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Summary: This paper discusses selected topics in the area of
nonoscillatory advection schemes. These include stability properties of
sign-preserving schemes, design and degrees of freedom of flux-corrected-
transport (FCT) monotonicity-preserving schemes, and implementation of
the nonoscillatory advection schemes as interpolation operators in semi-
Lagrangian approximations for atmospheric fluids.

1. INTRODUCTION

One complaint against traditional numerical methods for advection trdnsport is that
they usually lead to negative, values in the positive-definite scalar fields (e.g., water
substance, chemical tracers) or, in more general terms, to spurious numerical over-
and undershots in regions of steep gradients in these variables. Such numerical noise,
which may be acceptable where advection is the only concern, may lead to large errorsin
nonlinear interactions between the two advected scalars (e.g., where small negative value
multiplies large positive value — as may happen, for instance, in chemical reactions or
phase-change processes). Traditional techniques that are free of these problems are only
ﬁrst—brder-accurate and exhibit a tendency to overly diffuse numerical solutions. In the
last two decades, advanced finite-difference methods for solving the transport problem
have been designed that are essentially free of the spurious oscillations characteristic of
higher-order methods yet do not suffer from the excessive implicit diffusion characteristic
of low-order methods (see Sweby, 1984; Zalesak, 1987; Smolarkiewicz and Grabowski,
1990, for reviews and discussions). Although these essentially nonlinear algorithms are
far more complex than the traditional linear schemes, they offer strong (linear and
nonlinear) stability, maintain steep gradients of the transported fields, and preserve
the monotonicity and/or sign of the advected variable. These properties make them
potentially attractive tools for applications which combine transport with processes

responsible for coupling the advected variables.

1 The National Center for Atmospheric Research is sponsored by the National Science
Foundation ‘
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The majority of existing nonoscillatory methods [also referred to as monotonicity
or shape preserving, shock capturing, total variation diminishing (TVD), or briefly,
monotone schemes'] were designed keeping in mind the applications to shock-forming
flows. Such applications demand from numerical methods certain specific properties
that are not necessarily essential in typical atmospheric problems. In atmospheric
applications, methods suppressing spurious oscillations are usually considered in the
context of advection transport equations; and their most advertised properties are
sign-preservation and the overall smooth appearance of the solutioﬁs. In applications
addressing shock-forming flows, nonoscillatory techniques are usually discussed in the
context of the conservation laws of compressible gas dynamics, and the focus of interest
is on the convergence of numerical approximations to the un.ique,' physically relevant
solution (cf. Harten et al., 1976; Merriam, 1989). Although the theory of TVD methods
for scalar conservation laws has been considerably advanced during the last decade, so
far it has had a limited impact upon the development of numerical methods in the
area of meteorology. One reason for this is that systems of equations modeling natural
atmospheric phenomena appear far more complex than idealized conservation laws that
are of concern in the area of theoretical, numerical analysis. Complexity of atmospheric
equations associated with multidimensionality, earth rotation, sphericity, orography,
phase-change processes, radiation, chemical reactions, and other natural effects makes
stability, second-order accuracy, generality, and computational efliciency the primary

concerns of atmospheric models.

Keeping in mind the practical needs of meteorology, we shall address in this paper .
selected nonoscillatory methods for advection transport equations that have proven
useful in a variety of complex atmospheric applications. The intention of this lecture is
to expose those underlying concepts common to many nonoscillatory methods that
are universally applicable to arbitrary atmospheric flows.? Further in this paper,

we shall take the freedom of recognizing sign-preserving algorithms as a class of

! This nomenclature, popular in applications, is somewhat misleading as it mixes
terms that in the mathematical literature may have different precise meanings (e.g.,
monotone and monotonicity preserving schemes; see Harten, 1983).

? Although there is a wide availability of nonoscillatory techniques suitable for constant-
coeflicient advection in one spatial dimension, there are few techniques adequate for
general flows.
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nonoscillatory methods? as they are particularly important for atmospheric applications
and employ certain general concepts inherent in advanced nonlinear techniques. In order
to emphasize that there is more to nonoscillatory advection schemes than just sign-
preservation and smooth appearance of approximate solutions, we shall discuss in the
following section the stability properties of nonoscillatory schemes. Section 3 deals in
some detail with the principles and degrees of freedom of monotonicity-preserving flux-
corrected-transport (FCT) methods (the original TVD schemes) whose derivatives are
becoming increasingly more popular in meteorological modeling. ‘Section 4 addresses
a particular class of applications, where simple, one-dimensional monotone transport
algorithms suitable for integrating a constant-coefficient advection equation play the
role of interpolation operators in sem-Lagrangla.n approximations for an arbitrary

atmospheric-fluid system.

