associated with the
phase space in which the solution is posed. (They are of course related, for example
the Hamiltonian of the solution is conserved in autonomous Hamiltonian systems.)

2. Symmetries Many systems are invariant under the actions of symmetries and may
also have solutions (self-similar solutions) which do not change when the symmetry
group acts. The possible symmetries may include the following

e Galilean symmetries such as translations, reflexions and rotations. One of the
key problems in computer vision is to recognise an object which may be a
translation or rotation of a known pattern. One way to do this is to associate
invariants to the object (such as curvature) which do not change under the
action of a Galilean symmetry [31]. The study of the motion of rigid bodies
in three-dimensional space (such as a satellite or a robot arm) is dominated by
the fact that such systems are invariant under Galilean symmetries [26].

e Scaling symmetries Many physical problems have the property that they are
invariant under rescalings in either time or space (this partly reflects the fact
that the laws of physics should not depend upon the units in which they are
measured [2].) An example of this is Newton’s law of gravitation which is
invariant under a rescaling in time and space. This invariance leads directly to
Kepler’s third law linking the period of an elliptical periodic orbit to the length
of the major axis of the ellipse — determining this law does not involve solving
the differential equation.

e Lie group symmetries These are deeper symmetries than those described above,
often involving the invariance of the system to a (nonlinear) Lie group of trans-
formations. An important example (which arises naturally in mechanics) is the
invariance of a system to the action of the rotation group SO(3). An excellent
discussion of such symmetries is given in [31]. The review article [25] describes
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the numerical approach to computing solutions of ordinary differential equa-
tions with such symmetries. ;

3. Asymptotic behaviours The differential system under study may evolve in time so that
over a long time its dynamics in some sense simplifies. For example it may ultimately
evolve so that its dynamics is restricted to a low dimensional attracter. Complex
structures starting from arbitrary initial data may simplify into regular patterns [17].
Alternatively, the equation may have solutions which form singularities in finite time
such as weather fronts (derivative singularities) or combustion in which the solution
‘itself becomes singular at a single point.

4. Orderings in the solutions The differential equation may possess some form of maxi-
mum principle which leads to a preservation of the solution orderings. For example,
given two sets of initial data ug(x) and vg(z) for a partial differential equation, the so-
lutions may respect the ordering that if ug(z) < vo(z) for all z, then u(z,t) < v(z,t)
for all z and £. The linear heat equation u; = ug, has this property. A related
concept is that of solution convexity. Indeed, the preservation of the convexity of a
pressure function across a front is an important feature of numerical weather pre-
diction [11].

Tt is important to realise that these global properties may be closely linked to one another.
For example, if the differential equation is derived from a variational principle linked to
a Lagrangian function then, via Noether’s theorem [31], each continuous symmetry of the
Lagrangian leads directly to a conservation law for the underlying equation. This has a
beautiful application to numerical analysis. If a numerical method is also based upon a
Lagrangian and this Lagrangian has symmetries then the numerical method automati-
cally has a discrete conservation law associated with this symmetry [16]. Symmetry when
coupled with solution orderings frequently leads to an understanding of the asymptotic
behaviour of the equation. In particular, self-similar solutions (which are invariant under
the group actions) can be used to bound the actual solution from above and below. The
solution behaviour is then constrained to follow that of the self-similar solution [33]. Sin-
gularities in the equation often have more local symmetry than the general solution of the
equation because the effects of boundary and intial conditions are less important [2].

Some natural questions to ask of a numerical method which attempts to emulate some
of these properties are as follows. What is the benefit (if any) of designing numerical
methods which take into account qualitative properties of the underlying solution? For
systems which possess more than one important qualitative property, how much of this
structure can we hope to preserve? Which qualitative properties turn out to be more
important, or beneficial, from a computational viewpoint? '

2.2 Why preserve structure?

There are several reasons why it is worthwhile to preserve qualitative structure. Firstly,
many of the above properties can be found in systems which occur naturally in applica-
tions. For example, large scale molecular or stellar dynamics can be described by Hamil-
tonian systems with many conservation laws. Mechanical systems evolve under rotational
constraints, as do many of the probles of fluid mechanics. Partial differential equations
possessing scaling symmetries and self-similarity arise in fluid and gas dynamics, combus-
tion, nonlinear diffusion and mathematical biology. Partial differential equations with a
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Hamiltonian structure are important in the study of solitons (such as the KdV and non-
linear Schrédinger equation) and the semi-geostrophic equations in meteorology also have
a Hamiltonian structure. The list could be virtually endless.

In designing our numerical method to preserve some structure we hope to see some im-
provements in our computations. For a start we will be studying a discrete dynamical
system which has the same properties as the continous one, and thus can be thought of
as being in some sense close to the underlying problem in that stability properties, orbits
and long-time behaviour may be common to both systems. Geometric structures often (as
we shall see) make it easier to estimate errors, and in fact local and global errors may well
be smaller for no extra computational expense. Geometric integration methods designed
to capture specific qualitative properties may also preserve additional properties of the so-
lution for free. For example symplectic methods for Hamiltonian problems have excellent
energy conservation properties and can conserve angular momentum or other invariants
(which may not even be known in advance).

