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1. INTRODUCTION

The current operational global model GM of the Deutscher Wettérdienst (DWD) has been derived from the
spectral model of the European Centre for Medium-Range Weather Forecasts (ECMWF) in 1989. Because
this model, called cycle 34 at ECMWF, has been coded for shared memory parallel vector processors (PVP)
and was not ported to other computer architectures, DWD decided in 1995 to design a new global model for
future high-performance computing platforms. This new model will replace GM and the current operational

regional model for central Europe EM, therefore, it has been named GME.

Although the spectral method of GM is highly accurate for planetary scale modelling, it suffers from some
intrinsic disadvantages which become more apparent as the horizontal resolution increases and the physical
parameterization packages gain in complexity.

e Due to the Gibbs phenomenon “spectral ringing” may occur which makes the method unsuitable for
positive-definite quantities like cloud liquid water or turbulent kinetic energy which are characterised by
steep local gradients. The same is true even for topography which shows unphysical hills and valleys
over the oceans after spectral transformation.

o The cost of the Legendre transform increases drastically at higher spectral resolutions, e.g. from about
7% at T, 319 to 20% of the total CP-requirement at T, 639 for the IFS/ARPEGE system jointly developed
by ECMWF and Météo France. | k

¢ The spectral transforms between Gaussian grid, Fourier space and spectral space require the global
communication of large data qhantities at each model time step. On modern distributed memory mas-
sively parallel computers (MPP systems) this huge global communication requirement is a potential
drawback and may inhibit efficient use of the resources available. |

e More philosophically, weather prediction can be viewed as the simulation of the local response to local

forcing. Thus global basis functions may not provide the best answer in the end.

Therefore, it was decided to base the design of GME on a gridpoint method. But on the other hand, the use
of regular latitude-longitude grids on the sphere is restricted with respect to accuracy and efficiency because
of the pole problem. The convergence of the meridians near the poles results in a clustering of gridpoints
which limits the stable time step for explicit or semi-implicit methods severely unless strong artificial

damping (Fourier filtering) of short waves is introduced. The use of semi-Lagrangian advection schemes
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(e.g. Staniforth and Coté, 1991) can overcome this limit as this method is stable even for large Courant num-
bers. But still the convergence of the meridians in uniform latitude-longitude grids may create a number of
problems; for a global model with a mesh size of abdut 60 km at the equator the mesh size is less than 1 km
close to the poles. This small grid distance may result in difficulties for hydrostatic models due to the ne-
glect of nonhydrostatic effects which sheuld be: mcluded at this horizontal resolution. Moreover, physical
parameterization schemes may be unable to handle the strong inhomogemty of the resolution in physical
space. Therefore, an alternative grid which has a rnore unlfqrrn resolution over the globe is being used in

GME.

The outline of the paper is as follows: Section 2 descrlbes the grld generanon 1n some detail. The finite-
difference operators needed to discrenze the atmosphenc equations are defined in section 3. The accuracy of
Randall (1995 b) The two- d1men510nal vers1on of GME is descnbed and some results for test cases 5 and 6
of the classxcal shallow water test suite (Wzllzamson et al., 1992) are presented in section 5. The three-
dimensional version of GME 1nclud1ng dynamics phy51cal parametenzations 1n1t1ahzat10n as well as some
computational aspects 1s described in section 6. Results of a deta1led evaluation based on’ the Held-Suarez-
Forcing (Held and Suarez 1994) of the dynamical core of the three dirnensmnal code are glven in section 7.

Finally, first results of the full model 1nclud1ng all physwal parametenzations are presented in section 8.

2. GENERATION OF THE MODEL GRID

The 1cosahedral-hexagonal gr1d f1rst 1ntroduced in meteorolovical modelhng by Sadourny et al. (1968) and
Williamson (1968) galned in populanty in recent years, e.g. Masuda and Ohnishi (1987) Heikes and Randall
(1995 a, b) Giraldo (1997) and Thuburn (1997) The approach described here closely follows the work of
Baumgardner (1983) who is usmg this grid for a three-dimensional fimte element model for mantle convec-

tion.

To generate the grid mesh, a regular .icosahedron (Fig. 1) is placed into the sphere. It touches the sphere at
the north and south poles as well as at ten additional points. Five of these points are situated at a longitudinal
distance of 72° (= 360°/5) at latitude .circle 26.565°N, the other five at 26.565'°S. These twelve special
points are connected by great vcircle arcs resulting in 20 major spherical triangles (Fig. 2, top left). Given a
grid of spherical triangles, a new finer grid of triangles is generated by connecting the midpoints of the ex-

isting spherical triangle edges by great circle arcs (Fig. 2, top right and bottom).
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Figure 1 Regular icosahedron which consists of 20 equilateral triangles.
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Figure 2 Grid generation by successively halving the triangle edges to form new triangles.
Parameter 7 is the number of intervals on a major triangle edge (length ~ 7054 km).
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The new vertiées form the additional gridpoints at this refinement step. This process may be repeated until
‘the desired resolution has been reached. The parameter #i, i.e. the number of intervals on a major triangle
edge (of aileyngth of about 7054 krh), is a rough measure of the resolution of the gnd Placing the model
variables at the triangle vertices the.;global gr1d consists of 2 + 10 ni® gridpoints (nodes) and 20 ni> elemen-

tary spherical tfiangles. Each gridpoint corresponds to a hexagon (Fig. 3) or pentagon at the twelve special

points.
301
*
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W 333
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dissaNet 25222
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Figure 3 ‘The gridpoints of GME represent nearly uniform hexagons (pentagons at the twelve

‘special points); in this figure, there are three pentagons visible.
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The icosahedral-hexagonal grid allows a nearly uniform coverage of the sphere even though the hexagonal
grid boxes vary somewhat in their exact shape and size (Tab. 1a), especially those close to the pentagons.
The pentagons, however, are perfectly regular, and there is a fivefold symmetry to any one of the 12 penta-
gons. The mesh size is defined as the distance between neighbouring grid points. To increase the available
choice of mesh sizes, an initial trisection of the main triangles edges followed by bisections may be per-

formed. The resulting grids are summarised in Tab. 1b.

