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1. INTRODUCTION

From the start of numerical weather prediction in the fifties, there has been a steady increase in the

sophistication of mathematical models of the behaviour of the atmosphere, with both a progressive
reduction of the approximations used in the equations and a progressive refinement of the resolution
of the models. These developments have been closely linked with increases in computing power. In
parallel there has also been a steady increase in sophistication and accuracy due to improvement of
the numerical techniques used to discretize the continuous equations of the mathematical models. This
has been the result of a major research effort carried out in many countries. The weight of these
efforts bore on both spatial and temporal discretisation techniques. We shall here concentrate on the
former. Until 1972 almost all numerical models were based on finite-difference (grid-point)
techniques and much of the effort was spent on them. Other techniques were regarded more as
mathematical recreation than as realistic potential alternatives for operational forecast or general
circulation models. However, in the following years there were a renewed interest of other
techniques and a rapid development took place. In particular of two of them, namely finite-element
methods (which have been widely used in many other sectors of fluid dynamics) and spectral methods
(which also have been used in several fields of theoretical and applied physics). We shall be
concerned with the spectral method which are now the most widely used spatial discretisation method

in global meteorological models.

We shall postpone a description of the historical events that lead to this stage and just mention here
that a breakthrough was the adaption of transform methods to numerical spectral models worked out
independently by Eliassen et al. (1970) and Orszag (1970): the idea is to evaluate all main quantities
at the nodes of an associated grid where all non linear terms can then be computed as in a classical
grid point model, thereby making possible the inclusion of physical processes in a straightforward
way. The method also considerably reduced the requirements for storage and computations, and it
then became possible to envisage spectral models with higher resolutions and an efficiency at least
comparable with that of the most efficient grid point models of equivalent accuracy, that were used
operationally. The first countries that implemented spectral models for routine forecasts were
Australia and Canada in 1976, USA (NMC) in 1980, France in 1982 and Japan and ECMWF in

1983. In each case the grid point model used previously and the spectral model that replaced it were
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compared with respect to performance and efficiency. The most extensive and clean comparison
performed were that carried out at ECMWF by Girard and Jarraud (1982) and Jarraud and Girard
(1984) which showed clearly that on the average increased performance were obtained with the
spectral model, when compaired with the grid point model using the same computing time and a
larger core storridge. At present also most research groups involved in general circulation studies
and climate simulations use spectral models since this technique has proved most efficient and easy

to implement for long global integrations.

So less than twenty years after the introduction of the first primitive equation multi-level spectral
model (Bourke, 1974) this technique has become the most widely used numerical tool for treating
the horizontal part of the equations in hemispheric or global problems. However, this does not mean
that they represent the ultimate step in numerical techniques for weather prediction: other techniques
are being developed, or may be developed in the future, which could turn out to more more efficient

methods for a comparable accuracy.

As the primally goal of the ECMWEF Seminars is the education of member state meteorologists I
found it natural to base the present paper on the chapter that I wrote on "The Spectral Method" in
the WMO text book on "Numerical Methods used in Atmospheric Models" (Machenhauer, 1979).
To some extend the present paper is a shortened version of the text book chapter (which may be
seen from some missing equation numbers as I have kept the same numbering of th¢ équations in
both papers). Rather than trying to make a complete review the emphasis is placed on basic
principles and properties of spectral methods and on a description of alternative computational
techniques that have been and are beeing used in global models. For more extensive reviews the
reader is referred to those of Bourke et al. (1977), Orszag (1979) and Jarraud and Simmons (1984)
and concerning the formulation and performance of the ECMWF model to the contributions by H.

Hortal and A. Simmons to these proceedings.

The present paper is organised as follows. In Section 2 the basic principles upbn which spectral
methods are based are presented, and in Section 3 the basic properties of the methods are illustrted
by application to the one-dimensional advection equation. The spectral techniques applied to models

in spherical geometry are finally treated in Section 4.
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2. BASIC PRINCIPLES
The complete set of equations used in any atmospheric model may quite generally be written in the
form

2Ll = F e, Ll why 5oi=1,2, L0010 (2.1)

where the prognostic variables o' = «'(T ,t), i=1,2,...,1, are scalar functions of the space coordina-
tes, given by T, and the time t. F; a function of the prognostic variables generally including linear
as well as nonlinear terms which involves space derivatives and in some models even space integrals.
In F; the diagnostic variables are supposed to be eliminated by means of the diagnostic equations of
the model. &, is a space differential operator which in most cases becomes the identity operator, i.e.
Z.(vw) = w,. In models in which the vorticity in the divergence equation is used the stream function
and the velocity potential may be used as prognostic variables in which case Z(w) = V*(w,) for
these equations. Here V? is the horizontal Laplacian operator. We shall refer to the system of equa-

tions (2.1) as the partial differential model equations.

In the numerical solution of the partial differential model equations different numerical methods may
be used. In the grid point method, the spatial dependence of the variables is represented by values
at discrete points in physical space and derivatives and integrals are approximated by finite difference

and quadrature formulae.

An alternative approach is to approximate the field of any dependent variable at a certain time by
a finite series expansion in terms of linearly independent analytical functions, ¥ (r), which are
defined over the whole continuous integration region S. Thus any of the variables «' is approximated

by a series of the form

=

ol (D (), (2.2)

~i
w (r)t) - n

)

n=1
where N is a constant positive integer. Using such a representation space derivatives and integrals
can be evaluated analytically so that no finite space difference approximations or quadrature formulae
are explicitly needed. The representation (2.2) is, however, equivalent to a representation in terms
of the values of w' in N grid points distributed over the region and the use of (2.2) as an interpolating

function fitting exactly in all N grid points. Evaluation of space derivatives and integrals using (2.2)
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may therefore be considered as equivalent to the use of certain finite differences and quadratures on
this grid. With the expansion functions used in practice these finite differences and quadratures are

generally of a higher degree of accuracy than those usually used in the grid point method.

We shall call a method built upon a representation of the form (2.2) a series expansion method. The
spectral method and the pseudo-spectral method, to be considered in this chapter, as well as the finite
element method considered in a following chapter are all series expansion methods. In such methods
the time dependence of the prognostic variables is determined by the expansion coefficients, that is
by the values of wi(t), and consequently the methods involve the transformation of the partial dif-
ferential model equations into a system of ordinary differential equations which determine the time .
derivatives of the expansion coefficients in the finite series. This transformation is analogous to the
transformation carried out in the grid point method when the system of equations determining the
time derivatives of the grid point values is constructed. Thus, when a series expansion method is
used as well as when a grid point method is used a finite set of ordinary differential equations is
obtained. We shall call these equations the space truncated model equations. In numerical models

utilizing a series expansion method a discrete representation in time is used as in grid point models.

A finite series representation of the form (2.2) can only be an exact solution to the partial differential
model equations in very special cases (e.g. when F, is linear in the variables «'), therefore the trans-
formation of the partial differential model equations to the space truncated equations must in general
involve some approximations. These approximations are minimized by determining the transformed
system of equations subject to some "best fit" criterion. It is in the choice of "best fit" that the
spectral method and the pseudo-spectral method differ. The spectral method is based on a least square
approximation, which as we shall see is equivalent to a so-called Galerkin approximation, whereas
the pseudo-spectral method forces the mathematical equations to be exactly satisfied in a number of
grid points equal to the number of expansion coefficients (the collocation method). In the finite
element method either of the approximations may be used, but quite different expansion functions
are used. Here we shall consider only the transformation procedure when based on a least square

criterion.

In order to simplify the presentation let us consider a model with only one variable, . (The follo-
wing presentation may easily be extended to the case with more prognostic variables). Equations
(2.1) are then reduced to



MACHENHAUER, B. SPECTRAL METHODS

g_tO[(“’) = F(w) (2.3)
and the initial conditions become

w(T,0) = £(T), (2.4)

In order to avoid problems connected with complicated boundary conditions we shall furthermore
assume that these are of a type which can be satisfied by a proper choice of the expansion functions

for any truncation of the approximate solution

w(F,t) = ] wp () ¥ (T) (2.5)
n=1 .
an for any set of the expansion coefficients. As we shall see this is the case in the applications of the

spectral method to be considered in the following.

The space truncated equations are now derived by minimizing the mean square integral of the residue
R(®) = 3L(@)/dt - F(@), obtained by substituting (2.5) into (2.3) That is, at any time we choose -

those values of dw,/dt which minimize

(o) = J

)

! dw c{ Ig 2
(v ) - F ( w. ¥ ) ds.
[§=1 dt n n=1 % ° iy
These values are obtained by se&ing the derivatives of J(&) with respect to dw /dt equal to zero (the

condition for 2 minimum) and the resulting space truncated equations become

N

N .
[ (1, Ewder, -7
n'

o ¥g ) L (F)S = 0 (2.8)

We note that (2.6) may be written as

I R(s) ¥,d5 = 0 form =1,2, ...,N (2.7)
S
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Ly ) +e¥ =0 forn=1,2 ... N (2.8)

?
where €, are constants. When < is the identity operator (2.8) is satisfied by any set of expansion
functions ¥, (with ¢, = -1 for all n). When £ is different from the identity operator (2.8) implies

that the expansion functions are eigensolutions of the £ operator.

The system of equations (2.7) could have been written down immediately by making use of the
Galerkin approximation with ¥, as test functions (Galerkin, 1915). Namely, by forcing the residue
R(®) to be zero in an averaged sense over domain S with the expansion functions ¥, as weights. The
above derivation, however, shows that the Galerkin approximation is equivalent to a least square
approximation, when applied to equations of the form used in atmospheric models, and when the

expansion functions satisfy the condition (2.8).

We note an important property of the transformed system of equations (2.7), which is a consequence

of the Galerkin approximation. Namely, that the residue R(®) becomes orthogonal to &

| JS R(w) @ 65 = 0 . \ ©(2.9)
This is easily obtained by multiplying each of the equations in the system (2.7) by the corresponding
coefficient w, and adding all the resulting equations. We shall see that this property is essential for

certain integral properties of the transformed systems.

Assuming the conditions (2.8) to be satisfied we write the system (2.6) in a form suitable for a

numerical integration

N
w_ Y Y ds 2.10
Z ' nv) n ] ( )

- 4s .
where Inn' _{Swn‘yn, 8
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Tt is seen that this space truncated system of equations is a nonhomogeneous system of N linear
algebraic equations with constant coefficients .1, which can be computed once and for all, and
with the N unknowns dw,/dt. Suppose now that the expansion coefficients w,(t) are known at a
certain time, then the values of the right-hand sides may be computed and by solving the system of
equations the values of dw,/dt may be determined. Thus, if initial values of the expansion coefficients
are given, a numerical integration may be carried out by the use of some time differencing scheme.

The initial values of w, must be obtained from a given initial field of the form (2.4).

Generally this field cannot be represented exactly by a truncated series expansion, so that some "best
fit" criterion must be applied. A logical choice of this criterion is of course the one upon which the
numerical method is based. That is, to determine the initial values of the coefficients to be those

minimizing the mean square deviation

[ ((F,0) - a(F,0))? ds
/S

which leads to the system of equations

N ( - -
I, w_,(0) = (F,0)¥Y_(¥) dS
nz'_=1 nn' n 's® n (2.11)

for n = 1,2,..'.,N .

In the case of "real" initial data the values of (T ,0) are usually determined from observations by
some objective analysis scheme only in a finite set of discrete points and the right-hand side may then

be evaluated by some quadrature formulae.

The determination of the initial values of «, and of the tendencies dew,/dt in a certain time step from
the systems of equations (2.10) and (2.11) generally involves matrix inversions. the inversions can,
however, be avoided by choosing functions which are orthogonal, that is, functions satisfying the
conditions

Inn' = szn(r) \}'n,(r) ds=0
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if n#n’, in which case the systems (2.10) and (2.11) become, respectively

dwn 1 J N
ET_:"’snIn S F(g,=1 Wnr Wn') ¥pds
n (2.12)
for n=1,2,...,N
and
(0) = 31— J w(¥,0) v _dS
w (0) = 3 S , Y (2.13)

In practice different numerical methods are often combined in numerical models. We have already
mentioned that a discrete representation in time is always used when a series expansion method is
used in space. It is possible also to use different representations in the three space directions. In
several models for example a discrete representation in the vertical direction is combined with a
representation in terms of series expansions in the horizontal directions. In this case the procedure
described above to obtain the space truncated equations is modified slightly. Before introducing the
approximations of the horizontal fields the discretization in the vertical may be carried out by apply-
ing the model equations and integrals by finite differehce quotients and quadrature formulae. The
procedure described above will then apply to the resulting equations as these will be of the form
(2.1); The only change is that each of the dependent variables in this case in independent of the

vertical coordinate and-that the domain S is two-dimensional instead of three-dimensional.

As mentioned above, the spectral method and the finite element method may be based on the same
basic principles. The two methods differ, however, with respect to the choice of expansion functions.
In the finite element method piece-wise - continuous functions of a compact support are used, i.e.
functions each of which are different from zero only in a limited part of the region. In the spectral
method on the other hand, one uses non-local continuous functions which are usually a subset of a
complete system of orthogonal functions. The name "the spectral method" is due to the fact that the

set of expansion coefficients of a certain variable are referred to as the spectrum of that variable.

10
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In atmospheric models the spectral method has so far been used almost exclusively for large scale
global or hemispheric numerical integrations and the expansion functions used in the representation
of the horizontal fields have been surface spherical harmonics, although Hough functions (Flattery,
1970), (Kasahara, 1977; 1978) and trigonometric functions (Orzag, 1974) have also been proposed.
The spectral representation in the horizontal direction has usually been combined with a discrete
representation in the vertical direction, although a combination with a spectral representation (Ma-
chenhauer and Daley, 1972; 1974) as well as with a finite element representation (Staniforth and
Daley, 1977) has also been considered. »

3. BASIC PROPERTIES

3.1 Introduction

In this section we shall apply the spectral method to various simplified forms of the advection
equation, describing one-dimensional advection. We shall first consider the simplest linear form of
the advection equation and then proceed to more complex nonlinear equations. We have chosen to
consider the advection equation basically because of its simplicity, but also because the advection

process is a most important part of the atmospheric governing equations.