In conclusion geometric integration methods (including Lie group methods, sympletic
integrators, splitting methods, certain adaptive methods, etc.) can often ‘go where other
methods cannot’. They have had success in the accurate computation of singularities,
long-term integration of the solar system, analysis of highly oscillatory systems (quantum
physics for example). The list of application areas keeps on growing.

3 Case studies I: standard model problems

We now present some case studies to illustrate some of the underlying methods as applied
to both ordinary and partial differential equations. In these case studies we aim to show
both the power of the new methods and to indicate areas for future developement. The
case studies will be as follows

1. Planetary motion and molecular dynamics : Here we see geometric integration ap-
plied to a set of Hamiltonian ordinary differential equations.

2. Mechanical systems : These are systems with rotational symmetry with momentu
and energy conservation. ‘

3. Scale invariant systems and global error estimates.

4. Singularity capturing (via an adaptive approach) in partial differential equations.

In section 4 we will look at two meteorological problems: The prediction of large scale
atmospheric phenomena, including fronts, using the semi-geostrophic equations; and en-
semble prediction using singular value decomposition (SVD).

3.1 Hamiltonian systems

Some of the earliest major work in geometric integration centred on the development of
symplectic methods for Hamiltonian systems of ordinary differential equations, see [34].
We now present a quick introduction to some of the underlying ideas and notation.

Consider a mechanical system with generalised coordinates q € R? and Lagrangian I =
T — U, where T' = T'(q, q) represents the kinetic energy of the system and U = U(q)
its potential energy. It can be shown that the dynamics of such a system are given by
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the solution of a variational problem, which can in turn be written as the solution of the
following Euler-Lagrange equations

d (0L oL

— V5| — 5 =0 ’ e (1)

dt \ 9q dq ‘
Hamilton introduced new variables p=0L/0q € R¢, the conjugate generahzed momenta
of the system. He further defined the Hamlltonlan as H(p,q) = p7q — L(q,q) and

showed that (1) is equivalent to the following system of 2d first order ‘equations, we call
them Harmlton s equations

5o

- 8q7 i .

. 0H (2)
q_Bp' ‘

This is called the canonical form for a Hamiltonian system. Presently we shall extend our
definition of such systems. Note that for our considered mechanical system H = T 4+ U
and thus the Hamiltonian represents the total energy present.

Further details may be found in [1, 26, 31], and for a numerical viewpoint see [34, 21].

We now move a little into abstraction and consider arbitrary Hamiltonian systems which
do not necessarily arise from a mechanical system. It is a simple exercise to show that a
time independent Hamiltonian is a first integral (or conserved quantity) of the dynamics
described by (2). We now discuss a further property of Hamiltonian systems — the
preservation of the symplectic structure, or symplecticity of the flow.

A flow, or mapping, is called symplectic if it preserves the differential 2-form dp A dq.
This form, applied to two vectors in R, can be thought of as representing the sum of the
oriented areas of projections onto coordinate planes of the parallelogram spanned by the
two vectors. For the case d = 1 this simply reduces to two-dimensional area, and hence
a symplectic mapping is simply an area preserving map. Poincaré proved that the flow
of any Hamiltonian system has this symplecticity property. It is further possible to show
that symplecticity of the flow of a differential system is equivalent to the system being
Hamiltonian. Thus the symplecticity property is much stronger than simple preservation of
2d-dimensional volume, since Hamiltonian systems preserve volume (Liouville’s theorem)
but it is possible to find volume preserving systems which are not Hamiltonian.

We shall call a numerical one-step method for (2) symplectic if, when applied to a smooth
Hamiltonian system, the discrete mapping defined by the mapping is symplectic. A simple
example of such a method is the implicit midpoint rule, which for 4 = f(u) takes the form

1
Upt1 = U, + Atf ( (up, + un+1)>

3.1.1 Molecular or stellar dynamics and some numerical methods

The classical equations for a system of N particles (or heavenly bodies) interacting via a
potential force V' can be written in Hamiltonian form (2), with the Hamiltonian function
given by

N
1 _
D=5 m 119?131 +> Vijlg—gl). - (3)
i=1

i<g
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Here the m; represent masses of objects with positions and momenta g;,p; € R3. V(r)
represents some potential function, for example r~! for gravitational problems and r~12 —
7% for molecular dynamics problems, and || - || is the Euclidean distance. We would like
to integrate these equations for long times where many near collisions (and hence large
forces and velocities) may occur, whilst conserving the energy H and the total angular
momentum of the system L = Zfil Di X gj.

We shall consider here three numerical schemes. The simplest possible is the first-order
method

A. Forward (explicit) Euler method (FE)

. pn+1 — pn _ Ath(pn,qn),
qn-i-l — qTL +Ath(Pn’qn)_

The natural partitioning present in (2) suggests the use of partitioned methods [21]. If we
combine the backward (implicit) Euler method for one equation, and the forward (explicit)
Euler method for the other, we get the following implicit method of order one. .

B. Symplectic Euler method (SE)

p"t! = p" — AtH, (p", q"),
q" = g + AtH(p™, g7).