S

Figure 4 Logical data layout of the icosahedral-hexagonal grid of GME consisting of ten
rhombi (diamonds), five containing the north pole and five the south pole.

By combining the (ni+1)* gridpoints of two adjacent major spherical triangles in a square matrix (Fig. 4), the
global grid can logically also be viewed as the composition of ten rhombi (diamonds). Five diamonds con-
tain the north pole and five the south pole. The data indexing (Fig. 5) is based on the convention that those
ni” gridpoints which are only in one diamond are numbered from / to i in the rows and columns of the data

matrix. The points on the diamonds edges, (0,1) to (0,ni+1) and (0,ni+1) to (nini+1), are shared between

176



MAJEWSKI, D.: THE NEW GLOBAL ICOSAHEDRAL-HEXAGONAL.....

several diamonds and have to be exchangéd each time stép. The polar pyc')ints (0,1) are even shared by five

diamonds, namely diamond 1 to 5 share the north pole, diamonds 6 to 10 share the south pole.

(i, ni+1)
(0, ni+1) T (0, ni+1)
Diamond j2 Diamond
1t05 ‘ Tl 6 to 10
(ni, 1)
(ni, ni+1) i1 (0,1)
SP

- Indexing the gridpoints within one diamond; on the left for diamonds 1 to 5 Wthh
originate at the north pole, on the nght for dlamonds 6 to 10 Wthh or1g1nate at the

“south pole.

Figure'5

From the computational point of view the icosahedral-hexagonal grid offers the additional advantage that no
indirect addressing is required but the six (five) surrounding gridpoints can be accessed directly via pre-
defined fixed stencils. Compared to unstructured grids a gain in the speed of computation by a factor of two

or more can be realized due to the regular data storage.

Some characteristic quantities of the icosahedral-hexagonal grid at different resolutions

Table 1
defined by i, the number of intervals on a major triangle edge.
Here, ngp = 10 ni® + 2 is the number of gridpoints, A, is the minimum area of the
hexagons, A,y is the maximum area of the hexagons; A,, is the average distance between
gridpoints (= vertices of the triangles); Ay, is the minimum distance between gridpoints;
Apmax 18 the maximum distance between gridpoints.
Table 1a Only bisections of major triangle edges, i.e. ni =2 % where k is a positive integer.
Ni ngp A () | A (km) | AGm) | A Gm) | A (km)
16 2562 154109 238061 477.6 440.5 526.0
32 10242 38515 59955 239.3 220.3 263.2
64 40962 9628 15017 119.8 110.1 131.6
128 163842 2407 3756 59.9 55.1 65.8
Table 1b Initial trisection, followed by bisections of major triangle edges,
ie.ni=3%2"% wherek is a positive integer.
Ni ngp A () | A (km) | A (km) wlkm) | A (km)
24 5762 68477 97683 319.0 293.7 346.9
48 23042 17117 24494 159.7 146.8 173.5
96 92162 4279 6128 79.9 73.4 86.8
192 368642 1070 1532 40.0 36.7 43.4
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3. DEFINITION OF THE FINITE-DIFFERENCE OPERATORS

The derivation of finite-difference operators is not based on Gauss” theorem like in e.g. Masuda and Ohnishi
(1987) but follows an approach which is closer to finite-element methods. A local spherical coordinate 55’5‘
tem is introduced by attaching a plane tangential to the sphere at each gridpoint (defined by the position
vector Xp). The local spherical system (1, %) is defined by two unit vectors ((ex)s, (€p)o), one aligned with the
global east, the other with the global north direction (Fig. 6). The advantages of this local coordinate system
‘are |

e within each cell the coordinate system is nearly Cartesian, i.e. there are no singularities,

e only two (tangential) velocity components are needed to describe the horizontal velocities. |

However, there is one disadvantage, namely transformations are required between the local coordinate sys-
tems of neighbouring gridpoihts.

The local spherical coordinates (1,,, X,,) where m = 1,..,6 at hexagons and m = 1,....5 at the twelve pentagons
are used to determine the positions of the 6 (5) surrounding gridpoints relative to the central node, where 1 = ‘
% = 0, uniquely. |

GME coordinate system

i '}/‘/;.z/}

L //
i
7 /; ///%,

7

— . global coordinate system
. local coordinate system at grid node

Figure 6 Global coordinate system (X, y, z) and local system (1), ) at a gridpoint.
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Because the meteorological equations are formulated and solved in the local spherical system (7, %), based

on the local Cartesian vectors X, (€1)o, (€4)o, the usual operators have to be derived for this systém;

The horizontal distances (dx, dy) on the earth of radius a are given by (3.1) .
dx=acosydn and dy=ady B - (31)

The én'alytical form of the operators follows from the usual form as giQen e.g. by Dutton (1976) taking into

account that ¥ = 0 at the central node, thus cos ¥ = 1 and sin y =0.

3.1 . Definition of the gradientvoperafor

The finite-difference form of the gradlent operator for a scalarfield win the local coordinate system is writ-
ten as a linear combination (Eqgs. 3.2 and 3.3) mvolvmg the 6 (5) surroundmg gridpoints and the central one.