3.2 The linear advection equation
3.2.1 The analytical solution

The linear equation may be written

c = constant. (3.1)

Here u(x,t) is the dependent variable, which we shall think of as the eastward velocity component
at a certain latitude circle with length L. The independent variables are: x the distance along the
latitude circle and the time t. For our purpose it is convenient to use the longitude A = (2w/L)x as
independent variable instead of x, and to introduce the angular velocities @ = 2#/L)u and A =
@2m/L)c. Doing so (3.1) becomes '

Y = constant, (3.2)

which corresponds to (2.3) with £ being the identity operator.

11
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Clearly w(A,t) is a periodic function with period 2, i.e.

w(A,t) = w(X +27p,t), (3.3)

for all t and all integer p. Corresponding to (2.4) the initial condition is supposed to be given by

w(A,0) = £(1) ’ (3.4).

It seems reasonable to assume the following properties of the true solution to (3.2). Firstly, it must
be a single valued continuous real function of the independent variable, and secondly, the derivative
dw/dN that appears in the differential equation must be defined everywhere (and consequently be
continuous). Except perhaps for the assumption of no discontinuity points, these assumptions are
justified as we are interested in physically relevant solutions only. With the above stated assumptions
satisfied initially, that is for w(A,0) = f(A) the general solution to (3.2)is

w(d,t) = £(xyt) (3.5)

which satisfies the assumptions for all t > 0.

3.2.2  Choice of expansion functions
We shall consider the numerical solution to (3.2) obtained by the spectral method. A natural choice

of expansion functions, ¥,(\), in this case is the trigonometric functions

"cos {n_;l A] forn = 1,3,...
Y (A) =
n A ] for n

]
[
[

sin {

ol

It is well known that these functions form a complete system of orthogonal functions and that a wide
class of functions can be represented by infinite Fourier series, which converge rapidly for sufficient-
ly' smooth functions. Furthermore, each of the functions is periodic with the period 2, so that they
satisfy the given boundary condition (3.3), and also they behave very simply under various oper-
ations of analysis, notably differentiation. Corresponding to (2.5) we seek an approximate solution

of the form of the truncated Fourier series

c
. wo(t) M : <
w(r,t) = L s ] gwm(t) cos mi+w>(t) sin mh) (3.6)
m= .

12
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where for each Fourier component

(m;(t) cos m)\+m;(t) sin mA) 4 (3.7)

m is the zonal wavenumber, i.e. the number of waves along the latitude circle, and where M is the
maximum wavenumber retained in the expansion. The number of time dependent expansion coeffi-
cients w2 (t) and wi(t) in (3.7) is seen to be N = 2M+ 1. Introducing the complex functions e™ (3.6)

may be written as

~ M . .
A
w(A,t) = Z=-§m (t) ™™, ' (3.8)

where the complex coefficients for m 2 0 are given by
w (t) = 2 (uS(t) - 1 w3(t)) . (3.9)
defining wj = 0. The coefficients for negative and positive values of m are related by
w_p () = (w (t))* (3.10)
with the asterisks denoting the complex conjugate. This last relation follows from the fact that & is
a real function. We note that & is completely specified if the complex coefficients w_(t) are given for

0=m:=M.

For the complex trigonometric functions we have the following orthogonality relation

2% 1 form'= -m
1 f imA _im _
27 lo © e dd = Vg gor m'+ -m (3.11)

giving the following expression for the expansion coefficients in (3.8):

o

2n
w (t) = 5= Io o (n,t)e” ™ gy . (3.12)

13
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3.2.3  The solution to the space truncated system
When using the spectral method the space truncated system, corresponding to (2.12), is generally

called the truncated spectral gg‘uations. For the linear advection equation these equations are given
below in (3.14) which is obtained as follows:

When (3.8) is substituted into (3.2) we immediately have

hZi dw, im\
- + imy w e = 0, (3.13)
m=-M {9t m

As the expansion functions are linearly independent this equation is exactly satisfied if, and only if,

dwm
dat ~ - imem for -M =

17N

M. (3.14)

This is a system of 2 M + 1 complex equations, but due to the relation (3.10) it suffices to consider
the equations for 0 = m = M only. We note that when deriving the truncated spectral equations for
the linear equation considered no minimizing of a residue is needed, simply because the truncated
series (3.8) exactly satisfies the equation. The reason is, of course, that the complex expansion
functions are eigensolutions to the space differential operator 8/d\ involved in (3.2). As the only
difference between the spectral method and the pseudo-spectral method is the way the residue is
minimized we see that for the linear equation considered the two methods become identical. We note
furthermore that each of the spectral equations can be integrated exactly in time if initial values of
w, are given. The result is

wp(t) =w_(0) e TIMYE, ~ (3.15)

According to our assumptions f (A) in (3.4) belongs to the class of functions, for which the corre-
sponding Fourier series can be determined. That is,

-]

(1) = Y a eim) . (3.16)
m

m=-w

14
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The proper initial values of w,, corresponding to (2.13), can therefore be obtained by computing the

Fourier coefficients a, of f(A)

£(A) 27

=1 -imx
2y = 37 lo I(x) e da (3.17)

and usingw (0) = a_ for O s m 2 M.

m( m

Substituting (3.15) into (3.8) we get the solution

im(A - Yt) | (3.18)

3.2.4  Convergence and consistency
It is obvious that if f (\) can be represented exactly by a truncated Fourier series with maximum

wavenumber equal to M (that is if a, = 0 for m > M) then (3.18) is the exact solution. If this is

not the case then (3.18) is only an approximate solution. Writing this approximate solution as

w(d,t) = fM()\-—Yt) 3
where
M

£,(0) = w(1,0) =z=_M w (0) el

and using the fact that the exact solution is given by (3.5), the error function e(A,t) = w(\,t) - &A1)

may be written as

e(A,t) = £(A=yt) - f,(A-yt) = ' (A")
where A’ = A-yt. thus, € is independent of time in a coordinate system moving with the constant
angular velocity v. It is therefore never larger than the error we commit by approximating the initial

function, f(\), by its Fourier series truncated at wavenumber M. Therefore, if the Fourier series of

f(\) converges to f(A\) then the approximate solution converges towards the exact solution, when M

15
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approaches infinity. With the assumptions stated in subsection 3.2.1 satisfied for f(A) we know in

fact that its Fourier series (3.16) does converge absolutely and uniformly.

The rate of convergence depends, of course, on f(A). Generally, the “smooth_er" the function, the

faster the convergence.

According to the properties of the exact solution w(A,t) it may be represented by an infinite Fourier

series

T = imA
w(i,t) =} w () e , (3.22)

Mm==co

which when substituted into (3.8) gives the system

~

dw ~ (3.25)
m 3 = -0 é Y é -]
It + imyw, 0 for m .

This infinite system of spectral equations is exactly equivalent to the differential equation (3.2).
Comparing (3.25) with (3.14) we see that if w, = @, the truncated system is consistent in the sense

that (3.14) approaches (3.25) as M approaches infinity.

The convergence of & to w and the consistency of the truncated spectral equations rely on the as-
sumption that w = &,. This is the case if f(\) is given analytically as we have supposed above and
if it satisfies the assumptions stated in subsection 3.2.1, so that the initial values can be determined
exactly from (3.17). When the method is applied in practice, f(\) is usually not given analytically
but determined from some analysis of observations and in actual practice the values will usually be
available in some grid points A.. Let us suppose that K grid point values are given at the points A,
= 2n/K)j for j = 1,2,..., K, where K > 2M+1. We may then get approximate values, a’, of the
complex coefficients by approximating the integral in (3.17) by the trapezoidal quadrature formula.

27

K
g(A)dh -3 ] g(2) . (3.26)
j= |

=\

0 1

16
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This quadrature formula is exact if g (A) is a truncated trigonometric series with maximum wave-

number M’ = K -1 (e.g. Krylov, 1962). Using this quadrature we get instead of (3.17)

L 157

_
a' =K

A ~imA . 3.27
m f( j) e J ( )

=1

If f(\) is a truncated trigonometric series with maximum wavenumber smaller than or equal to K-1-M
then the values obtained by (3.27) for |m| S M are equal to the exact values of a,. If however, this
is not the case then the small scale waves with wavenumbers larger than K-1-M are aliased on the
large scale waves retained in the truncated spectral representation. By substituting the Fourier series
(3.16) into (3.27) we get the relation

a'n =1 2.,k (3.28)
q=-x .
In the above derivation we have used the relationship that
eimry - el(m+qK)>\j
for any integer q, and that
1 % g, amy, _ J1 form=-m’ (3.29)
gle de "3 =
j=1 0 for m # -m'

when |m + m’| £ K-1, which follows from (3.11) and the exactness property of the trapezoidal
quadrature formulae mentioned above. Now according to our general assumptions about f(\) we have
|a, |0 for m —oo. Therefore the aliased contributions to a’;, (that is the contributions for g0 in
the expression (3.28)) can be reduced as much as desired by increasing the value of K. That is, by

increasing the number of points used in (3.27).

3.2.5 The eguivalent grid point method

When using the spectral method we obtain an approximate solution in the form (3.8). This truncated
Fourier series may be considered as an interpolating function fitting exactly the values of & at the

2M + 1 points

17
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ATI(A g, 3= 1,2, 2041,

where

_ 2T .
(8N = w7 (3.30)

We note that the relation between the 2M + 1 grid point values &();,t) and the 2M +1 real coefficients
determined by the coefficients w,_(t) in (3.8) is unique. This follows from the fact that when the
coefficients are given then by definition the grid point values are determined by

- M .
w0 =] e (t) ™y 5= 1,2, 2841 (3.31)

m=-M 0

and when the grid point values are given the coefficients are determined uniquely by

2M+1 s )
1 R —imj, < _
w(t) = 3Tl i(lj’t) e, -M=m=H, (3.32)
J'=

A

which follows from (3.31) and (3.29). We shall refer to the grid defined by N = AN, j =
1,2,...,2M+1 as the equivalent grid.

In order to compare the spectral method with the grid point method let us now transform the trun-
cated spectral equations (3.14) to an equivalent system of differential equations which determine the
time variation of the grid point values in the equivalent grid. this is done by multiplying each of the
equations in (3.14) by e™j and then adding the resulting equations. Using (3.31) the result may be

written as

%; (WA, t))= = ¥=_M imy (1) elMAy

18
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1 2 3 4 s 5 7 8
PS 1.006 | -512 .351 | -.274 | .232 -.207 .192 -.186
2 .500 - - - - - . -
4 .667 | -.083 - - - - - -
6 750 | -.150 .017 - - - - -
8 .BOD | -.200 .038 | -.004 - - - -
10 833 | -.238 | .060 | -.010 | .o01 . - -
12 .857 | -.268 .079 | -.018 | .003 -.000 - -
14 .875 | -.292 097 | -.027 | .005 -.001 | .000 -
16 .889 | -.an .13 | -.035 | .o009 -.001 | .000 -.000

TABLE 1: Comparison of weights defining derivatives with 17 grid points
in a periodic domain. The weights have been multiplied by the
grid length, The leftmost column indicates either the pseudo-
spectral approximation (PS) or the order of the centred finite
difference. The uppermost row is the number of grid lengths

away from any central point of concern.

By substituting w,(t) given by (3.32) it may be shown (see Machenhauer, 1979) after some algebra
that the spectral method when applied to the linear equation is equivalent to the application of the
grid point method using the equivalent grid and a centered finite difference approximation for the

derivative with respect to A. This difference approximation is
M
a(ﬂ ~ ~
[‘ﬁ])\ - 16 (Ot = e ,t)

=X, k=1

where C, = (-1)**!/2sin(wk/2M +1).
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It is determined by the use of a trigonometric series truncated at wavenumber M as an interpolating
function, and is seen to involve all 2M neighbour points in the grid. The coefficients C, are tabulated
in Table 1 for the case M=8. This difference approximation may be considered to be of infinite
order of accuracy since the truncation error goes to zero faster than any finite power of (a)), if

is supposed to be infinitely differentiable (see Machenhauer, 1979).

3.2.6  Discretization in time

Instead of using the exact solution (3.15) to the truncated spectral equation (3.14) a numerical
integration in time may be carried out. For example when using the leapfrog scheme we obtain
1o T - iomyat of ; -MEmEw (3.35)

m m Y m’ e

Here w,,” is the approximate value of w_(t) at t=7at. We have already discussed how initial values
can be determined and of course the values w,! at t=at must be determined from these values by
some other time differencing scheme. For stability of the leapfrog scheme it is required that the

condition

[myat| < 1

be satisfied for any admissible m. Since the maximum value of m in the truncated system of spectral

equations is M we obtain the stability condition

lv|Mat 5 1., (3.37)

In order to compare this criterion with those obtained for the grid point method using different finite
difference approximations let us introduce (aM),, the grid interval in the equivalent grid defined by
(3.30). The criterion (3.37) may then be written as

T 1 <
lY'[?AT)e - E]At 1

or Ly l;‘kt < 1
(Me  Glr-gke ) (3.38)
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The corresponding stability criterion for the grid point method using second order centered difference
approximation is

lv14 ¢
AX

1.
Similarly, linear stability of centered difference approximations with spatial error of order (aN)", for

n>2 may be shown to require

At <
Iy IH Kn?
where the first few values of «, are «,=0.73, k,=0.63 and x;=0.59. As n—>oo the value «,

approaches 1/, which is in fact approximately the stability limit found in (3.38) for the spectral
method.