2. COMPUTATIONAL STABILITY OF NONOSCILLATORY ADVECTION
SCHEMES

The basic equation to be solved is the continuity equation describing the transport of a

nondiffusive scalar quantity in M-dimensional space,

2 2 2wl =0, 1)
where 9 = (¢, 2!,..,2M) is the nondiffusive scalar quantity; u! = w’(¢,2?,..,2M) is the -
I* yelocity component, I = 1,...,M; and ¢,x = (z!,...,2M) are the time- and space-
independent variables. In order to compress the notation in the following numerical
equations; we choose traditional n and iindices to denote, respectively, the temporal and
spatial position on a uniform computational grid (", x;) = (nAt,i; AXY, .., i AXM);
and adopt er for the unity vector in the I direction li.e., er = (0,.,1,..,0) with 1
appearing at the I position]. A conservative advection algorithm for integration of (1)
may then be compactly written as:

M

'¢’;n+1 =P - Z (Fiﬂ-l/ze; - FiI—l/ze,) ’ (2)

I=1

3In general, the sign-preserving schemes are subject to spurious over- and
undershooting; however, they are usually nonoscillatory near “zeros” of the
transported variable.
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where Fl i+1/20; AX is an approximation to the I component of the integrated advective
flux, evaluated at i+ e position on the grid based on the information provided in a
local neighborhood of the i+ ler grid point. Since in (2) the time level of the fluxes
may be taken at any positibn, this equation represents the general form of an arbitrary
finite-difference flux-form scheme. For the sake of illustration, the fluxes from selected,

elementary, one-dimensional advection schemes are explicitly written as follows:

F:'+1/2 = [a:-‘+1/2]+1/)? + [a?+1/2]‘¢{‘+1 s (3‘1)
1 n n n 1 7 n n
Fi+1/2 = ’éai+1/2(¢i+1 +¥7) - 'Z'(ai+1/2)2('¢:’+1 %), (30)
P Q"2 (ynt1/2 n+1/2 3
+1/2 = .+1/2 (1lbs+1 + ¢i ) ’ ( c)

where a = "K%g is a local Courant number, defined on a staggered grid, and [ 1,

[ ]~ denote the nonnegative- and nonpositive-part operators, respectively. Equations
(3a-c) provide fluxes from, correspondingly, the first-order-accurate donor-cell (alias
upwind, upstream) scheme, the second-order-accurate (for uniform flow) Lax-Wendroff
scheme,? and the second-order-accurate, centered-in-time-and-space (leap-frog) scheme.
A simple, compact form of the advective fluxes in (3a-c) is typical of elementary
advection schemes. The nonoscillatory methods yield complex fluxes that often require
several equations for their explicit representation. An example of such a method will
be discussed in the next section, while further in this section we shall investigate the
stability properties common to many nonoscillatory methods regardless of their explicit

formulation.

In order to assess the computational sta,bi].ii;).r of nonoscillatory schemes, consider first a
constant-sign field 9(¢,x) in (1) and an arbitrary, sign-preserving advection algorithm
in (2). For simplicity, assume that both analytic and numerical fluxes vanish at the

boundaries of a computational domain. Then, the conservation form of (2) implies

Sowr=> 4. (4)
i i

% See the accompanying paper in this volume for a detailed discussion of this scheme as
well as its extensions and derivatives.
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Since the scheme preserves the sign of the transported quantity by assumption, (4) is

equivalent to .

' v

S =Yl | (5)
i i

Recalling that 3| | > (32( )?)3, (5) implies that

YWy < (T’

B. | (6)

In .other words, total “energy” (“entropy”) of the sign-preserving solution is uniformly
bounded in time_, which is to say that the sign-preserving solution is computationally
stable. Since for a sufficiently small time step advection schemes can be designed which
are sign-preserving for afbitrary flows (e.g., Smolarkiewicz, 1984; Smolarkiewicz and
Clark, 1986), the inequality in (6) is a statement of both linear and nonlinear stability

for such schemes.

The simplicity of the result in (6) is a direct consequence of the assumption that 3 is
of a constant sign. For‘va.i'iable-sig_p fields, a similar result may be obtained by noting
that every 1/1 may be uniquely decdmposed into the noni:osiﬁve and noimegative part,
¥ = []* + [¢]~. Since the two parts have disjoined supports, they are independent
of eacli other, and they both satisfy (1). Apﬁlying a sign-preserving advection scheme
to both parts ensures uniform boundedness of both [)]* and []~, and consequently of
their sum. Such arguments can be further elaborated (over a single time step) for
the transport eqﬁation with forcings and/or sources leading to the conclusion that
sign-preserving advection schemes® offer the means of controlling nonlinear stability
in numerical models. This result is rarely appreciated in the meteorological literature,
where sign— and/or shape-preserving schemes are usually considered in the context of
their elementary (defining) properties, and where Arskawa-type schemes (Arakawa,
1966) are thought to be the obvious choice insofar as the nonlinearly stable, finite-

difference advection transport algorithms are concerned.