For systems with separable Hamiltonians, that is those for which we may write H = T+V,
where T = T(p) and V = V(q), (3) is an example of this case, it turns out that partitioned
Runge-Kutta methods may be used to yield explicit symplectic methods -— a result which
is not true for discretisations of problems with general Hamiltonians. For example, the
symplectic Euler method is explicit when applied to problems of this form.

For simplicity, if we now consider the separable case and apply the two-stage Lobatto ITTA-
B Runge-Kutta pair (see [18]) we obtain the following second-order explicit symplectic
method.

C. Stérmer-Verlet method (SV)

qn+1/2 — q’n-—-l/z -+ AtTp(pn)7
pn+1 = p" — Atvq(qn+1/2).

A form of this method appeared in the molecular dynamics literature [37] many years
before anyone realised that its remarkable success in that field was due to the fact that it
was in fact a very efficient symplectic method.

This idea of decomposing the Hamiltonian (or equivalently the differential system arising
from it) into more than one part turns out to be a good motivation for the class of splitting
methods, of which symplectic Euler and Stormer-Verlet are two examples. In such methods
the whole problem is split into simpler problems and each then solved separately. For
example, for our Hamiltonian of the form H = T(p) + V(q) consider the Hamiltonian
systems generated by T'(p) and V{(q) separately

p=0 p=—V,(q)
q = Tp(p) q=0,
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Figure 1: Kepler trajectories computed with the Stormer- Verlet method (SV), the forward Euler
method (FE), and the symplectic Euler method (SE). SV is included as a close approzimation to
what the true solution looks like. h represents the time step At.

which can be solved exactly

p(t) = po p(t) = po — Vy(qo)t
q(t) = qo + Tp(po)t q(t) = qo-

If we now denote the time-t flows of these systems by ol and @Y respectively, then it can
be easily checked that the Symplectic Euler method is simply the composition ¢k, o %,
and the Stormer-Verlet method LpX £/2 ° (pgt o QDX 22" The latter is often called the Strang

splittng of the problem. Since ! and ¢} are the exact flows for Hamiltonian problems
they, and their compositions, are all symplectic mappings. This gives both a quick proof
of the symplecticity of these two methods, as well as an introduction to the ideas behind
splitting and composition methods.

We shall now use the example of the Kepler (or two-body) problem to demonstrate the
behaviour of these methods. The Kepler problem may be written as a Hamiltonian sytem
with "

1 1
H(PlaP.‘Zan,(D) = _(p% ‘f‘Pg) T T e
2 Vi + g

so that V(r) = r in (3). The exact dynamics of this system exactly preserve H which
represents total energy, as well as the angular momentum given by L = ¢1ps — ¢2p1, and
also. the symplectic structure discussed earlier. In addition, the problem has rotational
as well as scaling symmetries, we shall consider the latter presently. In figure 1 we show
some trajectories computed with the three methods introduced above. The Stormer-Verlet
method is included as a close approximation to how the true solution looks. For the initial
data used here the exact solution is an ellipse of eccentricity e = 0.5 with the origin at
one focus. Notice that the forward Euler trajectory spirals outwards and so does not
accurately reproduce the periodic solution to this problem. The symplectic Euler does
better in this respect, the numerical solution lies much closer to an ellipse, however it
exhibits clockwise precession (the ellipse rotates) about the origin. In figure 2 we look at
the growth in trajectory error (computed using the Euclidean norm) and the conservation
‘of Hamiltonian (or energy) for our methods. Note the boundedness of the Hamiltonian
error for the symplectic methods, as well as the linear as opposed to quadratic growth in
the trajectory error.

These results are summarized in the following table. Note that both the symplectic Euler
and Stormer-Verlet methods preserve the angular momentum exactly. The reason being
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Figure 2: Errors in trajectory positions for numerical epprozimations to the Kepler problem. The
Stormer- Verlet method results are also plotted with time-step equal to that of the symplectic Euler
method, however they are so smell it is impossible to distinguish them from the z-axis.

that symplectic methods often also give exact conservation of quadratic invariants, see
[18].

Method ” Error in H | Error in L | Global error

FE O(tAt) O(tAt) O(t*At)
SE O(At) 0 O(tAt)
sV O(A#?) 0 O(tAt?)

See [18, 34] for similar experiments and discussions, as well as proofs and explanations of
the apparent superiority of symplectic over non-symplectic methods.

More sophisticated methods, using some of these ideas, have been used to compute the
evolution of the solar system for many millions of years. In particular the evolution of the
outer planets was computed for a billion years [38], providing numerical confirmation that
the motion of Pluto is chaotic.

