RECENT ADVANCES IN PARALLEL SCIENTIFIC COMPUTATION IN IBM

DAVID B. SOLL
IBM Corporation
High Performance Computing Solutions Development
Kingston, New York

ABSTRACT

IBM research programs and joint IBM-University study efforts have re-
sulted in advances in parallel scientific computation which have con-
tributed to the state of the art. Some of these, as they mature, have
been included in IBM products and offerings. This paper describes some
of these hardware and software activities and present some results.

188

I. INTRODUCTION

During the past several years, a number of research projects at IBM and
joint IBM-university study efforts have been conducted into various as-
pects of parallel processing, particularly as it pertains to scientific
computation. These include the experimental processors, RP3, GF11l and
VULCAN, experiments with the IBM 3090 vector multiprocessor, the 3090 as
a host to multiple attached processors, and clusters of 3090 multi-
processor complexes. Investigations into parallel software have included
the development of Parallel FORTRAN, Clustered FORTRAN, and the LCAP/3090
system. This paper presents an overview of these studies along with some
representative results and conclusions.

189

11. PARALLEL PROCESSOKRS

RP3

The Research Parallel Processing Prototype (RP3) was initiated in the IBM
Research Division, in cooperation with the Ultra Computer project of the
Courant Institute of New York University. The RP3 machine is a highly
parallel MIMD design using both a shared memory paradigm (after the NYU
Ultracomputer) and a local memory, message-passing paradigm (after the
Cal-Tech Cosmic Cube), as well as mixtures of the two., chosen at run-
time. The objective of the research effort was to investigate both
hardware and software aspects of highly parallel computation.

The RP3 was designed to accommodate 512 processing nodes, each with a 32
bit microprocessor (ROMP) plus vector floating point hardware, with a peak
of 1.3 GIPS (800 MFLOPs). The research was actually carried out on a
one-octant (64-way) configuration. The interconnection network is actu-
ally composed of two networks. The first is a low-latency network con-
sisting of a rectangular SW banyon, similar to an Omega network, but
providing dual source-sink paths. The second interconnection is a com-
bining network with the geometry of Lawrie's Omega network. This network
has the ability to combine messages directed to the same memory location.
More complete details of the architecture and design of RP3 may be found
in several papers included in ref 1. A diagram of the data flow of the
RP3 system is shown in figure 1. ‘

Figure 1: RP3 System Data Flow

procO Mem Map Unit cache network <+
(interleave) - int'f
FP unit —]
main store N
L l G E
170 intf = T
| . W
to . 0
1SPO . R
K
to ‘ :
ISP63 procN p—r—Mem Map Unit cache network f—a—
(interleave) int'f
FP unit . '
main store
L J G
1 1/0 intf moveable boundary

between local and
global (shared) storage -—————}

190

*

Several interesting results from this research have been obtained and
reported in the literature. The*often proposed practice of access to
shared memory on a highly parallel multiprocessor system is to utilize a
message-or packet-switched multistage switching network. Amn initial re-
sults of the RP3 project was that a type of network traffic non-
uniformity, a "hot-spot", can produce effects that severely degrade ALL
network traffic, not just the traffic to the shared locks which produced
the "hot-spot". This effect was called "tree saturation", and was de-
termined to be quite general; that is, it is independent of network
topology, switching mode (packet or circuit) or whether the network is
used for message passing or memory access. It is a characteristic of a
multistage network with distributed routing whose traffic pattern exhib-
its a "hot-spot" non-uniformity for any reason. A further result was that
message combining, originally proposed to solve a different problem, is
an effective technique for dealing with this problem when is arises due
to global shared locks. This result was extended to the observation that
it is possible to avoid the "hot-spot" contention with single applications
specifically tailored to the connection topology, or through the use of
combining for some cases of interest, but avoidance is infeasible in
multipurpose, generally used systems.

GF11

The GF11 parallel computer is a single instruction, multiple data (SIMD)
_ processor,. developed and constructed at IBM T. J. Watson Research Center,
and has been operational since October 1989.- It consists of 566 identical
processing elements, each capable of 20 MFLOPs operation, connected via
a communication network which allows the processors to dynamically re-
configure themselves into arrays of various dimensions and sizes, or other
interesting interconnection patterns such as tree or cube. The network
provides 11.3 GBytes/sec bandwidth, and reconfiguration can take place
on every word transfer without sacrificing that bandwidth. The network
is a three stage (576x576) Benes network, organized as three stages of
24x24 crossbar switches. Overviews of the GF1l machine organization and
the GF11 processor are shown in figures 2 and 3. Descriptions of the GF11
design and implementation may be found in references 2 and 3.