The numbering of the gridpoints is counterclockwise as shown in Fig. 7.

a—‘”— ZG,,.",(WM — w0 (3.2)
p) 6(5) o | T T SRR
5‘l£/“ sz '"(W" - l//") 3.3
m=} ..
5
)

Figure 7 The central node (0) and the 6 surrounding neighbours (/ fo 6) of a hexagon used by
the elementary stencil of the icosahedral-hexagonal grid. '

The coefficients G, ,, Gy m (m = 1,...,6 (5)) are associated with the neighbouring nodes and depend only on
the relative positions of the nodes described by the local coordinates (1, )). ¥ is an arbitrary scalar function
of the local coordinates (1}, %). To calculate the coefficients G, m, Gy, » the function is represented locally

as a quadratic polynomial /' in the local coordinates (1), X).
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v LX) =W, tan+ o,y +osn’ oy +osy’ (349

For the case of six nearest neighbours at the hexagons, there are six constraints (m = 1,...,6) for the five coef-

ficients ¢, o, ..., &5, namely

W (s X ) = Wo + 0Tl + 0 X + 0T + Tl X + s K (3.5)

Eg. (3.5) may be interpreted-as a Taylor series of the form

Y y=w. +[2¥ W), Lo,
Wm(nm’Zm)_WO-*-(an]mnm+(aljmxm+2(an2‘mnm +

oy ) (ow 1( 0%y 2
VI = 3.6
(anjm(axlnmxm +2[azz K 69

A least squares procedure is used to solve for the five unknown coefficients

a»j=ﬂj.m('/'m ~¥,) 37
where j = 1,...,5, and the summation is over m = 1,...,6 (5).

Using Egs. (3.2) through (3.7) the coefficients G, », G, » are then given by

G, . =Pim and G,,= By (3.8)

n.m

where m = 1,...,6 (5).

Due to the intrinsic symmetry of the icosahedral-hexagonal grid the coefficients G, », G, » have to be com-
puted only for diamond 1.

The definition of the flux divergence is based on the same coefficients but care has to be taken to rotate the
wind components (u,, v,) of the surrounding six (five) nodes into the local spherical coordinate system of

the central node (0).

3.2  Definition of the Laplace operator

Similar to the approach for the gradient operator, the Laplace operator is expressed in terms of the six (five)

surrounding nodes.
52 6(5)
an‘;’ =Y Lu(ys ~ wo) (3.9)
m=1
aZ 6(5)
a;; =Y Lea(pe — vo) (3.10)
- om=]
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The coefficients Ly, w, Ly w (m = 1,...,6 (5)) are associated with the neighbouring nodes and depend only on
the relative positions of the nodes. The derivation of the coefficients L;, ,, L, » closely follows the genera-

tion of the gradient operator. Using Egs. (3.5), (3.6), (3.9) and (3.10) the coefficients Ly, , Ly, » are given by

Lr/.m +L;(.m = 2(163,11: +ﬁ5.m) ; ’ ’ ’ ‘ (311)

Again, the coefficients have to be computed for diamond 1 only.

33 Interpolation in the icosahedral-hexagonal grid

Semi-Lagrangian advection schemes require the interpolation of fields from the icosahedral-hexagonal grid
to the departure and midpoints of the parcel trajectory. Two types of interpolation schemes are considered
here, namely bilinear and biquadratic ones. Bilinear interpolation is used durrihg‘the calculation of the tra-
jectory to derive the wind corﬁponents (u, v) at the ﬁﬁdpoint of the trajectory‘. B}'quadfatic interpolation is

used to interpolate the prognostic fields to the departure point of the trajectory.

3.3.1 Bilinear interpolation
Bilinear interpolation of an arbitrary function y(7,%) uses the values (¥, ¥, W,-1) at the three surrounding

gridpoints (Fig. 8).

x b
Pﬂ'ﬂ'l('rl m+1r X m+1)
P(n,x)
P mXm)
P, 0,0) n
Figure 8 A triangle Py, P, Poy; in the local spherical (7, 1) coordinate system.

To derive the value w7, %) at point P(7],)) barycentric coordinates are introduced. Each point within the

triangle Py, Py, Pryy (With the position vectors po, Pm > Pme1) i uniquely defined by the vector p where

P=2oPo +721Pn T72Pmu where  },+3,+7,=1 (3.12)
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" (% ¥, ¥ are called the barycentric coordinates of the point P. To calculate these coordinates the following

linear system has to be solved (note that at the central node Py:p=x=0).
N=nTn+ 3l a0d ¥ =32, + 21X and Jo=1-}, -3, (3.13)

Thus the bilinear interpolation of yf7, ) within the triangle Py, Py, Py is given by

W, x)=100 0o 20 )+ 10 T 20 )¥ 3 2% Wt s Zon ) - (3.14)

332 Biquadratic interpolation ,
The formula for the biquadratic interpolation is based on an Hermitian approach where the gradients of the

function Y12 at the vertices are used to define values of y at the midpoints of the triangle edges (Fig. 9);

X
¥ m+1
V5
Ve >
L
V4
Wy | T
Figure 9 The six values used for the biquadratic interpolation of a function y(7,%)in a triangle.

The standard biquadratic interpolation formula for a triangle in terms of values at the triangle vertices and

midpoints of the edges is applied to obtain the value of y at an arbitrary point P(7, ) in the triangle.