Note that for problems with close approaches, and hence large forces and velocities, some
form of adaptivity often needs to be employed. See the later section on temporal adaptivity
and singularities. -
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3.2 Rigid body motion

We shall now consider the problem of a rigid body with centre of mass fixed at the origin.
The body moves according to the Euler equations

1 = (I — I3)yays /1213
92 = (I3 — I1)ysy1 /I3y
v = (I — I)yiya /1o

where (I3, I, I3) are the moments of inertia about coordinate axes and (y1,y2,ys) the

body angular momenta. This is an example of a system which cannot be written in the
canonical Hamiltonian form (2). However we may generalize the details of the previous
section and write the' Euler-equations in the form

y =y, H), | (4)

where the conserved Hamiltonian function and the bracket operation on functions of y is
given by : ) \
L(y? 2 1
Hiy)=5(2+2+2), (FGHy) =y (VFx VG).
2\L L, L)’
(See [26, 31] for further details of the bracket operation, including the properties it must
satisfy.) Following these operations through we can see that

y=yxVH(y)=J(y)VH(y),

where J(y) is the skew-symmetric matrix

0 —uys
Jy)=1{ v3 0 -1 (5)
Y2 W1 0

Since functions of y also evolve in the same manner as (4), we can obtain the additional
conserved quantity of the system S(y) = y? + y2 + y3, by observing that

%5()’) ={S, H}(y) =~y (y x VG),

which is obviously zero. Notice that we can say further that {S,F'} = 0 for all functions
F', and so conservation of S follows from the form of the bracket operation and not the
Hamiltonian, a quantity of this type is known as a Casimir invariant. The conservation of
S tells us that the motion of our system evolves on the sphere, i.e. we have a differential
equation on the two-dimensional manifold S? (the two-sphere in R?), and conservation of
H that motion also evolves on an ellipsoid. An ideal numerical scheme will reproduce both
of these invariants. For an example of a less than ideal method consider the Forward Euler
method, it behaves in a similar manner to how we saw it compute orbits in the Kepler
problem. The value of S increases and a computed solution moves out from the sphere
on which the initial data sat. In comparison, the implicit midpoint method applied to
this problem will exactly conserve both S and H, this is due to the fact that this method
exactly conserves quadratic invariants. For a discussion of both the rigid body and other
problems of this type see [19].

The special form that J takes, and hence also the bracket operation, means that this
problem is of Lie-Poisson type. In particular a Lie-Poisson system associated with the
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Lie algebra to the Lie group SO(3) (the group of orthogonal 3 X 3 matrices with unit
determinant). This association with SO(3) makes sense if we notice that the configuration
of our rigid body may be given in terms of a rotation from a reference configuration. See
[26] (including the front cover) for further details, and [27] for a numerical method which
respects this structure.

A review and comparison of various methods for this system may be found in [8].

3.3 Temporal adaptivity and singularity capturing

We shall consider now problems which are invariant under a scaling transformation, what
we mean here is that if the dependent and independent variables present in a differential
equation are scaled appropriately then the equation remains unchanged. For example
consider the problem of one-dimensional motion in a gravitational field (a one-dimensional
version of the Kepler problem)

F=v
.1 (6)
V=g

This system is left unchanged following the change of variables,
t— A, r— )\2/3r, v = )\_1/31),

for any arbitrary positive constant A. Notice that this problem can also be written in
canonical Hamiltonian form (2), with Hamiltonian
2 .
H(r,v) = FZ— - ;—

A singularity can occur in this system in finite time T'. This is called gravitational collapse
and occurs when a particle falls into the sun. An example of a solution with this property
is the following self-similar solution, an important type of solution which is itself invariant
under the transformation.

T @)1/3 (T — 1)

OO e

We immediately observe that conventional numerical methods fail (including symplectic)
if a fixed time-step is used, due to the singular nature of solutions to this problem. An
explicit method will always give a bounded solution, and an implicit method may not
have soluble algebraic equations. Some form of adaptivity therefore needs to be used for
this problem. More generally, we can further say that adaptive methods fall naturally
within the geometric integration framework as fixed mesh methods impose constraints on
the solution whereas adaptivity allows the solution and method to evolve together. What
we mean here is that if we reparameterize time it is possible for us to derive numerical
methods which are themselves invariant under the scaling transformation. We now follow
this through for the gravitational collapse problem, and explain what benefits we acheive.

Introduce a map which describes a rescaling of the time variable in terms of a new com-
putational or fictive variable 7, given by

dt
E - g(r,v).
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25 T T T

1 . '
6 8 10 12
tau

Figure 3: Convergence properties of t, and r, as functions of 7.

We impose the constraint that g(A2/3r, A=1/34) = X\g(r,v), a suitable choice is g(r,v) =
r3/2. Our reason for doing this is that our new system is invariant under the scaling
transformation with 7 fized. Therefore, a numerical discretisation of our new system
with fixed computational time-step A7 is also invariant, in that if (r,,vn, t,) are discrete
approximations to (r(nA7),v(nA7), t(nAT)), whenever (ry,vn,tn) is a solution of our set
of discrete equations induced by the discretisation then (}\2/ 3rn,A_1/ 30n, My is also a
solution. Under this time transformation (6) rescales to the scale invariant problem

d'r _ 3/2

Y

dv 1 ;

& (8)
dr T

In particular, consider a forward Euler discretisation of (8) with constant step-size Ar.

T4l — Tn = ri/zvnAT

Uptl — Up = —r;l/QA’r (9)
byl — tn = 12AT,

We now look at some results from an implementation of the forward Euler discretisation
with initial conditions r = 1 and v = 0, at (without loss of generality) ¢ = 1. The
true solution for these initial conditions is not self-similar, but it evolves towards a true
self-similar solution as the collapse time T is approached.