5 This also concerns monotonicity-preserving schemes, as every monotonicity-preserving
scheme is also sign-preserving (the opposite is not true).
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3. GENERAL FCT PROCEDURE

Among a variety of existing monotonicity-pre.serviné methods, the FCT schemes
originated by Boris and Book (1973), and later generalized to fully multidimensional
algorithms by Zalesak (1979), become perhaps the only modern nonlinear approach that
has been adopted on a permanent basis in sevefal atmospheric and oceanic research
models. It is important to realize that FCT is a general concept that allows several
degrees of freedom and may lead to many different schemes. A number of known
nonoscillatory techniques may be viewed as either a particular realization of the FCT
approach or as implementing certain conceptual elements of FCT in their design (see
Sweby, 1984, and Zalesak, 1987, for discussions). The basic idea of the FCT approach
is simple: The generic reason for the appearance of the oscillations in the numerically
generated higher-order-accurate solutions to (1) is that the magnitude of certain fluxes
is overestimated with respect to their analytic value. In contrast, the magnitude of
the fluxes given by the first-order-accurate schemes is underestimated, which results in
monotone but heavily damped soluifions (Zalesak, 1979). The FCT procedure overcomes
the problem of false oscillations by imposing appropriate limits on the transport fluxes
from the higher-order-accurate algorithms. In order to expose the degrees of freedom
and the assumptions invoked, we discuss below the essential aspects of the general FCT

scheme.

Consider an arbitrary, higher-order-accurate advection algorithm for the integration of

(1):

| M
’¢'{n+1 = '/’i" - E (FHi{H/ze, - FHiI-q/ze,) . (7)
I=1

The high-order FH-flux may be arbitrarily cast into the sum of the flux from a certain

low-order nonoscillatory scheme and the residual, i.e.,
FHiI+1/201 = FLiI+1/201 + AiI+1/‘2e, ) (8)

where (8) defines the residual A-flux, which has a sense of correcting at least the first-

order truncation error terms in the transport fluxes of the low-order scheme, i.e.,

Af11/20, ~ At- O(AX,At) + HOT (9)
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where HOT has the usual meaning of “higher order terms”. Because of this
compensation of the leading truncation-error term in a low-order scheme, the A-flux

is traditionally referred to as the “antidiffusive” flux. Using (8) in (7) results in

M
Ul Hal Z (Air+1/2ez - A;I_m;,) ? (10)
I=1

‘where “¥” denotes the solution given by the low-order scheme, which by assumption

satisfies

PAY > It > MY (11)

where pMAX and PHMIN are yet unspecified maximal and minimal values of the scalar
within the i** grid box that achieve the monotonicity of the scheme. Their explicit
form will be discussed later in this section. Inasmuch as \I"""1 preserves the monotone
character of the transported ﬁeld [by means of (11)], the eventual oscillatory behavior
in 1,6"'“ comes from overest1ma.t1ng the ma.gmtude of certain A-fluxes in (10). Thus, to

ensure ripple-free solut1ons it is sufﬁcmnt to appropnately Limit A—ﬂuxes such that

Ax+1/2e; = Cili1/20r * Ait1/201 > v | (12)

where C-coefficients, that in general are functions of the low- and high-order solutions

on the grid, are determined from the set of constraints

0 < Ciyyj2e, S 1 - (13)
and
M
' n A MIN
,‘biJMAX 2 1Abi +1 \If?‘i'l _ E (A{+1/2°I Ai 1/201) > 1!’ (14)
I=1
When C’lI_*_1 J2e1 is equal to zero or unity6 the resulting transport flux in (14) becomes

FL{ i+1/26; OF FH! i+1/20r respectively. The assumed convergence of the low-order
schemes involved in (8) together with (9), (12), and (13) ensure the convergence of
the ¢ solutions in (14) as AX, At — 0.

The constraints in (13) and (14) allow one to derive formally (see Smolarkiewicz

and Grabowski, 1990, for the step-by-step solution of the constraining inequalities)

®In some nonoscillatory schemes, a more generous upper limit is considered (Sweby,
1984).
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the explicit form of the C-coefficients and, comsequently, the explicit form of the
limited antidiffusive fluxes in (12). The derivation provides maximized A-fluxes in (12)

satisfying constraints (13) and (14):

A.+1/2e, = man (1’ﬂilvﬂiT+e,) [AiI+1/2e1] + min (1 ﬂ.T, +e,) [Al+1/2e1]— ,  (18)

where
MAX n+1 n4-1 MIN
A - ¥ U —

IN i ﬂil = ouUT ’
AV +e Af +e
and AN, APUT are the absolute va.lues of the total incoming and outgoing A-
fluxes from the itk grid box, A{N = E ([A -1/2°:]+ [Ax+1/2e1]_) and AiOUT =

I=

M
Z ([A1+1/2e1]+ [4 l__1/2'”] ), respectively. e is a small value, e.g., ~ 10715, which

at

(16a,b)

has been introduced herein to allow for efficient coding of B-ratios when AN or APUT
vanish. The equations (14),.(15), (8), and (16a, b) constitute a general, arbitrary
dimensional form of the FCT algorithm discussed by Zalesak (1979) (his formulas
14, 14' are not required to preserve monotonicity and, in my experiehce, may cause
certain pathological behaviors of the FCT schemes). The arbitrary dimensionality of
this procedure contrasts with the alternate-direction approach utilized by most other

monotone schemes.