The GF11 was originally designed for numerical verification of the pred-
ictions of Quantum Chromodynamics (QCD). The formulation of QCD, ap-
proximated by a hypercube lattice has been mapped onto 512 of the GFl1l
processors, resulting in a sustained rate of 9.5 GFLOPs, while a conjugate
gradient algorithm implemented on 500 active processors yielded 8.5
GFLOPs. Depending on the choice of lattice size and the requested per-
mutation of the GF1ll processors, the peak rates are in the 8.5 to 10.1
GFLOPs range.

191

Ten

512 MBytes Disks

Controller

| | Inst. 512 K

Mem.

Fila Server

]

Industrial AT

addrasses .

" Control & Addresses -

o

566 Processors

sl

Ard 4

Bank 2

X
2

- Bank 1

X
A

Bank 3

ed

Interconnection Net.
(Benes Network)

=

‘Figure 2: Overview of GF11 Machine Organization -’

192

Immed. . A
opercnd—‘__:j_, Dynamic RAM
512K X 32
. b Central
[i Contrdler
—L-Yj-vr‘-l : Address L p———
-~ Relocate
Static RAM': T -
From 16K x 3
Network { 3
Receiver wTransmitte ’
317
| To :
!L : Network
Register Flle
Immed. 256 X 32
"eperand
P SETRAL A I
v Shifter
1 4
FLP FLP FLP FLP ' \ln'tegerﬁ
oY AL MY AU AL
L] L J
<¢ Etg——’ [—
v Status————
[Cond. Code Regs| ™
]

.y
>

Figure 3: Overview of a GF1ll Processor

193

Other applications which have been implemented on the GF11 include the
Shallow Water equations, Matrix Multiplication, a simulation of galaxy
evolution and backpropagation learning. The Shallow Water benchmark
computes the time dependent solution of the equations on a 256x256 rec-
tangular grid. At the time this problem was implemented, only 300 of the
processors were operational, and 256 of these were used. Two structures
of the data were implemented; a partitioning of the grid into 16x16
squares, which minimizes interprocessor communication did not provide any
advantage over the 256x1 partitioning which maximizes communication but
has a simpler code structure. This is performance is primarily due to
an imbalance between the number of ADD and MULTIPLY operations. This
application achieved 81% efficiency, which translates to approximately
8.2 GFLOPs for a full machine configuration.

Matrix Multiplication, also implemented on 256 processors, used a blocked
systolic algorithm for multiplying two 1024x1024 matrices. This compu-
tation achieved 99% of peak, which translates to 5.1 GFLOPs for 256
processors. ‘

The Galaxy code (3) is a time-dependent, three dimensional hydrodynamic
model of a system of stars and gas which simulates the dynamics of a
representative piece of interstellar matter. This code does not map
closely onto the GF1l. The computationally intensive parts were divided
into nineteen sections, with another ten for other, non-essential pur-
poses. Each section of the code has its own local operational balance
which prevents complete utilization of GF11l. This code runs with an ef-
ficiency of close to 70%, resulting in a speed of 3.4 GFLOPs on a 256
processor GF11. »

The backpropagation learning algorithm is a neural network simulator,
(ref 4) applied to the problem of speaker-independent continuous speech
recognition. Although generally considered to be best suited to an MIMD
configuration with very fast communication, the application may also be
efficiently executed on an SIMD using the technique of having each
processor run the same network, if the per-processor memory is sufficient.
Two different connections were employed in this investigation; ring and
tree. The relative performance of these two choices, using the NETTALK
(4) text-to-phoneme benchmark is shown in table 1 from reference 4 In
terms of a metric which is specific to this application, i.e. millions
of connections per second (MCPS), it is clear that the tree connection
is the better choice. A comparison of other implementations of back-
propagation learning on other machines is shown in table 2 from ref. 4.
The figure of 901 MCPS on 256 is equivalent to 3.8 GFLOPs. as a theore-
tical limit, for very large data, the authors of ref. 4 have estimated a
value of 1900 MCPS, or 8 GFLOPs.