In Figure 3 we plot £, and r, both as f‘unctionsvof 7. Observe that t, tends towards the
constant value of Tao whilst r, tends to zero. In Figure 4 we present a plot of r, as a
function of t, in this case. Observe the singular nature of collapse of the solution.

We shall now discuss some theory that explains the excellent qualitative performance of
this method. Many additional details may be found in-[6].

1. Linear multi-step discretisations of our transformed system (for the above example
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Figure 4: The collapse of 7 ast — T.

(8)) have relative local truncation errors which are independent of scale.

2. Global properties of the continuous solution which are derived from scaling invariance
may be inherited by the numerical scheme, one example being Kepler’s third law,
see earlier section.

3. Any continuous self-similar soultions of the problem are uniformly (in time) approx-
imated by discrete self-similar solutions admitted by the numerical method. These
discrete solutions also inherit the stability of the continuous ones.

The importance of points 1. and 3. can be seen from the following. Suppose we are
computing a solution to a problem in which a singularity is forming, and that the formation
is progressively descibed through the action of the scaling group. Our adaptive numerical
method will continue to compute with no overall loss in relative accuracy.

The first part of point 3. is best stated via the following theorem.

Theorem. Let u;(t) (for our collapse problem uy = 7 and ug = v) be a self-similar solution
of our ordinary differential equation, then there is a discrete self-similar solution (u;n,t,)
of the discrete scheme approzimating our rescaled system (for the collapse problem, (8))
such that for alln

ui(tn) = uin(l + O(ATP))

where p 1is the order of the discretisation and the constant implied in the O(ATP) term
does not depend on n.

The most interesting physical self-similar solutions are those which act as attractors since
they determine asymptotic behaviour of more general solutions. The stability result men-
tioned in point 3. ensures that we are not destroying this property in our numerical
method. :

If we now return to our gravitational collapse problem we can observe some of these
theoretical results when comparing the discrete and true solutions. Owur transformed
system (8) has the collapsing self-similar solution (from (7))

r=Re? /3 y= —Ve_’“'/S., t=T—¢€"" . (10)
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9\ 1/2
=-3)

Observe that as 7 — co we have r — 0, |[v| oo and ¢t =+ T, and that t =T — 1 at 7 = 0.

Similarly our numerical scheme (9) admits a discrete collapsing self-similar solution of the
form

where

— R22”/3, vy, = —-Vz_"/S, th = Tar — 2"

Comparing with (10) we see that z is an anologue of exp(uA7) if nA7 = 7. Here |z] < 1
so that r, = 0, |vs] = 00 and ¢, = Tar as n — o0, (c.f. [9]). Ta, is a discrete collapse
time which need not necessarily coincide with the true collapse time T', however as 7 — oo
we have Ta, — T. Substituting into our forward Euler discretisation we find the values
of the constants ’

Ar | R 14 z
0.2 | 1.46704 | 1.04761 | 0.64461

0.1 | 1.55633 | 1.07440 | 0.80584
0.05 | 1.60298 | 1.08760 | 0.89852

notice that in agreement with the theory we have

R=R(1+0(A7)), V=V({1+0O(AT), z=eT(1+0(AT?)

where from (7) we have : o
R =1.65096, V =1.100642, .

and exp(uAT) takes the values 0.65425, 0.80886, and 0.89937 for the three chdices of At
above. See [6] for further results and examples.

3.4 Spatial adaptivity

Partial differential equation problems often involve a complex interaction between tempo-
ral and spatial structures. This can take many forms, but a common interaction concerns
scalings, so that a change in the temporal scale of the solution is related to a change in the
spatial scale. It is possible to capture this behaviour using an adaptive method based upon
geometric ideas. We will now describe a general method for adapting the spatial mesh
and then show how geometric ideas can naturally be incorporated into it. In an analogous
manner to the way in which we constructed an adaptive temporal mesh through a time
reparameterization or transformation function, where the time ¢ was described in terms
of a differential equation in a fictive variable 7, we can think of a spatial mesh X being
a function of a fictive spatial variable ¢ such that X satisfies a differential equation in £.
Here we will assume that this function has a high degree of regularity (i.e. we progress
beyond thinking of a mesh as a piece-wise constant function of £.) The crucial idea behind
generating such a mesh is that of equidisiribution of an appropriate monitor function.

The approach we use here in one-dimension is based on the framework which is developed
in [23]. It is possible to use similar ideas in higher dimensions, see [24], but this is
naturally a more complex process. Equidistribution can be loosely thought of as a process
for changing the density of the mesh points in response to the solution (in contrast to
Lagrangian methods which tend to change the mesh points themselves.) Our discussion
will be confined to the one-dimensional case. ,

We define the physical mesh, that is the mesh upon which the physical problem is posed, in
terms of a mesh function X (¢,t) which maps a computational (fictive) coordinate £ € [0, 1]
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onto a physical coordinate (which we assume without loss of generality to be in [0, 1]) such
that

X (%t) =X;(t), j=0,...,N.

Therefore our N + 1 mesh points X;(t), which are permitted to vary with time, are simply
the image of a uniform computational mesh under a time dependent mesh function.