In order to determine ﬂlT and ,Bn‘l uniquely, one must specify the limiter pM4X, HMIN
in (16a, b). The simple, standard limiter (Zalesak, 1979) is

"/’MAX = maz (¢i—ex7¢i ’¢1+en Fj—el:’ ‘I’n+1 ‘I’n—+°11 (17(1)
YN = min (B ey U7y Bleys U1, UPH, U1 ) (172)

The low-order, nonoscillatory ¥-solutions appearing in (17a, b) constitute the original
limiter of Boris and Book (1973). This limiter effectively prevents development of
spurious oscillations in an arbitrary flow field. Zalesak (1979) extended the original
limiter onto the local extrema of the solution at the previous time step. The goal
of this extension is to improve the predictions in incompressible flows where the
only extrema allowed in an arbitré,ry grid point are those that were present in its
immediate environment (determined by the CFL stability criteria) at the previous time

step; in principle, i.e., with accuracy to round-off errors, the original Boris and Book
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limiter is redundant in incompressible flows (which is a common case in meteorological
applications). Note that the limiters in (17) ensure uniform boundedness of the solution,
providing uniformly bounded ¥. Since uniform boundedness of the low-order solutions is
easily achievable, a nonlinear stability of the FCT approximations is assured essentially
by design. Note also that the FCT limiters in (17) impose tighter bounds on the
finite difference solutions than the “energy” (“entropy”) constraint (6) of sign-preserving

schemes considered in the preceding section.

Tﬁere are several degrees of freedom in the approach outlined. First, the constraints
(13) and (14) can be supplemented with some additional conditions which may need
to be satisfied by a final approximation. This degree of freedom has been exploited
in Grabowski and Smolarkiewicz (1990), where constraints (13) and (14) for the
temperature and water substance fields advected in a cloud model were supplemented
with a requirement that the diagnosed field of relative humidity and, therefore, a solution
to a complete advection-condensation cycle also remain nonoscillatory. Second, so long
as (11) holds, the limiters themselves may be, in principle, arbitrary.” This degree of
freedom is particularly useful wher'e synchronized limiting of a system of equations is
concerned (see for example Grabowski and Smolarkiewicz, 1990). Finally, the third
degree of freedom is in the choice of the high- and low-order schemes mixed by the
FCT procedure. As there are no essential restrictions imposed on the mixed schemes,

a variety of FCT algorithms may be designed.?

Insofer as the atmospheric applications are concerned, ¥ evaluated with the first-order-
accurate upwind scheme is usually considered as a low-order solution,” whereas the

leap-frog advection schemes are usually selected (following Zalesak, 1979) for the high-

T This emphasizes that a nonoscillatory character of the solutions is understood in a
relative sense with respect to ¥ and the limiters, and that the limiters essentially define
“monotonicity” of the resulting FCT scheme (for instance, selecting weaker limiters
¢MAX = oo and PMN = 0 leads to positive-definite, but apparently oscillatory,
advection schemes).

8 The formalism outlined does not necessanly require mixing of low- and hlgh-order
schemes but provides a general framework for mixing any two algorithms attractive
for a particular problem at hand.

°In applications addressing shock-forming flows, implicit diffusivity of the upwind
scheme may be insufficient to ensure smooth solutions, and more diffusive low-order
schemes may need to be considered (cf. Zalesak, 1979).
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order-accurate algorithms.!® However, as the resulting FCT algorithm mixes the two
schemes of different distributions of the truncation errors, it is not necessarily optimal
in terms of overall accuracy. The leap-frog schemes yield excellent amplitude behavior
but large phasé errors, whereas the upwind scheme suffers from large amplitude errors
but relatively small phase errors. Because the low- and high-order solutions are shifted
in phase, the FCT mixing of the two solutions (which should eliminate dispersive ripples

essentially without degrading the accuracy of the high-order solutions) is inefficient.