The most unstable wave in the spectral system (3.35) is the wave with m=M, which has a wave-
length equal to

-1
2(80) (1 = oy

For second order centered difference approximation on the other hand, the most unstable wave with
a wavelength equal to 4 grid intervals. When centered difference approximations of higher order are
used the wavelength of the most unstable wave is reduced and when the order n approaches infinity
it approaches 2 grid intervals, which is approximately the wavelength of the most unstable wave in

the spectral system.

3.2.7 Concluding remarks

Before proceeding to the nonlinear advection equation we shall summarise and comment on the main

results obtained for the linear equation.

When errors due to discretization in time and initial aliasing can be ignored the spectral method gives
the exact solution for all wave components retained in the truncated Fourier series. This implies in
particular that the phase speed of all retained spectral components is represented exactly, except for

time truncation errors, whereas the usual finite difference schemes suffer from phase speed errors
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due to space truncation which increases with decreasing wavelength. This implies that when using
the spectral method no computational dispersion, such as that observed with the grid point method,
results from the space truncation. We have furthermore seen that the truncated spectral equations are
consistent with the differential equation and that for sufficiently smooth initial conditions the numeri-

cal solution converges uniformly to the exact solution.

In the spectral method an approximate value of the space derivative is determined, which may be
considered as equivalent to that of the grid point method with a centered finite difference approxima-
tion of infinite order of accuracy. The properties of schemes obtained from the truncated spectral
equations by introducing various time difference approximations can be inferred from results obtained
for the oscillation equation. We have seen in particular that for the leapfrog scheme results are
obtained which are consistent with the fact that the spectral method corresponds to a centered differ-

ence method of infinite order of spatial accuracy.

3.3 The nonlinear advection equation

3.3.1  Properties of the true solution
Choosing again as dependent variable the angular velocity w(\,t) the nonlinear advection equation

may be written

dw (3.39)

where w(A,t) is supposed to be periodic with period 2, i.e. satisfies (3.3), 51/nd where the initial
condition is given by (3.4). We note that (3.39) is of the form (2.3) with &£ being the identity
operator.

The solution to (3.39) satisfying the initial condition (3.4) is

w(A, t) = £C A= w(},t)t) _ (3.40)

which takes constant values w=w(\,0)=1(\,) in the A,t - plane along the characteristics, the lines

A= w( }\0,0) t+ag - (3.41)
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With the same justifications as those given in subsection 3.2.1 we require w at a certain time to be
a single valued continuous real function with a derivative with respect to A defined everywhere. For
the linear equation, considered in the previous subsection it is sufficient that w initially satisfies these
conditions, since the solution in this case propagates along the A-axis without change of form with
the constant angular velocity vy, or in other words because all the characteristics are straight lines
with the same slope v. For the nonlinear advection equation considered here this is generally not the
case. The characteristics (3.14) are straight lines too but (expect for the special case
w(\,0)=f(\)=constant) they have different slopes. The shape of w is therefore changing as t is
increasing and sooner or later two or more characteristics will cross. At the breakdown time t=t;,
when this happens for the first time, dw/d\ becomes infinite at the crossing point and after the
breakdown time, the solution becomes multivalued in the neighbourhood of this point. Physically the
significance of the solution (3.40) is therefore limited to the time interval 0<t=<t,. We shall
consequently only consider the solution in this time interval and furthermore we shall assume that
the initial conditions are sufficiently smooth to ensure the above mentioned properties of w during

the whole time interval.

As a simple example, which illustrates the breakdown of the true solution, consider the solution
obtained by Platzman (1964) for the special case w(\,0)=f(A)=-sinA shown in Fig. 1. The right
panel of the figure is a A,t - diagram which shows a few typical characteristics (3.14). Also shown
is the envelope of the "cusp region" inside which the solution is triple valued (three characteristics
through each point). It is seen that in this case t;=1. The left panel of Fig. 1 shows w(A,t) at selected
timeé. We shall return to this case in subsection 3.3.5 where the exact solution will be compared with

numerical solutions obtained by the spectral method in the time interval 0<t<t,.

For later reference we note the following general properties of the solution to (3.39) valid for" '

0 <t <tg, namely that the moments & are invariants or that

wP = 0 S | L (3.42)

o

for p equal to any natural number, where the bar indicates the mean value defined by

Ty = %F JZ“( Yy da. | S (3.43)
0
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4k (C’,//’///f Right panel:},t - diagram showing characteristics

- w=0 and w=:1,
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This result is obtained as follows: After multiplication by pw’, equation (3.39) may be written

s P p__ 8_,p+tl _
CE i S 0.

As  is periodic with period 2, application of the operator (3.43) gives (3.42).

Two moments in particular are of interest here: namely the first and second moments which are

proportional to the mean momentum and to the mean kinetic energy, respectively.

3.3.2 The space and time truncated system

Choosing again trigonometric basic functions we seek an approximate solution of the form (3.6) or
(3.8). That is

- M .
Sty =1 e (1) ™. (3.44)
==M

As noted before, this form satisfies the boundary condition (3.3), however, it is easily shown by
substitution that in the general case, when w,,#0 for all admissible values of m, this form does not

satisfy the nonlinear equation exactly. For the right-hand side of (3.39) we get

~ 2M .
: o 35 1m 3.45)
F(m) = e )T Z F e , ( )
' X ooy M
where
M . 1 _ .
-1 27 im . im A —im
Fm"'z_ﬁ[ ['z_Mwmle 1x] Z=M img w o, € 2% e .
0 my=- mz -
(3.46)
or
F = i (m-m ) w w _ . ; , : 3-47
i my=m-M 1’ ®my “m-my  for m = 0. ( )
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Here the expression (3.47) is obtained from (3.46) by carrying out the multiplication of the series
in the integrand and by using the orthogonality condition (3.11). Note that (3.47) is valid only for
m=0. For the left-hand side of (3.39) we get

8; - u dw

= =) m _im) (3.48)
3t m=-m T € - ~

Thus the substitution of (3.44) in (3.39) gives truncated Fourier series on both sides, but the series
are truncated at different wavenumbers, and as the trigonometric functions are linearly independent,

we will, regardless of how the values of the coefficients dw/dt are determined, generally get a residue

(S8

9

~
+wa

mlm
ctlE >

R(;) = s (3.49)

>

which is not identically zero for all A.

Now, in accordance with the general description of the spectral method in section 2, we choose those

values of dw/dt which minimize the mean value of the residue. That is, the values determined by
2m ~ .
I R(w) e 1™ 4) = o for -M Sm SN, (3.50)

0

which corresponds to the system (2.7). Using (3.49), (3.48), (3.45) and the orthogonality condition
(3.11) we get from (3.50) the truncated spectral equations

msM, (3.51)

which corresponds to (2.12) in the general case.

The minimised residue obtained by this procedure may be determined as follows. We multiply each

of the equations in (3.51) by e™, add the resulting equations and get
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F(u) =] F_ el | (3.52)
m=-M

When this expression and the expression (3.45) are substituted in (3.49) we find

R(w)= -] F ei®, : (3.53)
M<|m|S2M

We see that the approximate value d&/0t =F(®) is obtained from the true value (dw/dt),_,=F(®)
simply by neglecting the Fourier components F,, of the nonlinear term with wavenumbers larger than
M. Thus, all Fourier components retained in the truncated representation are computed without any
aliasing of smaller scale components outside the truncation. This is a basic property of the spectral
method and as a consequence the type of nonlinear instability described by Prillips (1959) is pro-
hibited in spectral models. The non-aliased truncation is a consequence of minimising the least square

value of residue R(&) and the choice of orthogonal expansion functions.

When using the spectral method the full consequence is taken of the fact that only a finite number
of components is included in the truncated spectral representation. Within this limitation the best all
over approximation in a least squares sense is determined by neglectmg the tendencies of the compo-

nents which cannot be represented.

A further property of the truncated spectral system is that the first and the second moments are
invariants. We have seen that this is the case also for the exact equation, which in addition conserves
higher moments. These properties of the truncated spectral equations, namely that d&/dt=0 and

da?/dt=0 follows from the fact that .
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and

R

wR(wW) = 0. (3.57)

Note that (3.57) and consequently the conservation of &%s a general property of methods built upon
the Galerkin approximation (this result was obtained in equation (2.9)). The first moment & is equal
to the Fourier coefficient w, so that according to (3.51) the conservation of this moment should imply

that F,=0. That this is the case may be verified directly from the expression (3.47).

Introducing the deviation, &’ =&-w,, from the mean angular velocity w, the nonlinear term F (&) may

be split up in the following two contributions

e
Q
[

d
9

1

- w

Flw) = -ug

>
@
>

It is easily seen that the linear term, -w,3&°/0\, does not contribute to the minimised residue R@&)
and thus, that the contributions to the phase velocities for all retained components from this linear
term are computed exactly. Consequently, just as for the linear equation discussed in Subsection 3.2,

a cause of computational dispersion is hereby eliminated.

The truncated spectral equations (3.5 1) are a system of first order nonlinear differential equations.
This system is much more complicated than the system (3.14) obtained for the linear advection
equation and, except for cases with very small values of M, it does not seem possible to find analyti-
cal solutions. Thus, a numerical integration in time must be carried out by means of some time
differencing scheme. Choosing for instance the leapfrog scheme the numerical solution, after the first

step, is determined by the system

(1+1) (1-1) (1) t 22
mm =mm+2AtFm forléméll’
M
T . () (1)
F, o= - i} (m-my) g’ wp (3.58a)
m1=m-M 1

As usual &, to be used in (3.58a) may for instance be determined by two initial time steps: a

forward one of at/2 and a centered one of at each from time zero. That is by
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W2 -, (0) At R(0)
m m

WA

for l1msu, (3.58b)

1y _ . (0) »
w =0, + At Fm

In order to obtain computational stability a conservative estimate of at may be obtained from (3.37)
by using v equal to the maximum value of |®(\,0)| (which for the true solution at least is conserved

during the integration).

The conservation of the second moment or the mean kinetic energy should ensure absolute computa-
tional stability, since the magnitude of the solution is necessarily bounded. Actually the mean kinetic
energy is only quasi-conserved if a time discretization is introduced. Nevertheless, the time truncation
errors are usually small and in any case the non-aliased truncation should still prevent the Phillips-

type of non-linear instability.

3.3.3 Consistency and convergence

If we assume initial conditions which give smooth solutions (for 0 <t<ty) then we obtain that the
truncated system (3.51) is consistent in the sense that for M approaching infinity it converges to a

system which is equivalent to the differential equation.

Concerning convergence of the numerical solution to the true solution it does not seem possible, even
for the simple nonlinear advection, to establish error bounds from which such a convergence can
formally be proven. this is, however, also the present situation for other numerical methods. For the
nonlinear advection equation we have already seen that the mean velocity and the mean kinetic
energy are conserved, when errors due to time discretization can be neglected. This, of course, puts
bounds on the error. However, it seems not possible to obtain proof of convergence from these
bounds. The lack of a formal proof does, however, not imply that the numerical solution does not
converge to the true solution with increasing resolution. On the contrary, practical experience with

cases where the true solution can be determined indicates such a convergence.
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3.35 Comparison of a particular exact solution and corresponding numerical solutions

Following Platzman (1964) we shall in this subsection consider the solution to the nonlinear

advection equation (3.39) in the special case

w(A,0) = f(A) = - sin}i . (3.73)
The general solution (3.40) becomes
w(A,t) = - sin (A - wt) (3.74)

which keeps w = 0 at all points where A is an integral multiple of . Therefore prior to the time of

shock formation (t<t; = 1), this solution has a well-defined Fourier sine-series representation:

@

w(i,t) =7 . §>(t) sin mi , (3.75)
m=
where
1 (7 |
B:(t) == J w(X,t) sin mA di . (3.76)
R

It is remarkable, and one of the main points of the paper by Platzman (1964), that in spite of the
implicit nature of the solution (3.74), the coefficients (3.76) of the exact solution can be evaluated
explicitly.

We are going to compare the exact solution with numerical solutions determined by the spectral
method using different truncations and the leapfrog time differencing scheme. These numerical
solutions are determined by the system (3.58). The initial condition (3.74) implies that w_(0) = 0
form # 1 and «,(0) = i/2. Results from integrations with three different truncations, M = 5, M
= 20, and M = 60, will be presented. In all cases a time step At = 1/100 was used.

Considering at first the exact solution, the solid lines in Fig. 3 show the values of - @3(t) for 0 < t
< 1. Fig. 3a shows results for m = 1(1) 5 and Fig. 3b shows (on expanded scale) results for m =

6(1)10,15,20 (10) 60. All coefficients are zero initially with exception of &:(0) = -1. As t increases
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from zero, IQ;(t)I gradually declines as energy cascades through the spectrum. In each of the other

harmonics the energy increases monotonically throughout the range 0 <t < 1.
As shown in subsection 3.3.1 the second moment (w(A,t))? is an invariant of the differential equation

(3.39). (w(\,1))? is proportional to the mean kinetic energy and it is easily shown that in the case

considered

T T—————————— . «© 1
(w(r,t) )= 7'13'21 K (t) = 5

K..(t) may therefore be considered as the contribution from wavenumber m to the total kinetic energy

K= 7}
m=1

Att = 1, the limit of the "physical" range, the spectrum
_ =S
Ka(t) = (3.(t))?

is shown by the solid lines in Fig. 4 for m < 120. 99.98 per cent of K is included in the part of the

spectrum shown.
Due to the increasing slope of the solution at A = 0 (see Fig. 1) the series (3.75) converges less and
less rapidly as t approaches 1 and for t = 1 the convergence is rather slow due to the infinite slope

of the exact solution at A\ = 0. At t = 1, K,, is very nearly proportional to m*?,

The mean square error of the numerical solution is

e(tAt) = (w(d,TAt) - oCTXN)Y

This error may be split up into two contributions:

e(tat) = eA(TAt) + eB(TAt),
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e, is the mean square error introduced by truncating the exact solution (3.75) and e, is the error

introduced by using the numerically determined coefficients «%® instead of @* (7At) for 1 <m < M.