We now introduce a monitor function M (z,u,u,) which classically represents some mea-
sure of computational difficulty in the problem, and invoke the principle of equidistribution
by defining our mesh function X through the relation

/OXJ\/Idm=§/01Mda:. : (11)

Differentiating with respect to { we see that the mesh-density X, satisfies the equation

1
Xe = / M dz/M, ‘ (12)
0

so that the mesh density is inversely proportional to M. The equation above may be
differentiated again to give the following partial differential equation for the mesh —
referred to as MMPDE1 (moving mesh partial differential equation 1)

(MXe)e = 0.

This equation may then be solved for the mesh by discretising the function X appropriately
[23]. In practice this can lead to an unstable system and many related partial differential
equations have been derived to stabilise this process — with details given in [23]. An
example of such a stabilisation is MMPDEG given by

EX*EE = —-(MX&)E

where ¢ is a small relaxation parameter. A further advantage of this approach is that
is allows the use of an initially uniform mesh. To solve the original partial differential
equation, both the partial differential equation for the mesh function X and the partial
differential equation for u(z,t) are discretised. (It often pays to use a high order discreti-
sation in both cases). One of the mesh equations may then be coupled with the original
PDE, giving a new system.

The new coupled system may or may not inherit the qualitative features of the original
problem. The geometric integration viewpoint is to produce a mesh in which the mesh
equation inherits as many qualitative features as possible. As an important example,
we may seek a mesh so that the new system has the same scaling invariances as the
original. As the mesh is governed by the monitor function M this problem reduces to
that of choosing M such that the coupled system is invariant with respect to the same
transformation group as the original equation. By doing this we ensure that all of the
scaling symmetry structure of the underlying partial diferential equation will be inherited
by the resulting numerical method. It is possible to do this for a wide variety of problems
with relatively simple choices of M leading to some elegant scaling invariant methods.

We shall now look at a specific example.
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3.4.1 Singularities in the nonlinear Schrédinger equation (NLS)

The radially symmetric solutions of the cubic nonlinear Schrédinger equation satisfy the
following partial differential equation

. od—1 Y ’
Ut + Uge + - um~}-_u]u| = (), o - (13)

Where d is the dimension of the problem and z is the distance from the origin. If d > 2

this problem has solutions which blow-up so that they develop singularities at the origin
in a finite time T (in a manner similar to that of gravitational collapse) so that the
solution tends to infinity in an increasingly narrow (in space) peak. This partial differential
equation is unitary, and can be written in Hamiltonian form. During the evolution the
following are invariant quantities

° ' e 1,
/ lul?22¢"Y dz  and / <|u1|2 - 5[11[4) 241 d. (14)
0 0

The nonlinear Schriodinger equation is a model of the modulational instability of water
waves and plasma waves, and is important in studies of nonlinear optics where the refrac-
tive index of a material depends upon the intensity of a laser beam. In the latter case,
blow-up .corresponds to a self-focusing of the wave. Furthermore, the one-dimensional
(d = 1) form of (13), is integrable and has many symmetries and invariants. Its numerical
solution can exploit these by using geometric integration methods and this is discussed
from a numerical viewpoint in [28]. A general discussion of the singularity formation of
the NLS equation is given in [35]. ‘

We now briefly discuss a numerical method to solve (13) when d > 2 which is based upon
geometrical ideas and which is very effective at computing the blow-up solutions. Details
of this method are given in [3]. This method is based on preserving the scaling symmetries
of the problem rather than either of the two invariant quantities (14). In particular (13)
is invariant under the action of either of the transformations

t= A, oz — MYz, w— ATV (15)
and . ,
u—e%u, peR

We seek a numerical method which inherits both of these symmetries, and achieve this
through the use of adaptivity of both the temporal and spatial meshes.

The temporal and spatial adaptivity used for this example are given by solving the fol-
lowing equations . , '
dt 1

| dr (0, 0P
coupled with MMPDES6. The choice of monitor function

M = |uf?

results in a combined system for the mesh and the solution which is invariant under the
full set of scaling transformations.

The resulting coupled system is discretised in space using a collocation method and the
resulting ODE system is then solved using a BDF discretisation [21]. The resulting method
has proved very effective at computing singular solutions using only a modest number
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1= 0.034301361416092
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Figure 6: The scaled mesh X;(t)|u(0,t)|

(N = 81) of mesh points in the computational domain. The computatlons have revealed
much new structure in the problem [4].

We now present the results of a computation which evolves towards the singular blow-up
self-similar solution which has a monotone profile. Figure 5 shows two solutions taken
when d = 3 with initial data u(0,z) = 6\/§exp(—w2) if0 <z <5, and u(0,z) =0 if
z > 5. In this case the estimated value of T is T' = 0.0343013614215. These two solutions
are taken close to the blow-up time when the amplitude of |u| is around 10° and the peak
has width around 1075, Observe that the resolution of the peak is very good, indicating
that the mesh points are adapting correctly.

In figure 6 we present a plot of X;(t)|u(0,t)| as a function of log(T'—t) for a range in which u
varies from 100 to 500000. According to (15) the quantity uz is an invariant of the scaling
transformation and is therefore also a constant for a self-similar solution. Observe that in
the computations these values rapidly evolve towards constants, demonstrating that the
mesh is evolving in a self-similar manner.