WGon2012)=20@00 Dy + 7,22, =Dy, +1, (2}2 1)wn,+l
+ 4(%%%+%n%+%nm) (3.15)

where (¥, ¥, 7)) are the barycentric coordinates of the point P. The values of the function i at the midpoints
of the triangle edges, i.e. ¥, ¥, W, are derived from the gradients at the given points Py, Py, Pryyy. Thus

the biquadratic interpolation is based on a stencil which includes twelve gridpoints (Fig. 10).
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Figure 10 The twelve gridpoints involved in the biquadratic interpolation in the triangle P, P, P_,.

Monotonicity may be énforced by simply demanding that the interpolated value is not higher or lower than
the values at the three corner points Py, Py, Pryy. In the same way, positive deﬁnitehess may be enforced by
the condition that the interpolated value is greater than or equal‘to 0. If the Courant numbers are restricted to
values less than 1 it is fairly easy to determine which of the 6 (5) surrounding triangles contain the departure
or midpoint of the trajectory. Without this restriction the search algorithm is more complicated and uses a

binary search method to speed up convergence.

4. ACCURACY OF THE GRADIENT AND LAPLACE OPERATORS

Heikes and Randall (1995b) introduced the following function to test the accuracy of their finite-difference
operators on the icosahedral-hexagonal grid

B, (A,e)=a’ cos(mA) cos* (ng) 4.1

where A is the longitude, @ is the latitude, a is the radius of the earth, and m, n are integers set to 1 or 3. For
different resolutions ni of the grid mesh the analytical solution x™ is compared to the finite-difference one

il . "
¥ and some error norms are evaluated. The one-norm is defined by

i : 1 & ¢ rie
“xjd — i =—2Ai|x,z"' _x; ¢ 4.2)
! A i=1
where the summation is over all N gridpoints of the icosahedral-hexagonal grid, and
N
A=Y 4, (4.3)
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is the area of the globe, 4; is the area of a particular hexagon (pentagon).

The two-norm is defined by

" X [ _ n'ue

and the infinity norm is defined by

"xfd _ xlruc

= max(lx.fd —-x"|i= l,N)

oo

(4.4)

4.5)

A finite-difference operator will not be consistent if the infinity norm does not converge to 0 for decreasing

mesh sizes. Figs. 11 to 13 summarize the results for the gradient and Laplace operators of GME defined in

section 3. Both operators fulfil the consistency requirement, and their general accuracy is second order be-

cause the error norms drop roughly by a factor of 4 if the resolution ni is doubled. Thus the operators used in

GME on the simple icosahedral—hexagonal grid show an accuracy which is similar to the one of the operators

derived by Heikes and Rana’all (1995 b, see Fig. 4 there) on the improved twisted 1cosahedral—hexagonal gnd

where some optimization of the grldpomt distribution has been performed addltlonally

:Gradient (eta); m=1, n=1 Gradient (eta); m=3, n=1
- 5 1 7
5 infinity-porm
‘O'J’ 0.1 B3 fsnorm ===
3 RN 2-ROrM--&
©0.01 =B :
hrth
0.001 B
oy
0.0001 R
: . <]
1e-05 : 1e-05
0 40 80 120 0 40 80 120
ni ni
Gradient (eta); m=1, n=3 : Gradient (eta); m=3, n=3
) EEEE BES = 10
S o P
L = “infinity porm-—&
\CD/ 0.1 9’ 1 Elh\ ?— YOIy =45
B B L 2RO -~
oo Z2~-ROM
© © 0.1 B
0.01 RN Y
0.01 HebeFainee o
: i S e
0.001 0.001 Bt bannnn il
0.0001 0.0001 L

Figure 11

ni ni

Error in the finite-difference gradient operator (zonal direction) for the test function
proposed byHeikes and Randall (1995 b) for different values of m and n.
Parameter »ni describes the resolution.
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Gradient (chi); m=1, n=1

B 3 5
S 0.1 8 0.1
2 8
®0.01 © 0.01
0.001 0.001
0.0001 0.0001
1e-05 1e-05
ni
Gradient (chi); m=1, n=3
5 R T s 5
5 infinity norm o 5
P CAEpormylE = o1
i ®
0.1
0.001 ; 0.01
0.0001 LI - 0.001
0: 40 80 <--120 , - :0 40.. . 80 120
ni oo ’ .oni
Figure 12 Same as Figure 11 but meridional direction of gradient operator.

Laplace; m=1, n=1

= 1 =
S S
2 o4 o
0 0.
0 e}
«© ]
0.01
0.001 0.001 [
0.0001 i i 0.0001 '
0 40 80 120 0 40 80 120
ni ni
Laplace; - m=3, n=3
= 100 ~ 100 :
S S
8 10 8 10
192} [72]
| ® 1
0;1 0'1
0.01 0.01
0.001 L 0.001 L
0
ni ) ) ni
Figure 13 Error in the finite-difference Laplace operator for the test function proposed

by Heikes and Randall (1995 b) for different values of m and n.

Parameier ni describes the resolution.
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5. SHALLOW WATER VERSION OF GME AND RESULTS OF TEST CASES

A well-established test bed for new discretization schemes is the shallow water test suite proposed by Wil-
liamson et al. (1992). For the local spherical coordinate system (7, %) outlined in section 3 the shallow water

equations take the following form

du g oh

& 2L A-KV'uU=R 5.1
dt aodn PRV u=k, G-D
dv g oh 4

& e 4 K V'v=R 5.2
dt aody Ju=KVy ! G2
dh __h (ou Ov _K,V'n' =R, | (5.3)
dt a\dn Oy 4

where

u,v are zonal (meridional) wind components; ¢ is time; k" is the fluid depth; & = h" + h is the fluid height and
h is the surface topography; K is the coefficient of linear fourth 6rder diffusion; fis the Coriolis parameter;
a is the radius of the earth; g is the constant of gravity; R, R, Rj are the right-hand sides of the prognostic

equations.