It is obvious that e can never be smaller than e,, which in the case considered must increase with
time due to the energy cascade. The growth of e and e, with time for the three different truncations
is shown in Fig. 5. It is seen that the main contribution to e comes from e, whereas the contribution
from e is relatively small. Furthermore, at a certain time e decreases with increasing resolution

which demonstrates that the numerical solution converges towards the exact solution.

Before t = 0.5 even the low solution with M = 5 deviates very little from the exact solution. In Fig.
6 the exact solution w, the truncated exact solution w; and the numerical solution & for the low
resolution integration in the interval - # £ A £ 0 and for t = 0.2 (0.2)1.0 are shown. On the scale
chosen in the figure, it is not possible to see any deviation between the three solutions at t = 0.2 and

= 0.4. Att = 0.6 a small deviation between w and the solutions «; and & can be seen, ant at t =

0.8 and in particular at t = 1.0 the differences between all three solutions can be seen clearly.

We have seen that the main contribution to the deviation between the numerical solution & and the
exact solution w is due to lack of resolution, however, some deviation does develop between & and
wr. In order to illustrate how this deviation is distributed on the different wavenumbers m retained
in the truncated representations, the values of K, = (w?)?att = 1 have been plotted on Fig. 4 for
the three cases M = 5,20 and 60.

It was shown in Section 3.2.2 that the second moment @ is an invariant also for the truncated
spectral equations. In the present numerical integrations we should therefore find that if round-off

errors and time truncation can be neglected

during the whole integration. This was found to be the case in practice to a very high degree of
precision. The difference between K, and K, is seen to be concentrated on the highest wavenumbers
retained in the representation and generally K is larger than K . Especially, the value of the energy,
K., in the very last component with m = M is seen to be predicted much too high. During the
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course of the numerical integration energy is piling up in the shortest waves retained in the represen-
tation. Intuitively, we should expect this phenomenon, known as blocking, to occur in the present
numerical integrations, as we are trying to simulate a cascade of energy towards higher wavenumbers
using a truncated representation within which the total energy is conserved. In order to illustrate the
development in time, we have plotted in Fig. 3 the value of -w’® (the absolute values of the very
last component retained in the three numerical integrations). A comparison with the exact values

- @, shows that the significance of the blocking phenomenon decreases with increasing resolution and

that it occurs at a later time in high resolution integrations.

Blocking is due to the neglect of interactions involving components outside the truncation limit and
it seems likely, at least in the present example, that the effect of the neglected components could be
parameterized by a simple scale selective dissipation of energy at the highest wavenumbers retained.

thereby, the contribution ey to the mean square error e could probably be reduced substantially.

Blocking does occur also in the global models to be considered in the following section and in these
models a parameterization in terms of a scale selective dissipation are used in order to reduce the

errors due to blocking.

4. MODELS IN SPHERICAL GEOMETRY
4.1 Historical introduction

The spectral method was introduced into meteorological modelling as early as 1954 by Silberman
(1954), who considered the non-divergent barotropic vorticity equation in spherical geometry. During
the following years studies of the method were performed (notably by Kubota , 1959, Lorenz, 1960,
Platzman, 1960, Kubota et al., 1961, Baer and Platzman, 1961, Baer, 1964 and Elisaesser, 1966).
These studies demonstrated several desirable properties of the spectral method, and the study of
Ellsaesser (1966) even indicated that for a balanced barotropic model the spectral method could
compete with the grid point method used at the U.S. National Meteorological Center at that time with
respect to performance and efficiency. The spectral method seemed feasible at a low resolution for
this simple model. It was, however, not considered to be a realistic alternative to the grid point
method for high resolﬁtion integrations of complex non-adiabatic models. The reason for this was
that the method used in the computation of the nonlinear terms in the equations involved storing of
a large number of so-called interaction coefficients, the number of which increases very fast with

increasing resolution. As this method involves a number of arithmetic operations per time step
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approximately proportional to the number of interaction coefficients it could be foreseen that the
computing time and storing space requirements would exceed all practical limits at high resolutions.
Furthermore, it was not easy to see any practical solution to the problem of incorporating locaily

dependent physical processes, such as release of precipitation or a convective adjustment.

The interaction coefficient method survived unchallenged until Robert (1966) suggested the use of
low-order non-orthogonal spectral functions based on elements of spherical harmonics. This approach
eliminated the complexity of interaction coefficients at the expense of an orthogonalization procedure
at each time step. Thus, the storage problem was eliminated. The bias of a very rapid increase in"
arithmetic operations with increasing resolution and the inclusion of locally independent physical

processes remained, however, unsolved problems.

The situation was completely changed with the introduction of the transform method developed
independently by Eliasen et al. (1970) and Orszag (1970). In this method no interaction coefficients
are involved and the required storage as well as the number of arithmetic operations is reduced
substantially. Furthermore, the method involves a stage in each time step where point values of the
dependent variables are computed in an auxiliary grid in the physical space. As pointed out by
Eliasen et al. (1970) this made a direct inclusion of locally dependent non-adiabatic effects possible,
in a way similar to that used in grid point models. The transform method in a one-dimensional
version was tested by Eliasen et al. (1970) for a hemispheric shallow water model (i.e. a single level
primitive equations model). Subsequently Bourke (1972) and Machenha‘uer and Rasmussen (1972)
tested the full two-dimensional transform method for the same model. The results were very encour-
aging. Even at relatively low resolution an order-of-magnitude improvement in efficiency was
obtained compared to the interaction coefficient method, and as this factor increases rapidly with
resolution, spectral models with much higher resolution seemed now feasible. Several groups started
the develbpment of complex global or hemispheric baroclinic models utilizing the transform method.
Descriptions of these models and reports on the first experiments were published during the following
years (Machenhauer and Daley, 1972 and 1974, Bourke, 1974, Hoskins and Simmons, 1975, Daley
et al., 1976, Bourke et al., 1977, and in the report from the Symposium on Spectral Methods held
in Copenhagen in 1974: Bourke et al, 1974, Eliasen and Machenhauer, 1974, Daley et al., 1974,
Gordon and Stern, 1974 and Hoskins and Simmons, 1974).

37



MACHENHAUER, B. SPECTRAL METHODS

4.2 Choice of dependent variables and expansion functions

Let us consider the complete set of quasi-hydrostatic equations used in atmospheric models, and
assume that a discretization in the vertical direction has already been carried out. The system of
prognostic equations may then quite generally be written in the form (2.1), where the prognostic

variables are functions only of geographical position and time.

As explained in Section 2 the spectral method is based on a representation of the variables in terms
of a common set of expansion functions which are non-local continuous functions, defined over the
whole region. In global spectral models all variables must therefore be defined everywhere on the
sphere. Thus, we must avoid using vertical coordinates in which the coordinate surfaces intersect the
lower boundary surface. As mentioned in Section 2 spherical harmonics are usually chosen as
expansion functions and we shall only consider models in which these functions are used. One
advantage of this choice is that the equations in spherical coordinates can be used directly without
any mapping. The spherical harmonics will be defined below and we shall see that expansions in
terms of these functions converge very fast for sufficiently smooth functions. For functions having
dis-continuity points the series may still converge if the functions are otherwise smooth. The conver-
gence will, however, be much slower, especially in the neighbourhood of such discontinuity points,
where the Gibbs’ phenomenon (Courant and Hilbert, 1953) may be observed. It seems therefore
reasonable that the dependent variables are chosen in such a way that discontinuities are avoided, if
possible. This is especially relevant when choosing the variables describing a horizontal velocity field
V. We may choose to describe the velocity field by either the fields of a stream function  and a
veloc.ity potential x or by the fields of u and v, (the velocity components toward the east and the
north, respectively). If we assume that V is continuous everywhere on the sphere, then this is the
case for  and x also, whereas u and v generally (if V=0 at the poles) are discontinuous at the
poles. This is illustrated in Fig. 7, which shows the velocity vector at five points at and near the
north pole P. When approaching P from A the component v approaches - IVP |, whereas the limit of
v is IVP| when approaching P from C. Thus v is discontinuous at the pole point. Similarly it is seen
that u is discontinuous at P along the meridian BD. Along the two other meridians shown both u and
v are discontinuous at P. Thus, if u and v were chosen as dependent variables to be represented by
series of spherical harmonics, these series would generally converge very slowly and furthermore
as any series of spherical harmonics is continuous everywhere, in particular at the poles, it is not
possible to describe even the most simple continuous wind vector field, with a non-zero wind at a

pole point, by the use of truncated series for u and v. It follows that when using the spectral method
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with spherical harmonics as expansion functions y and x are appropriate scalar variables to be used
in representing the horizontal velocity field, whereas u and v are not. This can be achieved easily
by using the differentiated forms of the equations of motion instead of the primitive equations (that
is, the vorticity and divergence equations instead of the equations for the horizontal velocity compo-
nents). We shall see later that this corresponds to the use of the primitive equations using special
expansion series for u and v. For the time being we shall, however, assume that ¥ and x are chosen
as variables and that the differentiated equations are used. We note that in this case and for these

equations the operator &; in (2.1) becomes equal to the spherical Laplacian.

For the partial differential model equations with given initial conditions we assume the existence of
a true solution and that the true fields of prognostic variables for t =0 are single valued continuous
real functions with continuous derivative up to at least the second order over the entire sphere. If
these assumptions are satisfied the true solution may be represented by infinite series of surface
spherical harmonics which are absolutely and uniformly converging (e.g. Courant and Hilbert,
1953). Actually the series will converge pointwise under considerably weaker conditions (e.g.
Rectory, 1969, and Hobson, 1955). Considering for instance the stream function y, the dependence
upon the latitude ¢ and the longitude A may be expressed by the series

PO, 8,1) = 1 U5 (4,1

+) (;; (6,t) cosmr + ;:1 (¢,t) sinmd)
m=1

33 3° BNCRS
B VG a® Poa®
+] g=é171;’n(t) cosmd + 45 (t) simmh)P, (9.

Here the first series is a Fourier series at a certain latitude circle, as those used in Section 3. The

second series is the expansion of y in terms of spherical harmonics.
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The functions P..(u) denote the associated Legendre functions of the first kind of order m and
degree n, which may be defined by

m
- —u2\5 n+m
Py n(w) = [(2n+1) (n m)!]% (1-u®)2 d (u2-1)",

(n+m)! on nl dun+m (4.2)

where p=sing. This definition applies to all integer values of m and n satisfying n = |m| and it
follows that

- m
P = DR () (4.3)

and that each of the functions may be written in the form
m
5 1
Poa(®) = (1-u9Z oDy, (4.4)

where Q,.,(u) is a polynomial in p of degree n-m. Therefore the Legendre functions with order
m=0, which appear in (4.1), are symmetric with respect to the Equator when n-m is even and
antisymmetric when n-m is odd. Furthermore it is seen that n-m is the number of zero points
between the north pole and the south pole, and that the functions with m0 are zero at the poles.
For m=0 the functions ﬁre simply the Legendre polynomials all of which are different from zero at

the poles. The first few of the functions are given in Table 2.
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Table 2
Normalized Legendre functions, P, (1)

VT (5p3- VBT eyeqy i | YIS (uoy V5 (1-u2)¥/
3 > (Sp3-3p) 3 (5p2-1)y1-p /2 (p-p3) 48(1 p2)3/2
A5 (3p2-1) PEENW e VIS (1-p2)
2 5 OB ﬁu B i B
1 \/.B‘I'L \/j 1"”'2
242
0 1
n
0 1 2 3
m

A number of recurrence relations are valid for the Legendre functions. We shall list only two of

these both which will be used in the following, namely:

dp
Poyo | qop?)
—Cos¢d¢ du
_ 1)D Poq on-1" 4.5a)
= nDp, n+1 1:’m‘,rH-l (n+1) m,n @,n-1" ¢
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where
2 2y %
Dp g = |B—=T0_|° (4.6)
’ 4n? -~ 1 :

Introducing the complex spherical harmonics:

Yoaom) =P () elmA (4.7)

we may write the expansion (4.1) as

POt =1 v (u,t) T (4.8)

Ze=co

(-~}
~

=Z=-w2n=]mlwm,n(t)Ym,n()"“.? ’

where the complex coefficients for m =0 are given by

a0, =2 GE G,t-135 @) (4.9)

Vo n(E) = & (g (£) = i yp ()

(defining $,'(u,t)=0 and §,,"(t)=0) and where the coefficients for negative and positive values of

m are related by

‘;-m(“’” =~w;(u,t) | (4.10a)

a -~

m o .
Vo, n(t) = D7 (0 (4.10b)

2

42



MACHENHAUER, B. SPECTRAL METHODS

with the asterisk denoting the complex conjugate. Eq. (4.10) follows from (4.3) and the fact that

is real.