Thus, as in the case of gravitational collapse, adaptivity has led to an attracting self-similar
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solution being precisely recreated by the numerical solution and the mesh.

4 Case studies II: meteorological model problems

We now consider two meteorological problems for which a geometric integration based
numerical approach to their solution looks promising.

4.1 Semi-geostrophic equations and frontogenesis

The three-dimensional Boussinesq equations of semi-geostrophic theory on a plane with
constant coriolis force f may be written in the form (for many further details see [22, 12,
13))

Dug &p Dug
Dvg &p Do,
Do
Ve -u=0,

9
Vap = (o9, ~frig ).

Here (ug,v,) is the geostrophic wind, ¢ the potential temperature, and ( the geo-potential.
The energy integral E defined by

. 1,5, 2) g6z
E—/D<2(ug+v 60>dmdydz

is an invariant of this set of equations. This equation set is of interest for many reasons,
one being that it allows the study of idealised atmospheric weather fronts. That is, just
as for the nonlinear Schrodinger equation it admits solutions which form singularities in
finite time.

It is usual to define a coordinate transformation from (z,v, z) coordinates to isentropic
geostrophic momentum coordinates

: T
v u, go o
X = XY,ZT=<:U+—£@/——9,_—> . ~ 18
( I ) f ? f f290 ( )
In a similar manner to the previous section we can think of (X,Y,Z) as being (fictive)
computational coordinates introduced in earlier sections, (18) then describes the evolution
of a spatial mesh. In terms of these new coordinates (16) and (17) transform to

DX T :
-‘D—t = ug = (ug,'l)g,O) R ) (19)
and hence the motion in these new coordinates is exactly geostrophic, as well as nondi-
vergent Vy - u, = 0. A numerical method based on (19) will perform in an adaptive way
— a Lagrangian form of mesh adaptivity where the mesh is moved at exactly the speed
of the underlying velocity field.
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The ratio of volume elements in dual space to that of physical space is given by

_9(X,Y,2)
© (z,y,2)

This relates the scaling of the spatial mesh to the computational mesh. The expression g
defines a consistent form of the Ertel potential vorticity (PV) in SG theory, satisfying

Dq _

Dt_a

It is possible to write our coordinate transformation as X = VP where
P(x) = Z 4 1(3‘2 +92).
22

Hence g, the PV, is equivalently the determinant of the Hessian of P with respect to the
coordinates x, ’
q = det(Hess;(P)).

Also, x = VxR, where P(x) and R(X) are a pair of Legendre transforms related by
P+R=x-X.

We can now introduce a streamfunction for the geostrophic velocities,

o= f2 (%(XZ +Y?) - R(X)) . (ugyvy) = }10- (-%‘I}, g‘?f) . (20)

Defining p (the pseudo-density) to be
p = ¢~ = det(Hessx (R)), (21)

it can be shown that

Dt o Fax,Y) (22)

It is now possible to compute the evolution of this system using the following procedure,

1. given an initial distribution of pseudo-density solve the nonlinear elliptic equation
of Monge-Ampére type (21) for R,

2. using the streamfunction (20) compute a new velocity field (ug,vg),

3. advect the pseudo-density distribution using (22) and return to start.

We thus have two distinct numerical problems to solve. The first being the computation of
a solution to the Monge-Ampeére equation (21). This is obviously linked to determining the
coordinate transformation (18), since for a given R we have x = VxR, and hence fits in
well with our discussions of coordinate transformations and adaptivity earlier. The second
numerical challenge is that of solving the advection equation (22). We will now show that
this also has a nice geometric structure, and then return to the adaptivity connection.
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4.1.1 Hamiltonian formulations

We now consider Hamiltonian formulations for this problem, Roulstone and Norbury [32]
discuss two Hamiltonian formulations of the semi-geostrophic equations. The first, a
canonical (infinite-dimensional extension of (2)) representation of the equations of motion
(19), with Hamiltonian functional ' '

=5 [ da (—;(X%a) Y2 (@) - ROKG)).

where a is a Lagrangian particle labelling coordinate. The standard canonical Poisson
bracket is given by

o 5F 69 §F 54
{J,g}c—/da<5x(a) 6Y(a) oYa) 5X(a)>'

As for the rigid body bracket (3.2), refer to [26, 31] and [32] for further details of this
bracket operation. It is possible to prove conservation of PV (equivalently pseudo—den51ty)
along trajectories by demonstrating that

{Qﬂ;io}c = 0.

Again following [32] we may write our advection equation (22) in Hamiltonian form. Using
our previous Hamlltoman this time evaluated in phase space solely as a functional of p.
That is, :

82t _

f/pr <X2+Y2) R(X)), 5

12 (%(XQ +Y?) — R) =U.

We are now in a position to write the equations of motion (22) as

) — o), 52, (29

where the noncanonical Poisson bracket (see [32, 26, 31]) is given by

8%
0 (p(X), 5p(;()>
9(X,Y)

0F
7,9 :/dX
¢ J r opX

Note that in these coordinates, and with this bracket, the pseudo-density becomés a
Casimir invariant of the system, {p, #} = 0 for all functionals %#(p), (c.f. the quan-
tity S in the rigid body problem).