The latter point is illustrated in Fig. 1a, which shows the results of one-dimensional
‘uniform advection of the irregular signal (heavy solid line; see Smolarkiewicz and
‘Grabowski, 1990, for details). The dashed line corresponds to the leap-frog solution,
whereas the thin solid line displays the solution obtained with the upwind/leap-frog
FCT scheme. Although the FCT procedure efficiently removes the dispersive ripples, the
amplitudes of the initial perturbations are severely damped at the cost of improving the
phase error. The overall accuracy of the FCT solutions may be improved by employing
for the high-order scheme an algorithm of phase-error characteristics similar to those of
the low-order scheme. The nonlineé;;' MPDATA methods (already outlined in section 3 of
the accompanying paper in this volume) are an excellent choice for this purpose as they
yvield phase-errors similar to those in the upwind scheme (Smolarkiewicz and Clark,
1986). The MPDATA schemes, whose design is conceptually unrelated to the FCT
approach, are at least second-order-accurate for arbitrary flows and already preserve
the sign of the transported field (therefore, for many practical applications they do not
require additional FCT enhancement). Figure 1b shows the MPDATA solution (dashed
line) and the fully nonoscillatory solution obtained with the FCT version of this scheme
(thin solid line), as well as the analytic solution (heavy solid line). Comparison of the
three curves shows that the primary effect of the FCT modification is to remove the
overshoot and the undershoot present in the original MPDATA solution. Neither of
the solutions in Figs. 1a and 1b is capable of capturing the fine details of the initial
condition. This aspect of the solutions may be improved (Fig. 1c) by exploiting the
fourth-order-accurate dissipative scheme of Tremback et al. (1987) as the high-order

19 Such a choice appears natural in the context of multidimensional procedure, as leap-
frog schemes are both simple and second-order-accurate in arbitrary flows.
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4, rrrrrrrre e s e =,

0.

T

Figure 1. Uniform advection of the irregular signal (heavy solid lines) with oscillatory
schemes (dashed lines) and their nonoscillatory, FCT versions (thin solid lines): a) the
second-order-accurate leap-frog scheme, b) the second-order-accurate MPDATA, and c)
the fourth-order-accurate dissipative scheme of Tremback et al. (1987).
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scheme in the FCT procedure. However, this result is somewhat deceiving as the
employed algorithm achieves its formal accuracy only for one-dimensional, constant-
coeflicient advection equations (for discussion, see the accompanying paper in this

volume) and therefore is not universally attractive for applications with complex natural

flows.

The simple example discussed has illustrated only the most elementary aspects
of the FCT approach. The reader interested in a more elaborate discussion of
accuracy and efficiency of FCT schemes, as well as in applications representative of
natural atmospheric problems, is referred to Smolarkiewicz and Grabowski (1990), and

Grabowski and Smolarkiewicz (1990).

4. SEMI-LAGRANGIAN APPROXIMATIONS TO ATMOSPHERIC
FLUIDS USING NONOSCILLATORY ADVECTION SCHEMES

Having established general FCT procedure and its degrees of freedom, we shall
narrow the discussion herein to a special class of 'applica,tio‘ns which emphasizes the
utility and importance of all those one-dimensional nonoscillatory schemes which are
suitable for integrating merely a constant-coefficient advection equation. Although
such schemes are not particularly competitive in applications addressing complex
natural problems in Eulerian formulation, they become accurate and powerful tools
as nonoscillatory interpolation operators inherent in semi-Lagrangian representation of

equations governing atmospheric phenomena.

The notion of a semi-Lagrangian approach is simple. It originates with a Lagrangian

form of the evolution equation for a fluid variable 1)

dp
Z=r (18)

and the particular interpretation of its integral
B, t) = lxarte) + [ Ratt, (19)
T

where (x;,t) and (x,,%,) are the two points connected by a parcel’s trajectory T,

and R combines all sources and forces. Assuming that (x;,t) represents points of a
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regular mesh, one computes backward-in-time the trajectories arriving at (xi,t) and
finds their departure points (x,,%,). Since the departure points do not necessarily
coincide with the points of the mesh, information therein is not immediately available,
and one has to invoke an interpolation procedure to determine (x,,%,). In essence,
similar action must be taken with respect to the source term, with details depending
upon a selected method of the integral’s approximation and the particular problem at
hand. The backward-in-time integration of the trajectories and the nonconservative
form of the governing equations make the approach distinct from a class of mixed
arbitrary-Lagrangian-Eulerian (ALE) methods (Hirt et al., 1974) popular in the area
of computational fluid dynamics. The advertised advantages of‘ semi;Lagrangian
techniques are a circumvention of the CFL stability condition (typical of Eulerian
methods) and the convenience of a regular-mesh discretization (contrasting with purely
Lagrangian techniques). A v.a.riety of semi-Lagrangian methods has been designed
exploiting different interpolation techniques and different temporal discretizations (see

Staniforth and Cé6té, 1991, for a review).