We have seen in Section 2 that a particular equation in the space truncated system (e.g. the system
(2.6)) is simplified considerably when the expansion functions are chosen to be orthogonal and when
they are eigensolutions of the differential operator involved on the left-hand side of the corresponding
partial differential equation. In our case these advantages can be obtained by choosing expansion

functions which are eigensolutions of the Helmholtz equation:

LY, te ¥ =0, (4.11)
where the spherical Laplacian is
12( ) = —2— (2 () + costs(costz()) - (4.12)
a?cos?¢ |aA? ¢ ¢

Furthermore, it is an advantage to choose functions each of which satisfies the proper boundary
conditions, which in our case follows from our assumptions about the smoothness of the true solution
at any point on the sphere and particularly at the pole points. Because if this is the case then any
expansion in terms of such functions will automatically satisfy the boundary conditions. The main
reason for choosing the surface spherical harmonics is that these functions do have these advantage-
ous properties. Except for a constant factor they are the only non-trivial solutions to (4.11) with
continuous derivatives up to the second order over the entire sphere (e.g. Courant and Hilbert,
1953). The eigenvalues are uniquely determined to be €, = n(n+1)/a* and the functions Y, ,(\,p)

form a complete system of orthogonal functions on the sphere. Thus, the spherical harmonics satisfy

2 = _ n(n+l) 4.13
v Ym,n T a? Ym,n (4.13)

and with the normalization factor chosen in (4.2) the orthogonality condition is
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2n 1 = ¢ t
1 * _ |1 for (m,n)=(m',n"),
i Y A, WY A,u) dpdr =
4T J [ m,n( H) m',n'( ") {0 for (m,n)$(n',m').
-1 R_A

0
(4.14)
We note that in view of (3.11) the condition (4.14) implies that
afl Py g (1) P (w) @y = |1 for nemt (4.15)
-1 mn m',n’ 0 for n#n' )
Consistent with (3.11) and (4.14) the expansion coefficients in (4.8) are determined by
~ 2n . .
1 -im}
bplu,t) = T [0 Y(A,u,t) e P an y ; (4.16a)
-~ 1 2'" 1 % N
Vo n(8) = 2= JO J YOI Yo () dudh (4.16b)
-1

Following Platzman (1960) we have chosen the normalization factor in (4.2) so that the mean square
integral of each spherical harmonic over the sphere is unity as expressed by (4.14). Unfortunately
a number of different normalization factors are used in the literature. Obviously the values of the
expansion coefficients depend upon the choice of normalization and it should be noted that if the
normalization factor in (4.2) is changed then the expressions (4.3), (4.6), (4.10a). (4.14), (4.15) and
(4.16b) must be changed accordingly.

As mentioned above series expansions in terms of spherical harmonics converge very fast for suffi-

ciently smooth functions. So, Parseval’s equation

I 1 Iy olo= %;J ' Iz"(w<x,u))2 dhdu (4.20)
=170
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shows that the coefficients {,, must tend towards zero for n—»co. For most reasonably smooth
functions, the convergence is actually much faster than required by (4.20). In particular, if ¥ is
infinitely differentiable one may (see Orszag, 1974) show that the remainder in the series (4.17) after

N terms converges uniformly towards zero faster than any finite power of 1/N.

4.3 Types of truncation
The spectral method for global models is based on truncated series of spherical harmonics. For the

stream function for instance the infinite series (4.8) must be truncated. This truncation is not as
straightforward as in the one-dimensional case considered in Section 3, because the series involves
a summation over two indices. As the dependent variables are real functions the relation (4.b)
applies. Therefore, if a complex component y,, Y, . is included in the truncated series then the
component V., Y. must also be included. We need therefore only consider the truncation for
m =0. When truncating (4.8) we shall require that all retained real components, (4.19), must be able
to move in the zonal direction which implies that the complex components must have a real as well
as an imaginary part. The complex components with mZO' in the infinite series may be represented
by points in an m,n - diagram as that in Fig. 9. The infinite number of components is represented
by the points in the half plane n>0 with integer values of m and n situated at and above the line

n=m.

In particular two different types of truncation have been used. Namely, the triangular truncation
where all components with n> N are set equal to zero and the parallelogrammic truncation where
all components with |[m|>M or n> |m|+7J are set equal to zero. Here N, M and J are positive

integer constants. When using the triangular truncation the truncated series takes the form

~ N
VOLu,t) = ] NCOR SINCHT (4.22)

and when using the parallelogrammic truncation it takes the form

~ M %m|+J
Y(A,u,t) =}

vo (8 Yo (). (4.23)
m=-M n=|m| ’

m,n
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Usually M is chosen equal to J in which case the latter truncation is termed a rthomboidal truncation.

In Fig. 9 the truncation limits are indicated for a triangular and a rhomboidal truncation which have

approximately the same number of degrees of freedom.

A triangular truncation has the property that the resolution is uniform over the sphere. This follows
from the fact that if we introduce a new spherical coordinate system, obtained from the usual system,
by an arbitrary rotation around an arbitrary axis through the centre of the sphere, then a spherical
harmonic of degree n in the usual system can be expressed as a linear combination of spherical

harmonics in the new system, all of which are of the degree n. This relation may be written

He g

_ (m,m') '
Ym.n()\’ $) = Cn Yo ,no‘ M)

where A\’ and ¢’ are the coordinates in the new system (u’=sin¢’) and where the complex coeffi-
cients C,™™ depend on n, m, m’ and on the relative orientation of the new coordinate system with
respect to the usual system. (See Courant and Hilbert, 1953, for further details). It follows that an
expansion truncated at degree N remains truncated at degree N in any spherical coordinate system.
The resolution in an area on the surface of the sphere can therefore neither depend on direction nor

can it depend on the position of the area.

The rhomboidal truncation is invariant to arbitrary rotations around the Earth’s axis, so the represen-
tation must be uniform in the zonal direction. In the meridional direction, however, the resolution

is found to vary.

The choice of the type of truncation may be based upon analysis of atmospheric data. This approach
was used by Ellsaesser (1966) who introduced the rhomboidal truncation. He presents a single
spherical harmonic analysis of northern hemisphere kinetic energy at 500 mb, which indicates that

for the case considered and at least for relatively small values of M a maximum amount of variance
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with a minimum number of components is obtained with a rhomboidal truncation. A more extensive
analysis made by Baer (1972) of northern hemisphere kinetic energy, based upon data from two
winter months and several levels, indicates, however, that for smaller scales the isopleths of constant
energy in the mean tend to follow lines of constant n considerably more closely than lines of constant
m and constant n-m. This result suggests that the appropriate truncation should be triangular rather
than rhomboidal. The approximate form of the isopleths, as presented by Baer (1972), is indicated
by the dot-dashed curve in Fig. 9.

4.4 The non-divergent barotropic vorticity equation
441 Introduction

In this sub-section we shall illustrate the application of the spectral method in spherical geometry by
considering the vorticity equation in the simple case of non-divergent, barotropic motion. Basically
we choose this equation because of its simplicity and because of its relevance for large scale atmos-
pheric dynamics, but also because it is a convenient starting point for extensions to more complex
models. From a historical point of view it was also the first meteorological equation to which the

spectral method was applied.

For non-divergent barotropic motion the stream function may be considered the only dependent

variable and the vorticity equation may be written

(s3]

8t ~ . . (4.24)
3t VeV

where {=V? is the relative vorticity, 7= {+fis the absolute vorticity and the non-divergent velocity
is given by _\7¢=T('XV\1/. Here f=2Qu is the Coriolis parameter, k the vertical unit vector and Q the
Earth’s angular velocity.

4.4.2 Properties of the true solution
The true solution to (4.24) satisfies the following three important integral constraints
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dM _
E-_E =0 9 (4.25&)
dk _
FT=0" (4.25b)
dE _ '
EE = 0 (4.ZSC)
where the bar indicates a global mean value defined by
: fzw : Ll O

= —— ( ) dxdu= = J ds 4.26

() =3 0 J—l S Jg ( )

and where M = u a cos¢ is the angular velocity around the Earth’s axis, K= ‘/sz is the kinetic

energy per unit mass and E=4{* is the enstrophy per unit mass.

The constraints (4.25) are valid also for the approximate solution to (4.24) determined by the corre-

sponding truncated system of spectral equations, which will be derived in the following subsection.

443 The truncated spectral equations
We write (4.24) in the form

2 |
gt vEy= "'faQ g‘% *EW) ' (4-39)
where
4y = 1 W 3, ‘ ; |
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We seek an approximate solution in terms of a truncated series of spherical harmonics and choose
the triangular truncation (4.22), although any other type of truncation might have been used. The
following derivations are dependent upon the choice of truncation but they are easily modified to

apply to any other type of truncation.

Generally a truncated series of the form (4.22) will not satisfy (4.24) exactly. This follows from the
fact that the equation includes a nonlinear term as well as linear terms. The situation is quite analog-
ous to that for the nonlinear advection considered in Section 3. When substituting (4.22) into the
equation each of the terms becomes a truncated series, but the nonlinear term includes more compo-

nents than the linear terms. For the left-hand side term, by using (4.13), we get

N

- ay
2 g2pe
EA )

N .
m,n
g £, I Ym,n ) _ _ (4.32)

where e, = n(n+ 1)/a® and for the linear term on the right-hand side we get

~ N N
20 i Y o
- %g' %i = - aZ gx:-N 1§=|m:|me m,n m,n (4.33)

For the nonlinear term on the other hand we get

- 2(N-1) 2(N-1)

F(y) = § F_ Y (4.34
L 2 v-D) rx£]m| m,nm,n ’ )
where
1 211' 1 A
Fon = 47 Jo I-1 F(¥) Y;’n drdu . : (4.35)

Thus, when the truncated series ¢ given by (4.22) is substituted into the partial differential equation
(4.30) we will get a residue which generally does not vanish identically. In accordance with the
general procedure outlined in Section 2, we determine a truncated system of spectral equations by

minimizing the mean square residue. This is achieved by applying the operator (4.21) on both sides
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of the equation. Using the orthonormality relation (4.14) and(4.32) - (4.34) this procedure immedi-

ately gives the system

dy

m,n _ 20m a?

it oD ¥o,n T 5EFD Tm,n (4.43)
for O é|m|--<—- nSN (and n % 0).

The true value of 8{/dt in the special case y={ is

ool

3z ] _ Q 31'1; ~
T3] AT~ Tz 5>+ F ()
[at v=0 a oA

which, using (4.33) and (4.34), may be written

3 2 Ig: N ]
[—C] A== 20 ) ¥m,n ‘m,n
t v=y a2 m=-N n=|m]
(4.44)
2(N-1) 2(N-1) ,
+ % Fm,n Ym,n '
m=-2(N-1) n=Im]|
The approximate value determined by the truncated system (4.43) is on the other hand
- N
9g _ 20
9t - T a §=-N E=|m|1m wm,n m,n
(4.45)
N N
+
o allal T e
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Comparing (4.44) and (4.45) we see that the linear term, the so- called beta-term, is evaluated
exactly from the truncated series representation of y whereas the components F,,, of the nonlinear
term with N < n <2(N-1) are neglected in the approximate value determined by (4.45). Thus, aliasing
is avoided and a cause of nonlinear instability is eliminated. Furthermore, as a consequence of this
non-aliased truncation the integral constraints (4.25) which we found to be valid for the true solution
are also valid for the solution to be truncated spectral equations. This was shown originally by Lorenz
(1960) for plane geometry, using a representation in terms of double Fourier series, and by Platzman
(1960) for spherical geometry. A less complicated proof based on the general property (2.9) of the
spectral method may be found in Machenhauer (1979).

These conservafion properties of the truncated spectral equation tends to conserve the gross character-
istics of the energy spectrum and a systematic energy cascade towards higher wavenumbers is not
possible. It should be noted that a certain blocking of energy in the highest wavenumbers, similar
to that observed in Section 3.3.5 for the one-dimensional advection equation, is not excluded if at
the same time energy is-transferred to low wavenumbers. Furthermore, in actual numerical integra-
tions the above constraints are of course only approximately valid due to time truncation and round-

off errors. The effect of these errors can, however, usually be neglected.

Concerning the conservation of the mean angular momentum M we note that M is related to the

coefficient v, ; by the relation

which follows from the definition (4.51a). Furthermore, the coefficient v, determines a solid

rotating pari of the velocity field defined by
u

0,1 = ~ 735W0,1%0,1) = 75 Yo,1 cos¢

or
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where

/3 (4.52)
®o,1 = ~=% Yo,1 .

Thus, conservation of M implies that y,, or in other words the solid rotating part of the velocity

field is an invariant.

4.4.4 The interaction coefficient method

The linear term in (4.43) can easily be computed, but the problem is how to compute the non-linear
term from (4.35). The original method was presented by Silberman (1954) and it was treated exten-
sively in the papers by Platzman (1960) and Baer and Platzman (1961). This method, the so-called
interaction_coefficient method, builds upon a substitution of the expansion of Vv (4.22) into the

expression for the nonlinear term (4.31) followed by a multiplication of the series. When the result-

ing series is substituted into (4.35) and the integration is carried out term by term we get

) ¥
1
R ! ) ! iy ¥ L® MMy
m.n - a m,=-N n1=]m1| m,=-N n2=|m2| m s0y "MgrNg R nyny s
' Bg >y
(4.61)
where
1 dp | dp
: mo,n mi.n
mmiMo_ - P o P ~12,02 _ n.p —J—l)du
Lnnlnz ‘(":n2 Enl) _-':1 m,n( 1'my,ny du 2°mp,ng du
for m = my+m, :
(4.62)

and O for m # my + m,

Even for moderately truncated representations the non-linear term is very Iaborious to compute from
these expressions. As the numerical bomputation of the interaction coefficients defined in (4.62) is
very time-consuming, these must be stored in the computer. Besides the interaction coefficients for
m = m, -+m, also a large number of those for m=m, +m, becomes zero and of course only the non-
zero coefficients need to be stored, and to be included in the computation of (4.61). Even if only the
nonzero interaction coefficients are considered the required storage and the required number of

arithmetic operations involved in the computation of the non-linear term each time step increase very
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fast with increasing resolution. Orszag (1970) estimates this increase to be approximately as N°. As
explained in the introduction to this chapter, this very fast increase was the reason why the spectral
method for several years was considered not to be a realistic alternative to the grid point method for

higher resolution integrations.