The geometric integration problem of numerically integrating these equations whilst pre-
serving the pseudo-density or potential vorticity along the flow turns out to be intimately
related to preserving the Hamiltonian (or Poisson bracket) structure of the problem. See
[32] for more details, and also [27, 30] for some applications to similar problems where
explicit methods capturlng the Hamlltoman structure and the Casimir invariants are de-
rived.
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4.1.2 Links with moving mesh theory

We now take a closer look at the coordinate transformation from physical to geoétrophic
or dual coordinates, we also choose to sometimes use the term computational coordinates
for X since these are the variables in Wthh computing will be carried out. Recall from
earlier we had .
v ug gl
X=(X,Y,2) = Ly - =
( ? ? ) (x+f7y f7f200> H

and .

_ 9(X,Y, Z)

0(z,y,z)

we shall now show some links with the theory of moving mesh partial differential equations.

= det(Hess,(P), | (24)

It is possible to write the continuous form of the first one-dimensional moving mesh partial
differential equation (MMPDE) in the form (c.f. (12))- '

9z 1
o M

where M (z,u) is our monitor function. Notice the similarity with (24) if we take M = g,
and identify the computational coordmates X and €. In partlcular in one-dimension we
simply have that M = Pp,. :

In three dimensions the Russell et al approach [24] to constructing coordinate transforma-
tions (¢ = £(x,1)) is to minimize the following integral o

.,
=3/ L ervea

where the G; are monitor functions, three by three symmetric positive definite matrices
(concentrates mesh points in regions where G; is large) The Euler-Lagrange equations

for which are 51
. _1 i .
5£z V ( 2 é) : ’ Z ) 4y
But now notice what happens when we take our monitor functions to be equal G; = G
and : al : R :
G = Hessm(P)

For a start the determmant of our monitor function is simply the potentlal vorticity, and
one possible solution to the Euler-Lagrange equations is { = VP, since then (using the
symmetry of the Hessian if necessary), :

G WVeti=e;, 1=1,2,3; e = (l,O,O)T, etc.

We have thus shown a link between the usual analytical transformation found in the
literature and our moving mesh adaptivity ideas discussed in previous sections. A key
point to take on board from these is that the equations governing the mesh transformation
should be solved to high order, i.e. a smooth mesh should be used. This contrasts with the
piecewise constant mesh transformation discussed in [12], as well as the geometric method
(a numerical method based on the piecewise constant construction, see [10]).

We hope to employ some of the geometric intégration ideas discussed in this paper to the
semi-geostrophic equations, with the aim of obtaining the superior results we observed for
the nonlinear Schrodinger, and other equations.
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4.2 Calculating Lyapunov exponents

Weather forecasting makes prediction ensembles to see how reliable a forecasf is. This
involves discretising the underlying partial differential equations in space to get a system
of ordinary differential equations, then looking for the p largest modes of error growth of

this system. A systematic way of finding such modes is to calculate Lyapunov exponents
of the system. .

The calculation of Lyapunov exponents is a natural candidate for a geometric integration
based approach as it involves integrating matrix ordinary differential equations which
require the preservation of structural properties of the matrices. An interesting algorithm
to do this was proposed in [15] and involved integrating systems of equations defining
orthogonal matrices. An alternative procedure [20] is to solve the system

Y = AQR)Y, Y€ MP
and find a singular value decomposition (see [36]) of ¥ using
Y =U@)SEV(t),

where U is an n X p matrix with orthogonal columns, V is a p X p matrix with orthogonal
columns and S is a diagonal p X p matrix of singular values. The growth rates of the
dominant modes can then be calculated via the Lyapunov exponents

. 1
Essential to this calculation is determining the matrices U and V. An efficient way to
proceed is to determine ordinary differential equations for U and V' which typically take
the form

U= AU +U(H - UTAU) - (25)

where H is a derived p x p matrix and U the n x p matrix with orthogonal columns.
Equation (25) is a naturally arising evolutionary system in which keeping the columns of
U orthogonal is important for the accuracy of the estimates of the Lyapunov exponents.
Conventional integrators will not do this easily, however this structure is amenable to
methods based on the Lie group invariance of such systems [25]. The geometric integration
approach is to decompose U as a product of Householder reflections [36] and solve the
ordinary differential equations that define the reflections. The advantage of using such
a procedure for (25) is that it has very efficient estimates (exponential convergence) of
subspaces to spaces spanned by the fastest growing modes, although great care needs to
be taken when singular values coalesce.

5 Conclusion

We have demonstrated in this paper that the consideration of qualitative properties in
ordinary and partial differential equations is important when designing numerical schemes.
We have given some examples of general methods and techniques which may be employed
to capture geometric features in discretisations of continuous problems. Some theory
as well as examples have been used to demonstrate the possible advantages which the
geometric integration approach to numerical analysis may yield. Methods applied to
problems with Hamiltonian structure, singularity formation, and evolution on manifolds
have been described with the view to discussing some problems arising in meteorology
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and numerical weather prediction. Some ideas on how these methods may be adapted and
used for meteorological problems in the future have been briefly discussed, and work in -
this area is ongoing.
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