The recent work of Smolarkiewici’ and Rasch (1990) suggests that semi-Lagrangian
methods represent a special case of a more general approach. Referring to elementary
properties of differential forms and viewing ap \}ariable a.sl a 0-form on the time-apace
continuum, one can relate two values of the variable at any two points of the continuum
through the Stokes’ theorem, gaaning thereby a large degree of freedom associated with
the selection of points and connecting contours. Selecting contours whose elements
coincide with parcels’ trajectories leads to a variety of semi-Lagrangian formulations.
Moreover, this approach documenfs that interpolation procedures — inherent to semi-
Lagrangian approximations — may be replaced avith Eulerian algorithms suitable
for integrating constant-coefficient advection equations while retaining their formal
accuracy and such attractive properties as monotonicity and/or sign preservation. In
order to show this latter point (which is of particular interest to applications), consider
the following interpolation problem: Let us assume that at an arbitrary instance ¢, (for
conciseness, the dependence of 4 on ¢, will be dropped in the following discussion) a
sufficiently continuous field 9 : RM — R! is known a priori in x; points of a uniform

mesh in RM. For the sake of clarity, we restrict ourselves to regular meshes with a

247



SMOLARKIEWICZ, P.X. N onoscillatory Advection Schemes

constant grid interval AX = (AX?,...,AXM) such that x; = i 0o AX. The problem
addressed is to provide an estimate of ¥, with certain desired accuracy, in a point of
interest X, noncoincident, in general, with any of x;’s. The traditional approach is to
expand 1 in, say, the p-th order Taylor sum about some x; from a local neighborhood
of X, and provide adequate estimates of the derivatives using information available on
the grid, or, equivalently, to evaluate 9 at x, based on the assumption that 1 fits a p-th
order Lagrangian polynomial in between the grid points (cf. Tremback et al., 1987).

Consider, however, an alternate approach.

As a consequence of the Stokes’ theorem,

(o) — p(xs) = / dx o Vi(x) , © (20)

C

where C' denotes an arbitrary contour connecting the point of interest x, with an
arbitrary x; of the computational grid. Exploiting the arbitrariness of the contour

selection in (20), we choose for C a line segment of the parametric equation
xX(xi,7) = — (%5 — Xo)7 + x5 , o . (21)

where the parameter 7 € [0, 1]. Implementing (21) in (20) gives

B(x,1) = ¢(x1,0) — [ (5t = x0) 0 Vi, ) (22)

where
b(xi,7) = ¥ (x(xi1,7)) . (23)

Since for fixed x, and x;, the first element of the scalar product appearing under the

integral in (22) is constant, (22) may be rewritten as

#(x1) = 6(x,0) = [ V0 (U4) ()i ()

where

U=x—x,. ‘ (25)

Although (24) can be obtained alternatively from the untruncated Taylor formula
(Smolarkiewicz and Grell, 1991), the current derivation is more general as it exposes
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the degree of freedom associated with a contour selection in (21); in particular, selecting
“the contour consisting of a sequence of the line segments parallel to spatial coordinates

leads to the alternate-direction (time-split) representation of (24).

Equation (24) represents the integral of the equation

%:i—i—Vo(Uqb):O‘ N (26)

over the T interval [0,1] at x; grid-point. In other wérds, (24) is a formal solution
to the advection equation (26) in which the free parameter T plays the role of a time
independent variable, and the vector U defined in (25) plays the role of the velocity field.
Therefore, the interpolation problem has been expressed as the equivalent advectién
problem, and (24) may be a.ppi'oxima.ted using, in principle, any known advection
algorithm. Among the variety of available advection algorithms, the forward-in-time
schemes are the most attractive for applications, as they require information on.ly from
x(x;,7 = 0) points in (21), where ¢(x1,0) = (xi) are known by assumptmn Such an

approximation may be compactly written as

¢i1 = ¢? —‘AS;((ﬁo,ﬂ) ) (27)

1 M
where f = KUX = AI{;CI’ ’AL_IXM

AT = 1), and the finite difference flux-divergence operator AS identifies an advection

) is an effective Courant number vector (reca.]l that

scheme defined by its particular dependence on the values of ¢ and 8 avmlable on the
mesh in a neighborhood of the x; grid point. The truncation error of the approximation
in (27) represents the error of estimating % at the point of interest x,. Choosing an
arbitrary grid point x;, that appears in the definition of the effective advecting velocity
(25), as the closest grid point to x,,

= [xo) = (NI(z}/AX") - AXY,...,NI(z¥ /AXM) . AXM) (28)