5.1 Semi-Lagrangian scheme

The explicit semi—Lagrangian solution of (5.1), (5.2) and (5.3) for a three-time-level scheme where n-1, n,

n+1 are defining the time levels for -4, #, 1+ At can be formally written as’

w =1, {u 28 L {RY | (5.4)

=1, {v‘"'l b+2Ar1, {R,} | - | (5.5)

)" =1, ) } +2A1,{R,} | , ; (5.6)
where

I, denotes the horizontal interpolation of the prognostic variables at the previous time level (t-Af) to the de-
parture point of the trajectory, and

I, denotes the horizontal interpolation of the right-hand sides to the midpoint of the trajectory.

Departure and midpoints are found by the usual iterative two-step procedure.
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52 Explicit Eulerian scheme

The explicit Eulerian solution of (5.1), (5.2) and (5.3) takes the following form

un-i-l :’un—l +2AL (gn +f)V" —%%(ghn +K" )'—K4V4Zln_1:| N . ” - | (57)

e R T At A B

e af AT Y BT o0\ ]

a dJn a oy a | dn Jdy
where
Lo —a—u—] is the vorticity and K = 1 (u® +v?) is the specific kinetic energy.
a{dn dx 2 , :
53 Semi-implicit scheme

Because explicit schemes are not very efficient due to the short time steps required to fulfil the CFL crite-
rion, a semi-implicit treatment of the gravity wave terms is derived following Robert (1981). A slight off-

centering is necessary to stabilize the semi-implicit solution, i.e. the temporal average of a variable y (where

w=u,v, h")is written as -

v=ay™ +(-a)y™ B (5.10)

Setting the weight & of the new time level to a value greater than 0.5 results in a damping of the gravity
waves; « is set to 0.7. The usual two-dimensional Helmholtz equation (modified by ¢ ) for the second tem-
poral derivative of the deviation of the height field from the mean state is solved by a simple successive
overrelaxtion method (SOR), a faster multi-grid method based on Baumgardner and Frederiksen (1985) can
be used, too.

The semi-implicit time step is about a factor of 5 to 6 larger than the explicit one and allows an efficient so-
lution of the shallow water equétions. But the current semi-implicit, semi-Lagrangian version of the program

is restricted to Courant numbers less than 1 because search algorithm and communication pattern in the ico-
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sahedral-hexagonal grid become very complex if the parcel trajectory departs outside the six (five) sur-

rounding triangles.

5.4 Results for test cases 5 and 6 of the Williamson et al. (1992) test suite

Test case 5 consists of a zonal flow impinging on a mountain of a maximum height of 2000 m. No analytical
solution exists but a spectral T106 simulation is taken as reference. To ease the comparison between GME
and the spectral reference, the spectrally fitted mountain (including the spectral ringing) is interpolated to the
icosahedral-hexagonal grid. For GME, the semi-implicit, semi-Lagrangian version at a resolution ni = 64
(mesh size ~ 120 km) has been taken. The solutions of both models at day 10 (Fig. 14) and day 20 (not

shown) agree very well.

“Contour values (m) :

2-4200
4- 4640
6-5080
8- 5520

Max. velocity: 42 m/s

- - R ad - ] - - - N
- - -~ - = TN -~ o~ — . = = - g

[ — ] .~ -

|
[{o}
(=]
[}
w
o

Figure 14 Results of test case 5 at day 10.
Top: Spectral reference model at T106,
bottom: Semi-implicit, semi-Lagrangian version of GME at resolutlon ni =64 (A ~ 120 km).
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The initial condition for test case 6 is a wavenumbér 4 Rossby-Haurwitz wave which is not an analytical
solution for the shallow water model. Here again, the spectral T106 model serves as the reference. Fig. 15
compares three versions of the icosahedral-hexagonal gridpoint model to the spectral reference (Fig. 15a).at
day 10, the semi-implicit, semi-Lagrangian version at resolution ni = 64 (Fig. 15b), the semi-implicit Eule-
rian version at the same resolution (Fig. 15¢), and the same model version at resolution ni = 128 (Fig. 15d).
Again, the GME matches the spectral reference very well. But a slight tendency to develop asymmetries
between the hemispheres in spite of the symmetric initial condition is visible at resolution ni = 64. On the
other hand, no wavenumber-five problem can be detected. This problem was common in the first icosahe-
dral-hexagonal models, and was caused by an interaction of the flow with the grid due to the distortion of the

grid boxes close to the twelve special points.

- .M.
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)
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a)Contour values (m) :
2 - 8650 4- 9120
6—-9590 8- 10060

Max. velocity: 97 m/s

b)Contour values (m) :
2- 8650 4~ 9140
6 - 9600 8- 10060

Max. velocity: 97‘m/s

c)Contour values (m) :
2 - 8680 4- 9140
6 - 9600 8- 10060

Max. velocity: 97 m/s

d)Contour values (m) :
2-8670 4- 9140
6-9610 8- 10080

Max. velocity: 97 m/s

Figure 15

Results of test case 6 at day 10.

a) Spectral reference model at T106, :

b) Semi-impliéit, semi-Lagrangian version of GME at resolution ni = 64 (A ~ 120 km),
¢) Semi-implicit, Eulerian version of GME at resolution ni = 64 (A ~ 120 km),

d) .Semi-implicit, Eulerian version of GME at resolution ni = 128 (A ~ 60 km).
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6. THREE-DIMENSIONAL VERSION OF GME
6.1 Differential form of model equations

The encouraging results obtained by the shallow water version of GME prompted the development of the
three-dimensional version of the model. The prognostic equations are written in differential form for local

spherical coordinates (7, %) and a hybrid vertical coordinate £.