It was mentioned in the introduction that Robert (1966) developed an alternative method. In this
method no interaction coefficients are used, so that the storage problem is reduced substantially. He
uses the functions

|m|

Grlx; = (1-u%) 2 yp Gimk ,

where p is an integer larger than or equal to zero. We shall call these functions Robert functions.
As any spherical harmonic may be written as a sum of these functions a truncated representation in
terms of spherical harmonics may be transformed to a truncated representation in terms of Robert
functions. The advantage of using these functions is that the product of two functions can be
expressed in a simple form in comparison with the product of spherical harmonics. In Robert’s
method the calculation of each term in the equations is carried out separately and the results are
added giving an array of coefficients for the time derivatives, wﬁich due to the non-linear terms
contain coefficients outside the limit of the original truncations. This array is then truncated in such
a way that the result is exactly equivalent to non-aliased truncations of the corresponding series of
spherical harmonics. By this procedure no interaction coefficients are needed, and as mentioned
above the storing space needed is reduced. A very rapid increase of required arithmetic operations

with increasing resolution remains, however, a problem.

4.45  The transform method

As explained in the introduction to this chapter, the next step in the evolution of the spectral method
was the introduction of the transform method, developed independently by Orszag (1970) and Eliasen
et al. (1970). In this method the increase with increasing resolution of both storage and the number
of arithmetic operations is reduced substantially. We shall illustrate the method by considering the
computation of the non-linear term in (4.43). This term is determined by (4.35), which may split up

into the following two integrals
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1
Fon = QJ_IFm(u) Pp p(H) du ‘ (4.63)
21" ~ 3

Fo () = 1 Io F(piu) e ™ a (4.64)

where
~ _ -1- ﬁ -3—:;: — ah -a_E .

F(y) = az[au 3 A Bu] (8-
and

=2y . . (4.66)

Having chosen the triangular truncation F_, is to be computed for 0<m<n<N.

The idea was then to evaluate the above integrals with the aid of quadrature formulae, noting that

this evaluation can be done exactly when proper quadrature formulae are chosen.

It was shown that the integrand in (4.64) for a certain p is a truncated Fourier series in A. The
integral can therefore be computed exactly by the trapezoidal quadrature formulae (3.26) if a suffi-
cient number of quadrature points are used. For the evaluation of the integral in (4.63) on the other

hand, we choose the Gaussian quadrature formula.
1 ’ ,
g(u) du ~ } Gy " e ogluy) (4.67)
-1 k=1 '

where p, are roots of the Legendre polynomial P,x(r) and the Gaussian coefficients are defined by
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oK) 2(1-u®) (AK-1)
k
(Xp

This quadrature formulae is exact for ény polynomial of degree smaller than or equal to 2K-1 (¢f.
Krylov, 1962). As was shown the integrand, F_ ()P, (&), in (4.63) is in fact a polynomial in p, so
that computing the integral by means of Gaussian quadrature no approximation is introduced if a
sufficient number of quadrature points is used. The reason for choosing the Gaussian and the trap-
ezoidal formulae is that these quadratures are of the highest possible degree of precision for arbitrary

polynomials and truncated Fourier series, respectively. (Cf. Krylov, 1962).

Using the Gaussian quadrature formula in (4.63) we obtain the expression F,,, for

. 2,
Tmn S H L G 2TE 0P, S Cu), | (4.68)
where according to (4.64)
27 ]
Folu) = %{% Io P (A uy)le . (4.69)

It is seen from the expression (4.34) that F(J(\,um)) is a truncated Fourier series of maximum
wavenumber equal to 2(N-1). The real and imaginary parts of the integrand, F(§)e™, in (4.69) are
therefore both truncated Fourier Series with maximum wavenumber 2(N-1)+m. Since we want to
compute F_ for 0 <m <N it follows that for any m in question the integrand in (4.69) is a truncated
Fourier series with maxinmim wavenumber at most equal to 3N-2. Using this result and the exactness
property of the trapezoidal quadrature it follows that F, can be evaluated exactly by

mA

1 ~ -im)
F o) =% L F(y(h 1)) e J

J
(4.70)

na
HIAS

for O m N

55



MACHENHAUER, B. SPECTRAL METHODS

and for any p, needed in (4.68) if K, is satisfying

itv

1 = 3N-1, (4.71)

The integrand in (4.63), F (#)P, (1), for all m>0 is found to be a polynomial of degree at most
2N-2-+n. Since we need to compute F, , only for 1<n<N the integrand is for any n in question a
polynomial of degree at most 3N-2. Now, the Gaussian quadrature (4.67) is exact for any polynomial
of degree at most 2K-1. Consequently, the values of F_, determined by (4.68) are exact if K, is

chosen large enough to satisfy

3N-1 (4.72)

v

In order to use (4.70) at a certain Gaussian latitude circle p=p, the non-linear term F({) must be
computed in the K, grid points (\,p); j=1,2,...,K,. These grid point values must be computed from
the spherical harmonic coefficients y,, ,(t), which are the history carrying quantities in the spectral

model. So it remains to be shown how these can be computed.

Introducing the operators

) :
07 =2 ()
: (4.73)
M)
{} = =(1-u%) 3_ {} ,
au
the non-linear term(4.65) may be written

The quantities in the parentheses may be computed by
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s =§=-N wé”(u) eim

A1) N ) .
vooouw =Ly e

m=-N (4.75)
~ N -
C(“)(k,u) =2— Cék)(u) elmk
~ N
tMa,m=T1 Mgy ™

m=-N

where
(A -
Y (0D im Z me n Pm n(u)
w(“)(u) = Z H (
n= lml m n m,n l-l)
{4.76)
(1) N
Cm () = im nzlm, Cm,n Pg'n(u)
(u) -
(n) nzlml m,n Bn,a()
Here
n{n+l) ( .
‘m,n T T T a ¥m,n (4.77)
and
dP
n .
Hm’n(u) = - (1-u ) -——’— . (4.78)
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The expressions (4.75) and (4.76) follow from application of the operators (4.73) to the expansions
(4.22) and (4.47) of { and {. The functions H,_, .(), defined in (4.78), may be computed from the

T egendre functions P, (1) using (4.5a).
We have now established all formulae necessary for the computation of the coefficients E, . of the

non-linear term from the coefficients y,, by the transform method. The procedure may be

summarised as follows:

Step 1 The vorticity components . are computed for 0<Sm<n<N using (4.77).
In the following steps the contributions to (4.68) from the Gaussian latitudes p,; k= 1,2,....K, are
accumulated successively. The contribution from a certain Gaussian latitude p=p, is computed using

the following steps:

Step 2 The Fourier coefficients ¥,,% (), ¥.* (), &™), and {,*®(u) are computed for
0<m<N using (4.76).

Step 3 The grid point values %\, m)..., Z""()\j,p.k) are computed for j=1,2,...,K, using
4.75).

Step 4 The non-linear term F(\,p) is computed at the grid points (A, w); j =1,2,...K,
using (4.74).

Step 5 The Fourier coefficients F (i) of the non-linear term are computed for 0<m<N
using (4.70).

Step 6 The contribution to F,, is computed for each coefficient with 0<m<n<N by
multiplying the Fourier component F_(u,) with 1/sz(KZ)Pm,“(uk).

This successive accumulation procedure has the advantage that storage of grid point values at any

time is only required for a single Gaussian latitude.
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We see that the method involves a transformation from the spectral domain to the physical space grid
points, and a computation of the non-linear term in the physical space followed by a transformation
of the non-linear term to the spectral domain. The grid in the physical space, the so-called transform
grid, is the intersection of the K, equally spaced longitudes A=), and the K, Gaussian latitudes B=
(which are almost equally spaced in ¢).

The total number of arithmetic operations involved in the transform method may be counted for each
step in the procedure described above. In such counts a multiplication and an addition of real num-
bers are usually counted each as half an operation (Orszag, 1970). Such counts show (¢f., Machen-
hauer and Rasmussen, 1972) that for large values of N the number of operations involved in step
1 and step 4 is proportional to N? and that those involved in the Legendre transformations in steps
2 and 6 are proportional to N°. It is essential for the efficiency of the transform method that a Fast
Fourier Transform (FFT) algorithm (Cooley and Tukey, 1965) can be used in the Fourier transforms
involved in step 3 and step 5. The number of arithmetic operations involved in each FFT is propor-
tional to K logK,. This implies that if N is the maximum value satisfying (4.72) then when using
FFT the number of operations involved in step 3 and step 5 becomes proportional to N?logN for’
large values of N. So far it has not been possible to find an algorithm which, in analogy with the
FFT, cuts down the rate of increase of the number of operations involved in the Legendre transforms
in step 2 and step 6. A certain reduction in the number of operations can be obtained in global
models, at the expense of extra storage, by taking advantage of the fact that the Legendre functions
are either symmetric or antisymmetric with respect to the equator. The rate of increase for large N
is, hdwever, unchanged so that the total number of operations iﬁvolved in the computation of the
non-linear term will be dominated by the number of operations involved in the Legendre transform-
ations when N is large and therefore become approximately proportional to N°. This is still a con-
siderably reduced rate of increase compared to that of the interaction coefficient method. Instead of
an increase proportional to N° we have an increase proportional to N’ for large values of N. It should
be noted, however, that in practice, even for the high resolution models used at present for medium
range weather predictions, models are far from the asymptotic limit. This is due to the dominance
of grid point calculations, as the parameterization of physical processes, which for such models are
included in step 4 and for which the increase is proportional to N2 For the sake of completeness it
should be mentioned that for very small values of N the interaction coefficient method becomes the

most efficient method, in terms of number of operations involved.
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Whilst the Legendre transforms can be considered inefficient relative to the FFT the direct use of
(4.68) and (4.76) greatly facilitates computer coding of the transform method, using the successive
accumulation at each Gaussian latitude described above. Even if a fast Legendre transform could be
found it seems unlikely that it would be used in more complex multi-level models, as it would
necessitate simultaneous grid point representation of the full two dimensional grid or alternatively

substantial peripheral device usage.

4.5 Extensions to primitive equations models
4.5.1 Introduction | |

It was shown by Merilees (1968) that the spectral method in principle may be applied tb multi-level
pressure coordinate models if the differentiatedy forms of the equation of motion are used. In this
stream function y and velocity potential x may be used as the prognbstic variables describing the
velocity fields. Neglecting forcing and‘friction terms Merileees shows that three types of non-linear
terms appear in the equations, namely terms of the form k XVAeVB, VAeVB and AB, where A and
B are scalar variables. Corresponding to thesé different terms three types of interaction coefficients
arise, one of which is the coefficients defined in (4.62). The storage problem with the interaction
coefficient method for a more general model than the non-divergent barotropic model éonsidered in
subsection 4.4 becomes therefore even more obvious. The transform method may, however, be used
also for such models as each of the three types of non-linear terms becomes truncated series of spher-
ical harmonics (cf. Eliasen et al., 1970). If the triangular type of truncation is used for all variables
then the non-linear terms become truncated series with 0< |[m| <n<2N. Consequently the number
of Gaussian latifudes, K,, and equally spaced longitudes, K, to be used in the trénsform grid must
satisfy

> > 3N+1 -
= = 4.79
§1 3N+1 and K, 3 ‘ (4.79)

respectively. When using parallelogrammic truncations, the numbers must satisfy

> 2M+3J+1

2 g S dg7 S
K, = 3M+1 and Kz S -

1 (4’.80)

Concerning integral constraints of pressure-coordinate models it follows from Merilees (1968) that
when the lower boundary is assumed to be isobaric surface at which w= dp/dt=0 and an energetically

consistent vertical discretization is used then the spectral truncation does not disturb the energy
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consistency. This property of the spectral method is due to the fact that the total energy for such
models, just as for the non-divergent barotropic model, is a quadratic quantity in variables repre-
sented by spherical harmonics. The non-aliased truncation of the non-linear terms, therefore, implies
quasi-conservation of energy in adiabatic friction-free integrations in the same way as for the non-

divergent barotropic model.

Most non-balanced spectral models used at present are based on the general system of equations in
sigma- or hybrid-coordinates (Simmons and Burridge, 1981). For such models the mean kinetic
energy is a cubic quantity in variables, which are expanded in terms of spherical harmonics and
consequently a non-aliased truncation of non-linear terms does not automatically imply quasi-conser-
vation of the total energy. Weigle (1972) has made a detailed study of the conservation properties
of a shallow water model (the simplest sigma-coordinate model). He demonstrated that the time
derivative of the total energy, determined by the truncated set of spectral equations, in general is
non-zero. In other words, quasi-conservation of total energy is not automatically ensured in a spectral
shallow water model. In practice, however, experiments with this model as well as with more general
sigma-level models have shown that the total energy is very mearly conserved during adiabatic
friction-free integrations (¢f. Eliasen et al., 1970, Bourke, 1972; 1974, Hoskins and Simmons, 1975
and Baede et al., 1976).

When using the differentiated forms of the equations of motion, that is, the vorticity and divergence
equations, only true scalar variables are involved and no problems are encountered in representing
the variables in terms of spherical harmonics. Concerning systems of equations with the equations
of motion in the momentum form the question arises as to how the horizontal velocity field should
be represented in the spectral domain. As discussed in Subsection 4.2 the velocity components, u and
v, themselves should not be represented by truncated series of spherical harmonics, because both

components generally are discontinuous at the poles.

Robert (1966) succeeded in making the first spectral integration of a model based on the equations
of motion in the momentum form. He uses a representation of the velocity components, u and v,
which is equivalent to a truncated representation of the stream function y and the velocity potential
x in terms of surface spherical harmonics. Such a representation automatically fulfils the proper
boundary conditions at the poles. Using this representation of u and v, without any truncation in the

meridional representation. These untruncated tendencies are then converted to the equivalent ten-
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dencies in ¥ and x, which are finally truncated. The spectral computations are made using the Robert
functions mentioned in Subsection 4.4.4 and the computations are rather time consuming as all the
components in the non truncated meridional representation of the tendencies have to be computed.
He had, however, shown that the spectral method could be used also for the momentum form of the

equations of motion.