(where NI denotes the nearest integer value), and using definitions (25) and (23), the

resulting interpolation algorithm may be compactly written as

$(xo) = (%)) — ASie (vz, o] ) (@)
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Insofar as the linear, forward-in-time advection algorithms are concerned, there is
no particular ga.in‘in ﬁsing (29); indeed, the interpolation schemes derived from
such algorithms may be obtained alternatively through more traditional arguments
invoking the truncated Taylor expansion or, equivalently, polynomial fitting (cf.
Smolarkiewicz and Grell, 1991). However, where preservation of the 'monotdnicity
and/or sign of the interpolated variable is concerned, the formula (29) becomes a
useful tool as it allows us to implement advanced monotone and/or sign-preserving
advection schemes in a simple and efficient manner. This simplicity and efficiency
of (29) is a consequence of the constancy of the effective Courant number in (29),
which allows for straightforward, alternate-direction (time-split) applications of one-
dimensional advection schemes without degrading the formal accuracy of their constant
coefficient limit [the alternative argument to that following (25)]. In contrast to fully
multidimensional algorithms, 1Ehe time-split approximations employing one-dimensional
advection schemes have the virtue of considerable simplicity and versatility — the latter
reflecting an availability of a great variety of attractive methods suitable for integration

of the elementary one-dimensional, constant coefficient advection problem. Since by

design
v 1 _[el]—-=z 1
—Z < el " %0 2 30
I 2~ AxI —2° (30)

the computational stability is ensured for all (known to the author) one-dimensional
forward-in-time advection schemes, securing thereby the stability of a time-split

algorithm for an arbitrary M.

The utility of simple nonoscillatory schemes in (29) for semi-Lagrangian integrations of
complex atmospheric problems is illustrated particularly well in the following example of
a thermal convection. The governing system of equations consists of the momentum and

temperature evolution equations for an ideal, nonrotating, two-dimensional Boussinesq
fluid

dv o'

o= —-Vr —gE;Vz , (31a)
do '
— =0, 31b
dt 0 (318)

Here, v = (u,w) is the velocity vector in the (z,z) vertical plane, = is the pressure
departure from a hydrostatic value 7(2) (both normalized by a reference density),
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and g is the gravity. © denotes the potential temperature of a fluid parcel, whereas
@' = O — O(z) represents its deviation from an ambient, hydrostatic profile ©(z2);
©, = O(0) is a reference potential temperature. The prognostic equations (31a, b) are

accompanied by the incompressibility constraint
Vov=0, (32)

characteristic of the Boussinesq approximation. Free-slip, rigid-lid upper and lower

boundaries, and open lateral boundaries are assumed.

The adapted semi-Lagrangian approximation to (31) and (32) consists of three distinct
steps. First, departure points of the trajectories are evaluated using the second-order-

accurate implicit midpoint rule
‘Xo = Xj — AtV (Xm, tm) (33)

where the velocities at the trajectories’ midpoints (X,, tm) are predicted with the

first-order-accurate integral of momentum equations
2y =~ _ 1 .dv
V(Xm,tm) + O(AL?) = ¥(x,,%0) = v(Xo,10) + —Z-Ata(xo,to) . (34)

The implicit nature of the trajectory algorithm consisting of (33) and (34) requires an

iterative solution; the iterations converge providing
v
B=| —||At<1 35
1 X A<, (35)

and one iteration (assuming the Euler backward approximation for the first guess)
suffices for the second-order-accurate approximation to the departure points of
trajectories (Smolarkiewicz and Pudykiewicz, 1991). In the second step of the semi-

Lagrangian procedure, (31b, a) are approximated assuming the trapezoidal rule B

/ Rt~ L AR, to + A1) + R(xoy ) (36)
T

for evaluating the trajectory integral (19); updating the temperature prior to the
momentum ensures availability of the buoyancy at ¢ + At in the vertical equation of
motion. While integrating momentum equations (31a), pressure forces at £ + At are yet
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unknown and must be determined from the constraint (32). In this third step of the

procedure, the approximate solution to (31a) is written as
1
v(x,t + At) = v¥(x;) — EAtVﬂ'(Xi,t + At), (37)

where v*(x;) combines all known terms appearing on the rhs of (36) [i.e., velocity,
pressure gradient, and buoyancy terms evaluated at (x,,%,), as well as the buoyancy

term at (x,t + At)]. Applying (32) to (37) leads to the Poisson equation for pressure
2 2 #
Vimw(xi,t + At) = -A—tV ov*(xi) , (38)

which is solved, subject to boundary conditions, using the standard FISHPACK software
(Swarztrauber and Sweet, 1975). Having established pressure at ¢ + A¢, (37) completes
the procedure. The entire semi-Lagrangian algorithm for (31) and (32) is implicit with
respect to all ODE integrations, ensuring thereby computational stability regardless of
the time step employed; At is solely controlled by the convergence condition (35).