LA W LA a K, a (1 p)+ -K,V'u (6.1)
f at )sub
—+(+/)u +6 L9 @+ np)+ - K,V (6.2)
f aoy at L '
oT udl v BT .07 aw L, oT
= —+2C,+|— | -KV'T-T, 6.3
o “aon aoz "ok ¢, o, vf*[atlu,, r-7.,) ©3)
op 1¢fa( ap) 2 (op
S=T =157 |9 6.4
ot a;[{ ( o0& J+ az(ag ¢ | (6.4)
dq, udg LY dg dq dg . |
v el v v v —_C v -K \V = 6.5
T 877 a oy + o& Ul v L 7v (6.5)
a% uodg, v aQI ; aq, 9q,
P - = Cut|— 6.6
Bt+a8n+aax+fa§ S " (6.6)

where

u,v are the zonal (meridional) wind components; T is the temperature; p; is the surface pressure; g, is the
specific water vapour content, g; is the specific cloud liquid water content; ¢ is the vorticity and K the spe-
cific kinetic energy; p is the pressure, 7T, is the virtual temperature; Ty is a reference temperature depénding
only on height; C,; is the condensation rate; (..)s» is the sub-grid scale tendency due to parameterized proc-

esses like radiation, convection or turbulence.

6.2 Numerical solution of the three-dimensional equation set

The semi-Lagrangian and the Eulerian versions of the shallow water model of GME produce very similar
results but the Eulerian code is about 20% faster. Therefore, the dry part of the three-dimensional version of
GME, i.e. the prognostic equations for u, v, T, p,, is solved by the semi-implicit Eulerian method, and only

the two prognostic moisture equations (g, g;) use semi-Lagrangian advection in the horizontal direction to
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allow for monotonicity and positive definiteness. In the vertical, the energy zind angular momentum con-
serving finite-difference scheme of Simmons and Burridge (1981) is applied to all prognostic equations.

The semi-implicit treatment of gravity waves leads to a three-dimensional Helmholtz equation for the sec-
ond temporal derivative of the divergence of the horizontal wind field. The eigenvectors of the vertical
structure matrix are used to diagonalize this 3—d equation into i3e 2-d Helmholtz equations where i3e is the
number of layers in the model. Currently, these 2-d equations are solved by successive overrelaxation.
Again, slight off-centering of the implicit terms is necessary to damp the gravity waves and to stabilize the

solution. Part of the sub-grid scale tendencies are treated implicitly for stability reasons, too.

63 Physiéal parameterizations

Since GME will replace GM and EM most physical parameterizations have been taken from the regional

model EM. Thus the current physical package of GME consists of

e radiation scheme (Ritter and Geleyn, 1992); a full radiation step is performed every two hours,

e grid-scale precipitation scheme including parameterized cloud microphysics,

e moist convection (Tiedtke, 1989),

.o vertical turbulent fluxes; in the Prandtl-layer based on Louis (1979), for the boundary layer and the free
atmosphere a level-two scheme according to Mellor and Yamada (1974),

e sub-grid scale orographic effects (Lott and Miller, 1997),

e soil model (Jacobsen and Heise, 1982),

e cloudiness derived from specific cloud liquid water content, relative humidity, convective activity and
stability. .

To save computing time, part of the parémeterization schemes (convection, turbulent fluxes, sub-grid scale

orographic effects) are called only every fifth time step of the model.

Some of these schemes have been used operationally only in the European domain of EM; a fine-tuning for

global use will be necessary but has not been performed so far. In spite of this, first results of integrations of

the full model over a whole month (see section 8) have been encouraging.

6.4 Digital filtering initialization

Initialization schemes have to remove noise from the forecast while causing acceptable small changes to the
analysis and forecasts. In addition, it is an advantage if the initial spin-up of the model is reduced because a
balance between humidity and dynamic fields has been achieved during initialization. For GME, the digital
filtering initialization of Lynch (1997), involving a 3-h adiabatic backward integration and a 3-h diabatic

forward one centered around the initial time, has been implemented.
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7. TEST OF THE DYNAMICAL CORE OF GME

The dynamical core of GME has been inveétigated using a proposal of Held and Suarez (1994). The idea
behind this test is to substitute the physics package with simplified physics. The forcing consists of a tem-
perature relaxation and Rayleigh friction for the wind in lower layers. The analysis of the dynamical core of
GME is concentrated on an inspection of convergence with resolution, of symmetry aspects, and on a com-
parison to the spectral model GM. All GM and GME experiments — using a vertical resolution of 19 une-
qually spaced hybrid layers — are started from a dry isothermal state at rest without topography. The experi-
ments cover a period of 1200 days. The first 200 days are omitted in the computation of the model climate.
Fig. 16 taken from Jablonowski (1998) presents the time-mean (day 200 to 1200) zonal mean of the zonal
wind for different resolutions of GME. The patterns look similar concerning the overall structures and
strength of the jet streams. Some differences occur in the wind fields in upper levels and in the position of

the jets. The symmetry of the pattern with respect to the equator improves with finer resolution.

(a) GME (ni =24) (c) GME (ni =48)

latitude

(b) GME (ni = 32) (d) GME (ni = 64)

Eta

latitude latitude

Figure 16 Zonal mean, time-mean (day 200 to 1200) of zonal wind u (m/s)
for different resolutions ni of GME.
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Comparing the spectral GM at resolution T106 and GME at ni = 64 indicates good correspondence even for

derived quantities like the vertical eddy temperature transport (Fig. 17 a ) or the meridional eddy temperature

transport (Fig. 17 b).

g

Zonal mean, time-mean (day 200 to 1200) of the vertical eddy temperature

transport (K Pa/s). ‘
Left: GM (resolution T106), right: GME (resolution ni = 64)

Figure 17 a)

Zonal mean, time-mean (day 200 to 1200) of the meridional eddy temperature

transport (K m/s).