Eliasen et al. (1970) used the same principles as Robert in the integration of a spectral barotropic,
primitive equation model, i.e. a shallow water model. But here the variables were represented
directly in spherical harmonics. In the following Subsection the method introduced by these authors

will be presented.

452 An u-/v-equation model
given the representation of a velocity field by the truncated series of the stream function y and the

velocity potential x:

X
EEI N
v = v o
m=-N a=|m| ©:2 @8’
(4.81)
- IEU %8 _
X = T
me—i n__iml m w m,n g'
the equivalent representations of u and v, determined from the definitions
p w1 2 2
v 8 coOS¢ [32\ cosé ]
(4.82)
- ' 2
v T cosg [,81 + cosj 3@}
are
- 0 ~ N N , _ :
.‘.‘scgs‘p:;. = ) Uun Ym,n ?
A m=--N n=Im|< N (4.83)
- v a N+1 ¥
M NI mf - me2 mom

where the coefficients U,,, and V,_, are determined from the coefficients y,,, and x,,, by the rela-

tions
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1 . o , s
. _1 _ . _ . :
. m,n & {(n %) Dm,n Wm,n—l * lmxm,nr (F+2)Dm,n+1wm,nf1 b

(4.84)

1 ,
Vo= q(1-
mn =& (1B Dy oo Xy g+ imby o +(0¥2) Dy pyy xm'nﬂ} .

The relations (4.83) and (4.84) are easily derived by substituting (4.81) into (4.82) and by making
use of the relation (4.5). It is seen from (4.83) that u and v are represented by truncated series of
spherical harmonics, U and ¥, divided by cosé. We note that the series 0 and ¥ extend to one more
degree above that for { and %. When the series { and X are given then the series U and V can easily
be computed from the above relations (4.84) and the velocity field determined by (4.83) will then
automatically be a smooth continuous field all over the globe, including the pole points. It is obvious
that this must imply certain relations between the coefficients Uy, and V,_, as the number of these
coefficients is larger than the number of coefficients ¥, , and x,,, from which they are determined.
Such relations were derived by Eliasen er al. (1970), who called them truncation relations. Orszag
(1974) and Byrnak (1975) have later shown that these relations are equivalent to boundary conditions
at the poles and that such relations must be satisfied even for infinite series, if the velocity field to

be described is a smooth (infinitely differentiable) vector field.

It follows from the derivation that these relations must be valid also in the special case when y and
x can be represented by truncated series as those given in (4.81) in which case the following relations

are obtained between the coefficients in (4.83):

T (n-m); (n-m) , o . ) y
§=1m] (BA Um,n * GS i vﬁ,n) Fm,n 0 » - : (4.90a)
o (n-mdy (p-m) . o _
és]ml Gg Um,n + 8, l,vm,n’cp,n =0 v (4.90Db)
where

(n-m) 1 for n-m odd

6& =
D for n-m even
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and

( ; 0 for n-m odd
n-m o
% =

1 for n-m even .

Condition (4.90a) relates the coefficients describing the sj(mmetric part of the velocity field (that is,
U symmetric and V antisymmetric with respect to the Equator) and (4.90b) relates the coefficients
describing the antisymmetric velocity field.

As U and V are both real fields it suffices to consider the relations for m > 0. In the case m = o the
coefficients Uy, and V,, are real numbers and as the real and imaginary parts on the left-hand side

of (4.91) must vanish separately we get the following four relations

i

' s =0 »
5=0 6,n 0O

» I

N+1 : .
E a(n-m)c v = 0 3

B=0 S O,m 0,n
N+1

(n-m) =
E‘OES co,n UO,n 0 » s -

(4.82)

N+1 T

(n-m) = .
1 8 ConVn=0

Choosing the arbitrary constants

: -cm,N"'l - o 1 % ..

then the values of C,, for n 5 N are given by

_ (20+1 (H=ms1) (Nem) (N-n-1)....(n-m+1) .-}
mn eN+3 (N+m+1) (N+m) (N+m-1)....(n+m+1)

(see Byrnak, 1975).
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By using the representations (4.83) for u and v, truncated spectral forms of the primitive equations

of motion may be derived. We shall illustrate the procedure by considering the shallow water model

equations. Substituting

cos¢ and v ~ cos¢
these may be written

U

a th_ = T__:;T [_UU()\) + VU(U)] + 20auVv _q>()‘) ’
F,Gow)

3V i \

T [-UV“‘) + v _ pz a2y ]- 20ap U +¢™) , (4.93)
Fo(Au , : s

a - [-Ua»“‘) +ve (W) _pp(M)e w(")] )

Fg(k ih)

where the operators introduced in (4.73) are used. Substituting the series 0,V given by (4.83) and
the series
~ N

N
e=7 1.

.9 Y
o=-N n=|m|™® ™%

for U,V and & respectively and applying the operator { },,,, defined in (4.21), to each of the equa-

tions we obtain the following set of spectral equations:
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du_ o
m 3 - _s
&g — _{Fl(}"u)}m,n + Zna.(Dm’an'n__1 + Dm,n+lvm,n+l) J.m<1>m'n 9
dVm n o
———2 00 = e , Tl -
ol T {qu'“)}m,n znal(Dm,num,n--l + Dm,n+1 Um,n+1)
+((n-1) Dm,n‘pm,nfl ~ (n+2) Dm,n+_1¢m,n+1)’
ds ~
o,n _
R i {FS(A’”)}m,n '

(4.94)

where we have applied the relations (4.5) and the orthogonality condition (4.14).

The non-linear terms may be computed by the tl_'ansform method described above for the advection

term in the vorticity equation. For {F,},, for example we have

1
{F1 }m,n = 3 LlFlm(u) Pm,n(u) du

=35 off2r1 qu) B G o

k=l
where
- 27 . PO
1 . f - . - .
‘Flm(uk} = P jofl(k, Uk) & dA
Kl .
1 § F 2 - imi
W e B } 2 j
Ky Gug 3 37ET _
and

- g(2) . g(w) ]
(80T 0 L) TG ) TW0 ]

= - 1
Fl(lj.uk)—41_ukz

The above procedure is analogous to that described in Subsection 4.4.5.
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The truncation procedure must, however, be somewhat modified. If all the tendencies (d/d)U,, , and
(d/dt)V,,;, within the given truncation limits were computed using (4.94), without any corrections,
then the tendency field would not in general satisfy the pole conditions (4.91) and the field would
not be a smooth vector function. Furthermore, if such a procedure were used in a pressure coordinate
model the quasi-energy conservation property would be lost. On the other hand, if the truncation of
the tendencies of U and V i carried out in such a way that it is equivalent to a non-aliased truncation
of tendencies for the y and x -fields, then a smooth vector function as well as quasi-energy conserva-
tion in pressure coordinate models are automatically obtained. Following Robert (1966) this principle
was used by Eliasen et al. (1970). We shall briefly describe the truncation procedure developed by

these authors.

Differentiating (4.84) with respect to time gives the relations

i dy ‘ dax dy

m,n _. . _'m,n-1 m,n _ n+l
T N S e o (0*2) Dy o1 at -
dav dX dy dx
m,n _ - m,n-1 m,n m,n+1
a 43— = (-0 D,[“Jn -—-’—-——dt . + imﬁ——?—-_ i * (n+2) »Dm,n+1 & -

(4.95)

For each m we wish to truncate the time derivatives on the left-hand side in such a way that all
contributions from the timé derivatives (d/dt)y,, , and (d/dt)x,,, with m > N are neglected. It is seen
that this implies that all the time derivatives of U,, and V,,, with n > N+1 shall be neglected.
Concerning the time derivatives (d/dt)U,,, and (d/dt)V,, with n  N-1 it is seen that they include
only contributions from time derivatives of y,,, and X, which we want to retain. These time
derivatives may, therefore, be computed directly, and without any correction from the spectral
primitive equations (4.94). The four time derivatives of U, and v,,, forn = Nandn = N+1 on
the other hand include contributions from the time derivatives of Y, and x,, with n = N+1 and
n = N+2 which we want to neglect. The values of these time derivatives, computed from the
primitive equations must therefore be corrected. It is obvious that such corrected tendencies must
satisfy polar conditions similar to (4.91). For m = 0 this gives four relations corresponding to (4.92)

from which the four corrected tendencies are determined by the time derivatives (d/dt)U,,, and
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(d/dt)V,,, for n < N. For m # 0, however, we have only two relations, and we, therefore, have
to correct two of the time derivatives in another way. From (4.95) it is seen that the corrected values
(d/d)Ucef and (d/dt)VEer are given by ‘

d cor a : . ' é '
& "n,N " @ Um N * (N“zm ,N+1 &t Vm, N+1 ’

(4.96)

-d

a geor _d o
v at v, 2 (Ne2) D, N+1 3F Ya,me1 v

.dt ‘m,N " dF m,N

where the uncorrected values d(U,, ,)/dt and d(V,, n)/dt can be determined from the primitive equa-
tions. Thus, if the time derivatives d(Yyn+1)/dt and d(x,, x.,)/dt can be determined in some other way
then the corrected coefﬁcnents in (4.96) can be computed and the remammg two corrected coeffi-

cients can be computed from the relatlons corresponding to (4.91).

The method used by Eliasen et al. (1970) to compute d(Yn+1)/dt and d(x, n.,)/dt, is based on the

following relation

1
(e(a,B), = 4 [[1may0) B, G + B By ()] &

=1 .
(4.97)

Here A and B are some fields which are known to be zero at the poles A, and B, are the Fourier

coefficients

: T i -

A =L I AGh,p) e ~1MAgy 7,
T o

(4.98)

27 o
Baw) = 3 [ BOLw e TMMay
; |

and the operator « is defined by
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a(A,B) = i—_i'z' [g% + (1-p?) glj-] . (4.99)

In the derivation of (4.97) we have used integration by parts and the fact that B, and A, are zero
at the poles. Noting that the vorticity { = v*J and the divergence § = vZx may be written as

VR = Za(V,-0) »
(4.100)

VX = (U, V) »

I

we obtain, by differentiating these expressions with respect to time and by using (4.97), the following

relations

1
dy dv (s34)
R - 2, ) [ {im =2 P - -2y } du 21
dt n{n+l) 21 dt "m,n dt m,n .7 1-u
(4.101)
1 .
X n . _a . I cim T g o du
dt ninti? 4 dt m,n dt ‘m,m ‘1-p?°

As the integrands are polynomials in p the integrals can be computed using Gaussian quadrature,
which gives the exact values if a sufficient number of latitudes is used. The values of the Fourier
coefficients d(U,)/dt and d(V,,)/dt to be used in the computations are easily obtained when the same
Gaussian latitudes are used in the evaluation of the non-linear terms of the primitive equations (4.94).
For the model considered it is found that in order to compute d(Y, n,,)/dt and d(xm,N+,)/dt, which
we need in (4.96), the number of longitudes K, and latitudes K, to be used in the transform grid must
satisfy K, > 3N+1 and K, > (3/2)N+1 when triangular truncations are used and K, Z 3M+1 and
K, 2 M+(3/2)J+1 when parallelogrammic truncations are used.
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4.5.3 A vorticity and divergence equations model

When using the grid point method it is a big advantage to use the u-/v- equations instead of the
vorticity and divergence equations. The main reason for this fact is that it is a time consuming
process to solve a Helmholtz equation when using the grid point method. With the spectral method
based on spherical harmonics the basis functions have been chosen as eigensolutiohs of ﬂ‘;e Helmbholtz
equation and the solution therefore becomes a simple operation. Bourke (1972) has shown that a very
efficient spectral model can be formulated using speéial forms of the vorticity and divergence equa-

tions. For the shallow water model he uses the prognostic equations

én L L] v
3% V nvs
98 * O 2 {;2 ' |
-ﬁ = k¥ xnV -V ( E + & ), (4.102)
_a_@'_ = =V o B - 24
T Ved'yv ¢ )

where = {+f = v%)+20sing is the absolute vorticity, 6 = vy is the divergence and ® = &+&’
is the geopotential at the free surface; ® denotes a time-independent global mean and &’ denotes the
deviation from the mean. The advantage of using the equations in this form is that the terms on the
right-hand sides involve only the Laplacian operator or the o operator defined in (4.99), both of
which are simple to handle when using spectral algebra. We shall consider a slightly changed version
of Bourke’s model following Hoskins and Simmons (1975) in the use of absolute vorticity and

divergence instead of stream function and velocity potential as dependent variables.

The equations (4.102) may be written

-—t=-§a(nU,nV)'7

2 2
‘}E‘%a(nv;- Uy - Vz[lzl_(;‘l_fu_zT . 4,.] , (4.103)
L}
2%—:-1'&&(¢'U,¢‘V) %5
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Using the triangular truncation, the following expansions are introduced

- N N
nE 1§1=-N rzl=|ml nm,,n Ym,n ? . (4,104a)
~ N N
&= r%——N r21=|m| m,n Ym,n ? (4.104Db)
-~ N N
v £=—N g=rml Qm,n Ym,n . (4.104c)

The expansions for U and V corresponding to (4.104a) and (4.104b) are of the form (4.83) where
relations between the coefficients 7,,, and 8, and the coefficients U, and V,, are obtained from

the relations (4.84).

These relations may be written

= 1 _im 1
Um,n =a [ “n Dm,n ®m,n-1 narD)%m,n ¥ ¥l Dm,n+1 Em,n+1] ?
(4.105)
=ga |1 JAim 1
vm,n a2 [n Drn,n 5m,n-1 n(n+1) °m,n ~ n+l Dm,n+1 Sm,n+1 ] }

where we have used (4.13) together with the fact that } = v?} and § = v}, which implies the

relations

- _ n(n+1) "
m,n a m,n
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and

s = _ n(n+1) Xm

m,n a ,n.