Figure 2a shows the actual solution to (31) and (32) obtained with the above-outlined
solver which employs (29) in all iﬁterpolations inherent in semi-Lagrangian integrations.
The AS operator is from the FCT advection scheme employed in the simple example,
Fig. 1c, of the preceding section. The experimental set-up assurmes a symmetric thermal
of the initial radius r, = 250 m; the thermal is placed in the 87, X 87, domain resolved
with 200 x 200 uniform grid intervals AX = AZ = 0.04r,. The center of the thermal is
located at the vertical symmetry axis of the domain r,+AZ above the bottom boundary.
The thermal has a uniform, initial temperature excess of 0.5 K relative to the neutrally
stratified environment of ©(z) = 300 K. The ©' field is shown after 7 characteristic
time scales T' = 7,/U, where U is the characteristic velocity scale U = /2gBr, with
B representing initial buoyancy of the thermal (Sénches et al., 1989). The time step of
computations has been selected at At ~ 0.06T [which results in B ~ 0.5 in (35)].
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z/7o

Figure 2. Isolines of the temperature perturbation ®' of the inviscid buoyant thermal
at dimensionless time 7 ~ 7 simulated with semi-Lagrangian model. The contour
intervalis 0.2 of the initial ®' amplitude: a) experiment with nonoscillatory interpolation
implementing FCT advection scheme in Fig. 1c; b) as in plate a) but with oscillatory
interpolators; and c) as in plate b) but for the explicit Reynolds number 1500.
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The excellent performance of the algorithm is evident in its ability to resolve
fine interfacial structures and maintain sharp across-the-interface gradients while
introducing no spurious oscillations. ‘The highly inviscid yet smooth nature of
computations is clear in Fig. 2a;  che initial Jthermal’s core may still be identified
within narrow (~ 2AX wide) interfacia.l convolutibns engulfing ambient fluid. This
performance is primarily controlled by the monotonicity of the interpolation procedure
in (29), which by design preserves local convexity/concavity and sign, and ensures
uniform boundedness, of the interpolated variables. In the absence of forcing,
these properties hold along parcel trajectories consistently with analytic equations.
Relaxation of the monotonicity constraint leads to poori results, evident in Fig. 2b
displaying the “nonmonotone” (but otherwise equivalent to that in Fig. 2a) solution to
the test problem. Although the overall a,ppéara,nce of the solution recalls that of Fig. 2a,
the current scheme is incapable of reproducing a regular eddy pattern of the “monotone”
result in Fig. 2a. Furthermore, it s’uk'ﬁ'ers from excessive numerical noise and exhibits
a spurious secondary thermal in the Wal;e of the main structure. The importance and
utility of the monotonicity constraint ‘arekfurthgr emphasized in Fig. 2¢, which shows
the viscous (but otherwise equivalent to that in Fig. 2b) solution with the Reynolds and
Prandtl numbers Re = 2r,U/v = 1500 and Pr =.1, respectively. [Diffusion and heat
conduction are introduced into the algorithm by an appropriate generalization of the
forcing terms in (19).] Although inclusion of the explicit viscosity into the oscillatory
algorithm eliminates the secondary wake thermal and most of the noise, the solution
captures neither the strong interfacial gradients nor the fine-eddy structures evident in
Fig. 2a [at Re =~ 3000, the solution (not shown) suffers from both the oscillations and
unresolved eddy structures]. The three solutions discussed demonstrate that nonlinear,
nonoscillatory techniques lead to results that are far superior to those generated
with traditional linear methods. Due to the Lagrangian ‘format of the approximated
equations, the monotonicity constraint is ultimately imposed along a parcel trajectory,
gaining thereby a deeper physical meaning than that from nonoscillatory Eulerian
approximations. Parallel to the nonlinear stability issue, this constraint addresses
topological and predictability issues by suppressing spurious oscillations of computed
trajectories and prevénting a trajectofy intersection due to inadequacy of numerical
approximations (see Smolarkiewicz and Pudykiewicz, 1991, for further discussion of
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this particular issue as well as other aspects of semi-Lagrangian approximations for

atmospheric fluids).

5. CONCLUDING REMARKS

The topics discussed in this paper cover only a part of an abundance of theoretical
and practical issues associated with modern nonoscillatory advection schemes. While
selecting the material for this lecture, I was mostly concerned with providing to the
reader universal approaches that achieve their claimed accuracy regardless of the
complexity of addressed flows. Keeping in mind that advection alone is seldom of
interest to practical applications, and that it usually represents an element of a more
complex problem, I have focused attention on variable-coefficient, multidimensional
methods while neglecting to mention a variety of attractive one-dimensional transport
schemes. True, one-dimensional schemes can be implemented in multiple dimensions by
invoking directional splitting. This, however, is complex enough (if at least the second-
order accuracy for arbitrary flows is going to be maintained) to warrant a separate
paper. Instead, I have outlined i;he alternative of how to design easily at least a
second-order-accurate model for an arbitrary fluid system using those nonoscillatory
advection schemes which were originally designed for a one-dimensional constant-
coefficient advection problem. This and the accompanying paper in this volume are
intended to complement each other and provide the reader with the essential information
needed to build simple yet effective, either Eulerian or semi-Lagrangian finite-difference

models for a variety of atmospheric applications.
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