Figure 17 b)

= 64)

Left: GM (resolution T106), right: GME (resolution ni

193



MAJEWSKI, D.: THE NEW GLOBAL ICOSAHEDRAL-HEXAGONAL....

8. FIRST RESULTS OF THE FULL THREE-DIMENSIONAL VERSION OF GME

8.1 Some computational aspects of GME

Since the design of GME included a domain decomposition from the beginning, it took only threé ‘months to
parallelize the program using MPI (Message Passing Interface) for message passing. The code is written in
standard FORTRAN 90 and fully portable. For the two-dimensional domain decomposition the (ni+1)* grid-
points of each diamond are divided among n!/ x n2 processing elements (PEs). Thus each PE computes the
forecast in a subdomain of all ten diamonds. Because of this there is a better chance to achieve some load
balancing for the physical parameterizations, e.g. between day/night, land/sea or rain/no rain. For example,
on 13 x 13 PEs of a Cray T3E1200 the physical parameterizations for a 24-h real data forecast consume be-
tween 231s and 288s of wallclock time; the average time is 259s. In the current veysion of GME, each com-
putational subdomain has a kalo of just two rows and columns of gridpoints around which have to be ex-
changed via MPI with those PEs which compute the forecast in the neighbouring subdomains. There are
only seven synchronization points during one complete forecast step.

Fig. 18 shows the speed-up of GME (ni = 128, 31 layers) on a Cray T3E1200 for a 24-h real data forecast
without writing GRIB files. Between 5 x 5 and 13 x 13 PEs an almost linear speed-up can be realised.
About 9 x 9 PEs are necessary. to perform a 24-h forecast in less than 24 minutes at a sustained speed of

about 69 MFlops/PE, roughly 5.5 GFlops for the whole model.

4500 T T T I

1010 e s ideal-speed-up -~~~
2700 ; : : :

2100

1500

900

time (s)

20 100 180 260 340

#PE
Figure 18 Speed-up of GME (ni = 128, 31 layers) on a Cray T3E1200 for a 24-h real data forecast

without writing GRIB files.
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The distribution of the cost of the different parts of GME expressed as percentage of the total floating point
operations (Flop, left) and as percentage of the total wallclock time (right) is highlighted in Fig. 19. The
solution of the Helmholtz equations by the relatively slow SOR method takes only 2% of the total number of
Flop but about 17% of the time. Clearly, some optimization of the code is possible and will take place in the

near future.

7%

2%
5% 4%

44% 4% &

17%
' [1)
4% 25%
Physics B Explicit Dynamics
SI eomputation of rhs SI solve (SOR)
B SI add corrections O Geopotential/condensation
Communication B Barrier waiting

Figure 19 Cost of the different parts of GME (ni = 128, 31 layers) on a Cray T3E1200 for a 24-h real
data forecast without writing GRIB files. 13 x 13 PEs have been used.
Left: Cost expressed as percentage of the total floating point operations (Flop).
Right: Cost expressed as percentage of the total wallclock time.

Table 2 Comparison of some characteristic numbers of three global models in Europe.
Model Number of points/ Number of Average mesh Cost of 24-h fore-
layer Layers size (km) cast (no output)
GME (DWD) 163842 : 31 59.9 7.2 TFlop
IFS (ECMWF) 138346 31 62.5 4.9 TFlop
UM (UKMO) 140400 30 61.5 4.8 TFlop

Tab. 2 compares GME with the IFS (ECMWF) and UM (UK Met. Office) from the computational point of

view. The cost of the models are expressed in number of floating point operations for a 24-h forecast with-
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out GRIB output (for UM including I/O). Compared to IFS and UM the cost of GME seems to be much
higher, but after adjusting for the larger number of gridpoints and the smaller mesh size GME is only about
18% more expensive. At higher resolutions, e.g. for GME with ni = 256 (A ~ 30 km) and IFS with T, 639,
the cost of a 24-h forecast is about the same for both models, namely 44 TFlop. Beyond this resolution,
GME will be less expensive because the cost of the Legendre transform will dominate IFS. On the other
hand, efficiency cannot be measured by these simple numbers but require detailed evaluation of issues like
single-node performance on vector or RISC architectures, possible speed-up on MPP systems, and the mul-
titasking overhead. Finally, forecast quality is probably the most important Criterion-which requires a steady

improvement of data assimilation, modelling, and postprocessing.

8.2 30-day experiments _ , ‘

A first test of GME consisted of 30-day runs initialized by interpolated GM ahalysis.h A resolution of ni =
128 and 31 layers have been used. Tab. 3 summarizes the results for December 1992.- Despite the lack of
tuning of the physical parameterization schemes the simulated globally averaged variables are mostly in
good agreement with available climatological values. The hydrological baléncé is maintained rather well

with a 30-day average precipitation rate of 2.94 mm/d and a corresponding evaporation of 2.85 mm/d.

Table 3 Global mean values of selected parameters of a 30-d forecast of GME (ni = 128, 31 layers)
for December 1992. Fluxes are 10-d averages, all other values are instantaneous values.