The coefficients ¢, , for the relative vorticity are identical to those for the absolute vorticity, 1, .,
except for (m,n) = (0,1). This follows from the relation n =  + 20u = ¢ + 2OV 3)P,,,, which
" implies that ’

mn for (m,n) ¥ (0,1), (4.108)
m,n ~ ‘

n - 29 for (m,n) = (0,1).

A A AN

The truncated spectral equations are obtained as usual by inserting the truncated expansions ;,%,%
for the basic variables and those for the auxiliary variables §,{ and then applying the operator { }. .
on both sides of each equation, utilising the orthonormality of the spherical harmonics. The result

is

d -

T "m,n Apon ?

d -

at Smn " Bon Y% %mn ? (4.107)
d , _

at®mn =Cpp - ® 54 7

where the non-linear terms are determined by

- t Lol AN
Am,n-'{éia(nn’nv) }m,n ?
- b -
Bm,n'{a','i(nv’ nU)}m,n + En{p_(l— m.n 2 (4.108)

A A A A

— 1 v
Ca,n = —l&(e U,tb'V)}m,n .
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These terms are readily computed by the transform method using (4.104a), (4.104¢), (4.105), (4.83),
(4.98) and (4.97) where as usual the quadrature formulae (3.26) and (4.67) are used in the evaluation
of the integrals involved. In order to avoid aliasing K, and K, must satisfy (4.79) or (4.80) if the

truncation chosen is triangular or parallelogrammic.

For comparative purposes Bourke (1972) made a number of integrations with different thomboidal
truncations (M=1J) using the transform method as well as the interaction coefficient method. The
computation time per time step was measured for both methods and the results are presented in

Figure 10, which clearly illustrates the computational advantage of the transform method.

A comparison of Bourke’s transform model with the U and V model described in the preceding
Subsection shows that for low to medium resolutions approximately the same number of arithmetic
operations is involved. As, however, Bourke’s model involves two more Legendre transforms than
the U and V model should become less efficient for high resolutions. The two methods are of course
equivalent methods of integrations as the U and V model simulates the truncation that would pertain
to prognostics for vorticity and divergence. The truncation procedure is, however, more straightfor-
ward in Bourke’s model, since the prognostic variables are true scalars. Another advantage with
Bourke’s model is that the implementation of a semi-implicit time scheme is facilitated by the explicit
prognostic for divergence. Although more complicated, the semi-implicit time scheme may, however,
also be incorporated in a U and V model (Byrnak, 1975).

For comparative purposes we shall consider the implementation of the semi-implicit time scheme to

Bourke’s model. We introduce a representation at discrete times and use the standard notation

t+At

§X = (X - xt8ty 0t

(4.109)

t+At t-At

Lol
1

=% (X + X ) .

In the semi-implicit scheme we use an averaging in time for the gravity wave terms and a centered

time differencing for the time derivatives. This scheme gives
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. At

¢ "m,n = An,n !
= gt 5t '

Gt Gm,n Bm,n + € ¢m,n ? (4.110)
=ct - F5t

|5t °m,n Cm,n ¢ 6m,n

As the vorticity equation does not involve any gravity wave terms, the values ,7;" are explicitly
determined from the first equation. Using the relation 6X = (X* - X*2/At and eliminating
from the last two equations, we get
a - 5;:31:) - At%% B;’n} .
(4.111)
Thus, for all spectral components 7’5;: is determined explicitly by quantities known at the time
considered. Once these values have been computed the values ®!*4' and 6.*5' can be obtained
direcﬂy from (4.109) and (4.110). Thus, for this model the semi-implicit scheme involves only very
little extra computations each time step compared to an explicit scheme. On the other hand, for a grid
point model the extra computations are much more extensive. For a grid point model we get instead
of (4.111) an elliptic finite difference equation which is of the Helmholtz type. This equation must
be solved every time step. The simplicity of (4.111) compared to the corresponding finite difference
equation is obviously due to the fact that the spherical harmonics are eigensolution to the Helmholtz

equation.

4.5.4  New variants of the spectral method
Recently a new variant of the transform method for the global shallow-water equations have been

proposed. In the course of developing a semi-Lagrangian spectral model, Ritchie (1988) discarded

the vorticity and divergence equations (since the latter does not lend itself to semi-Lagrangian
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treatment), and returned to the prognostic equations (4.93) for U and V on the model’s transform
grid. Nevertheless he kept the spectral representation of vorticity, divergence and geopotential
(4.104).

The values of the spectral coefficients U,,, and V,,, can be computed using (4.105). Using these
coefficients and those of ¢ the gridpoint values of §, ¥, §®, {%, 4, 4® and }® are computed as
usual. The remaining grid point fields to be used in (4.93), namely U and V® are obtained by
computing at first grid point values of } and } (using 4.104a and 4.104b) and then the relationships

0¥ = 1497 - 39,

PO = (1)) + 4O
The right hand sides of (4.93) can then be computed in the transform grid.

The inverse transforms back to spectral space of the tendencies of 4 proceed as usual, i.e. as shown
in Section 4.5.2, whereas a new approach is introduced by using (4.101) (multiplied by -n(n+ 1)/a%

to obtain the spectral coefficients of the tendencies of vorticity and divergence.

A time extrapolation may then be performed in spectral space. As Ritchie’s formulation is intended
for semi-Lagrangian advection, which we shall not consider here, the time extrapolation is done
partly in grid point space in his formulation. Concerning computational cost it may be noted that by
the use of the transforms (4.101) for all (m,n) two more of the expensive Legendre transforms are
needed in Ritchie’s method than in that of Eliasen et al. (1970) described in Section 4.5.2. It has
been shown, however, by Temperton (1991) that (4.101) may be computed with only two Legendre
transforms instead of four. The transforms (4.101) were based on (4.97) which by use of (4.78) and
(4.523) may be written
{e(A,B},., = imA,, + nD,,,B,,.,+1 @+ 1)D, B,

where 4.112)

o~

( an = % 120uPan() du/(14).

When using this new expression (4.112) instead of (4.97) we get expressions corresponding to

(4.101) which involve only two Legendre transforms, namely:
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dp/ar),, = % i (U /AP, du/(1-4%)
and

(dy/dt),,

i

1% .1 @V, /AP, dp/(1-p3).

It may be noted that when using a similar technique in Bourke’s model the number of Legendre

transforms can be reduced to that of the U and V models.

It is obvious that Ritchie’s formulation must be equivalent to those of Bourke (1972) and Eliasen et
al. (1970) which were presented in the previous Sections. This was shown explicitly by Ritchie
(1988). |

An alternative new version of the transform method based on a vector spherical harmonic representa-
tion of the vector wind components u and v were proposed by Browning et al. (1989). It was
subsequently shown by Temperton (1991) that this new formulation was equivalent to the formula-
tions considered above in the present and previous Sections. As stated by Temperton (1991): "This
illustrates one of the nice features of the spectral method: although there is certainly more than one

way to organize the computations, there is fundamentally no argument about what is to be done”.

4.5.5 Baroclinic spectral models

At the present time most global atmospheric models used for weather forecasting and climate simula-
tions are spectral models. The spectral representation in the horizontal direction has usually been
combined with a discrete representation in the vertical direction, although spectral representations
as well as a finite element representation have also been considered (see references at the end of

Section 2).

When using a discrete representation in the vertical direction the extension to baroclinic models of
the spectral method described above is rather straightforward. The equations in sigma- or hybrid-
coordinates are used and generally vorticity, divergence, temperature, specific humidity, and the

logarithm of surface pressure are chosen as prognostic variables.

Some terms in the equations, e.g. vertical advection terms, become triple products of the variables.
Using triangular truncation such terms become truncated series with n = 3N and in order to avoid

aliased interactions the numbers of longitudes K, and latitudes K, in the transform grid must satisfy
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K, 2 4N+1, K, 2 (aN+1)/2 . (4.113)

For parallelogrammic truncations the corresponding numbers become

K, = 4M+1, K, = (4M+4J+1)/2 . (4.114)

1

The remaining non-linear terms in the non-adiabatic frictionless part of the prognostic equations are
only quadratic products and require only numbers of longitudes and latitudes which satisfy (4.79) or
(4.80).

As mentioned in the introduction it is a big advantage of the transform method that the parameteriza-
tion of physical processes, which depends upon locally determined decisions, can be included in
physical space in the transform grid points. Utilizing this possibility spectral multi-level models with

advanced parameterization of physical and sub-truncation scale processes have been developed.

Based on experiments by Bourke (1974), Hoskins and Simmons (1975) the number of grid points in
the transform grid are generally chosen to satisfy (4.79) and (4.80) and not (4.113) or (4.114). That
is, only linear and quadratic terms are calculated alias-free whereas aliasing is allowed for triple
terms and for the parameterization of physical processes, which introduce a non-linearity of higher
degree than quadratic. The above mentioned experiments indicate that the effect of this aliasing is

acceptable.

According to Bourke et al. (1977) who uses the rhomboidal truncation an increase of the number of
points above that determined by the minimum satisfying equation (4.80) has a negligible effect. On
the other hand a decrease of the number K, of points along all Gaussian latitudes below the minimum

determined by (4.80) was found to give unsatisfactory results.

The effect of reducing the number of Gaussian latitudes below the limits determined by (4.80) was
not investigated. If both K, and K, are reduced to the numbers required to give alias-free calculations
of linear terms only, that is with triangular truncations to K, = 2N+1, K, = N+1, then one should

expect non-linear instability at least in the absence of artificial damping of small scale waves. This
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is indeed found to be the case. So, a shallow water model i.e. the model described by Machenhauer
and Rasmussen (1972) is found to "explode” within a few time steps, when K, and K, are set equal

to these values.

Although a general reduction of the number of points along the Gaussian latitude circles seems to
give unsatisfactory results, experiments by the author Machenhauer, (1979) indicated that when a
triangular truncation is used a certain reduction of points along latitude circles below the value 3N+1
can be made in middle to higher latitudes without any significant change of the integration results.
This could be expected, since the resolution given by a triangular truncated spectral representation
is isotropic and uniform all over the globe, whereas the transform grid, with the same number of
points at all latitude circles, is highly non-isotropic and non-uniform due to the convergence of the

meridians towards the poles.

Recently Hortal and Simmons (1991) made experiments with a transform grid in which the number
of points at the Gaussian latitudes were reduced in such a way that the grid length in the zonal
direction became as large as possible when requiring that it does not exceed the standard grid length
at the equator and that the number of points enables the use of a fast Fourier transform. They report
on a saving in computational time between 20% and 25% for the TI06 ECMWF forecast model with

no significant loss of accuracy compared with the use of the standard transform grid.

As explained in Subsection 4.4.4 the truncated spectral equations for inviscid non-divergent flow
conserve the mean kinetic energy and the mean enstrophy. In numerical integrations of these equa-
tions non-conservation of the invariants can be due only to round-off errors and time truncation. In
practice, it is found that the effect of these errors is very small even for very long period integrations
(Ellsaesser, 1966). As a consequence the average two-dimensional wavenumber is very nearly
conserved and an unlimited systematic energy cascade towards the highest wavenumbers n is not
possible. Nevertheless, as noted in Subsection 4.4.4, a certain blocking of energy in the highest
wavenumbers is not excluded if at the same time energy is transferred to low wavenumbers. That
such a blocking does in fact occur was shown by Puri and Bourke (1974). Two 8 day integrations
with thomboidal truncations, M=15 and M=36, were compared. In both integrations the same initial
field, derived from observed data, was used. The total kinetic energy in each zonal wavenumber m
was considered as a function of m. A considerable blocking of energy in the M=15 integration in

the region m = 10 to m = 15 was found already after 4 days of integration. The blocking is illus-
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trated in Figure 11, which shows the energy spectra averaged over the whole 8 day integrations
period. As expected, this blocking shows up even more strongly in the enstrophy spectrum. It was
shown by Gordon and Stern (1974) that the blocking phenomenon occurs in a spectral shallow water

model as well and apparently it was found also by Bourke (1974) in his multi-level model.

The blocking phenomenon is a result of neglecting interactions involving components outside the
truncation limits. It is observed as a gradual increase of energy in the small scale components and
occurs most strongly and at an earlier time in low resolution models than in high resolution models.
Apparently a damping influence on the smallest scales retained is missing. When the amplitudes of
the small scale components have grown to unrealistically large values, one should expect that event-

ually, through non-linear interactions, this will lead to serious errors of the large scale components.

As expected one finds that some parameterization of the scale selective damping influence of the
components outside the truncation limits do improve the integration results and that such a parameter-
ization is needed especially in longer range low resolution models. Even in short range forecasting
Bourke (1974) finds that some parameterization is required to inhibit spectral blocking, when using
a thomboidal truncation with M = 15 (R15). How the parameterization is most effectively introduced
is still an open question, the form and magnitude chosen vary widely in different spectral models.
We shall mention some formulations which are often used. Bourke (1974) and Gordon and Stern
(1974) add linear diffusion terms of the form K, v2( ) to the prognostic equations, whereas Simmons
and Hoskins (1978) use diffusion terms of the form K, v*( ), which damp the small scale components
more selectively. Bourke (1974) applies the diffusion only to components with n > M, i.e. for the
components in the upper half of the rhombus in the m,n - diagram, and only in the prognostics for
vorticity, temperature and logarithm of surface pressure. For divergence a linear dissipation term of
the form -K$ is added, which serves the dual purpose of preventing blocking and suppressing spuri-
ous gravity oscillations. The above linear diffusion and dissipation terms are simple to include in a

spectral model because of the property (4.13) of the spherical harmonics.
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