Parameter Day 10/ day 20/ day 30/
day 0 to day 10 day 10 to day 20 | day 20 to day 30

Surface pressure (hPa) 984.66 984.55 984 .44 -
Temperature at 2m O 11.84 k 11.60 11.70
Wind speed at 10 m (m/s) 5.61 5.68 5.74
Total cloud cover (%) 68.49 69.11 66.55
Solar radiation balance, top (W/m?) 213.00 212.81 213.08
Thermal radiation balance, top (W/m?) -233.64 -233.34 -233.32
Solar radiation balance, bottom ~ (W/m") 135.57 135.37 135.63
Thermal radiétion balance, bottom (W/m") —49 .05 -49 .64 -49.99
Sensible heat flux, surface (W/m®) -15.37 -15.80 -16.37
Latent heat flux, surface (W/im®) -82.58 -82.33 -82.98
Precipitation (mmnv/d) 2.94 2.93 2.95
Evapotranspiration (mm/d) 2.85 ’ 2.84 2.87
Precipitation — Evapotranspiration (mm/d) 0.09 0.09 0.08
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8.3 Precipitation forecast for Oder flood

The flooding at the river Oder and its tributaries caused by a stationary deep low was the most
devastating meteorological event in Central Europe in July 1997. During a first period between July 4
to 7 more than 100 mm of precipitation were measured in the area 14 to 20°E, 49 to 52°N (Fig. 20).
GME forecasts at two resolutions, namely ni = 96 (A ~ 80 km) aﬁd ni =128 (A ~ 60 km), and two
forecast ranges (left' +06 to 30h, right: +30 to +54h), both with 31 layers are Vcdm'pvaredv tb observatiohs
Except for the underestnnatlon on the first day (July 4), the amount of plempltatlon has been properly

simulated by GME, espemally at the hxgher resolution ni = 128.

+06 to + 30h L  4+30te5dh

40 - Legends -~ - s

oBs
B OME,nl= 36 30

B GMEni=128 GME, ni= 128

25

20

15

F igure 20 Area mean of total precipitation, July 4 to 7, 1997. Area 14 to 20°E, 49 to 52°N.
- Observed (Obs) and forcasted by GME (80 and 60 km mesh size, 31 layers).
Left: Forecast range +06 to +30h; right: +30 to +54h.

8.4 Pre-operational trial of GME

Since 1% of July 1998 GME (i = 128, 31 layers) is performing 174-h forecasts twice a day based on 00
and 12 UTC analyses. As an example, Fig. 21 shows 132-h forecasts of the mean sea level pressure for
the North Atlantic and Western Europe, initialized at 12 UTC on 25 August 1998, for GM (T106), GME
and IFS (T, 319, ECMWF) and the verifying analysis. GME has been initialized by an interpolated GM
analysis because the full data assimilation scheme of GME will be available by September 1998, only.
Even though GME and GM differ completely in numerics and in most physical parameterization
schemes their forecasts differ much less from each other than from the IFS forecast. This, once again,

indicates the importance of the initial state for the evolution of the forecast in many cases.
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NAncxlysls, ps msl (hPu) 31 Aug 1998 00 UTC GME ps msl (hPc) 25 Aug 98 12 utc + 132h
™ —Zm g T 3 = —

rrs.

ECMWF _ps_msl (hF’o) 25 Auq 98 12 UTC + 132t GM ps_ msl (hPo) 25 Aug 98 12 UTC + 132

Fig. 21 132-h forecast of pressure at msl (unit: hPa), started at 12 UTC on 25 Aug. 1998.
Top left: Verifying analysis; top right: GME (ni = 128, 31 layers);
Bottom left:  IFS (T 319, 31 layers); bottom right: GM (T106, 19 layers).
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9. OUTLOOK

GME is the global part of the new numerical weather prediction (NWP) system of DWD (see Tab. 4) which
also features the nonhydrostatic regional Lokal-Modell LM for Central E.urope.l Moreover, a felocatable
version of LM can be placed anywhere on the globe to serve the needs of the armed forces of Germany. Ini-
tially, LM will use a 7-km mesh and 35 layers. By the year 2002 a 2.5-km version with 45 to 50 layers will
allow the explicit prediction of deep convection and mark the next quantum leap in weather forecasting. By
that time, GME with a 30-km mesh and about 35 to 40 layers will use only 10% of the computer resources
needed by LM. Thus running a global mddel which provides the best lateral boundary conditions for the

regional model(s) adds almost negligible cost to the overall computational requirements of the NWP system.

Table 4 Fourth NWP system of the Deutscher Wetterdienst

Model f Numeries = - Mesh size #of | #of .Domain Lateral
(km) gridpoints | layers ; boundary

GME. |hydrostatic, icosahedral-

‘| hexagonal grid, Arakawa-A, - 60 163842 | . 31 global -
Eulerian/semi-Lagrangian, - o o ‘
semi-implicit

LM |nonhydrostatic, rotated latitude- ‘ ‘ ‘
longitude grid, Arakawa-C, 7 325 x 325 35 Germany/ GME
split-explicit (horizontal), surrounding | At;jg=1h
implicit (vertical) ‘

Model Data assimilation Initialization Range
GME | Intermittent 4-dimensional data Incremental digital filtering initialization, | 174 h for
assimilation based on optimum 3-h adiabatic backward integration, 00, 12
interpolation (OI), 6-h cycle, 3-h diabatic forward integration,
3-h observation window; sea surface | centered at analysis time. 48 h for
temperature analysed at 00 UTC. 06, 18

LM |Continuous data assimilation based Digital filtering initialization, 48 h for
on the nudging method; sea surface 1-h adiabatic backward integration, 00, 06,
temperature analysed at 00 UTC. 1-h diabatic forward integration, 12,18

centered at analysis time.
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