194

MILLIONS OF CONNECTIONS PER SECOND

PROCESSORS ’ TREE MCPS RING MCPS
8 26 26
16 55 53
32 112 107
64 216 170
128 415 ‘ 222
256 753 - 180
356 901 -
512 1231 84

MILLIONS OF CONNECTIONS PER SECOND

MACHINE | - MCPS
VAX 0.008
SUN 3/75 0.01
VAX 780 : 0.027
SUN3/160/FPA , 0.034
- RIDGE 32 0.05
DEC 8600 , 0.06
CONVEX C-1) 1.8
16K CM-1 2.6
CRAY-2 | 7
64K CM 13
WARP : 20
CH-2 40
G6F11 :) 901

195

LCAP

The Loosely Coupled Array of Processors or LCAP System was conceived with
a clearly defined set of applications in mind (ref. 5). These applica-
tions consist of large-scale applications in Theoretical Chemistry. The
class of applications was broad enough so that LCAP would not be consid-
ered as a special purpose configuration, but still could not be classified
as general-purpose either. In fact, the objective was to use parallel
processing to solve real problems, rather than to conduct experimentation
into parallel processing. LCAP is operational at the IBM Center for
Scientific & Engineering Computation in the High Performance Computing
Solutions Development organization in the Kingston, New York laboratory.

Nevertheless, the evolution of the LCAP system has resulted in its use
for a significantly broad spectrum of applications, so that character-
izations of LCAP with respect to general principles of parallel processing
may be made that apply to other MIMD machine organizations. It is ap-
propriate to discuss some of the applications which led to the design of
LCAP and their influence on LCAP/3090.

These applications primarily consisted of large problems in Theoretical
Chemistry. This area includes Quantum Chemistry using Self-consistent
Field Theory, and Statistical Mechanics using Monte Carlo and Molecular
Dynamics methods. The applications share the following important prop-
erties: first, the parallelism in these calculations is obvious. They
employ computations over ensembles of particles acting in combinations
(2,3,...). Second, each n-body computation is quite complex, requiring a
large amount of computation (and time) for each, growing as the number
of interactions grows. This application type is generally considered as
having "very-large-grained" parallelism. This also implies that there
is a great deal of computation prior to the need for any communication
between processors. The third attribute is that only a small part of the
computation involves global simulation, and thus is very well suited even
to a distributed collection of processors.

The first system, LCAP1, consisted of an IBM 4381 host, with 10 Floating
Point Systems FPS5-164 attached processors (AP's), using IBM's Virtual
Machine (VM/SP) operating system. A second, attached system consisting
of an IBM 4341 and 3 AP's was also configured and used for algorithm and
program development. These configurations are shown in figure 4, with
IBM channels for communication and other associated switching and disk
storage. At the same time, a second, more powerful version, LCAP2 was
assembled. This consisted of an IBM 3081 processor as host, with 10
FPS-264 AP's attached, and used the IBM MVS/SP operating system. Repre-
sentative performance is shown in tables 3 and 4 (ref. 5). It should be
noted that although these applications were not optimized for their re-
spective configurations,.the measurements serve to indicate the aggregate
computational power of the systems.

196

Applications pertormance on ICAP/1 . Applications performance on ICAP/2

Jab Elapsed Time for ICAP/1 Job Elapsed Time for ICAP/2
. {minutes) . {minutes)
1AP 3 APs 8§ APs 10 APs CRAY- 1AP 3 APs 6 APs 10 APs CRAY-

XMP XMP
Integrals (27 atoms) 71,7 240 123 18 7.6 Integrals {27 atoms) 19.1 6.5 33 23 7.6
SCF (27 atoms) 252 94 59 4.9 3.6 SCF (27 atoms) 10.6 52 37 34 3.6
Integrals (42 atoms) 203.7 689 383 212 232 Integrals (42 atoms) 55.0 187 23 6t 232
SCF (42 atoms) 730 260 143 106 8.7 SCF (42 atoms) 24.1 9.1 5.6 4.9 8.7
Monte Carlo 162.1 578 320 220 204 Monte Carlo 600 209 114 77 204
Molecular dynamics 99.6 36 193 137 1710 Molecular dynamics 29.6 10.6 59 42 17.0
Seismic 338 1.8 6.6 4.3 5.6

Table 3 Table 4

Since the LCAP program included many collaborative participants from
universities and other research institutions, it is possible to demon-
strate parallel speed-up for a number of diverse application areas. These
results, taken from reference 5 are given by the ratio of the sequential,
single processor time to the time to run on N processors in figure 5.
However, some engineering applications, using standard discretization
schemes such as Finite Differencing or Finite Elements did not perform
as well due to the grain size of the parallelism. The interprocessor
communication burden was too large for the 3 MB/sec. channel speeds em-
ployed. A subsequent extension to the LCAP system included bulk, shared
memories and a fast bus, developed by Prof. Martin Schultz of Yale Uni-
versity and Scientific Computing Associates attached to the AP's. This
configuration is shown in figure 6. ' .

These evolutionary changes eventually led to the LCAP/3090 system, con-
sisting of 4-IBM 3090 model 400 systems (a total of 16 vector processors),
coupled by IBM channels. As part of the experimentation many application
areas were successfully parallelized on LCAP/3090, including Molecular
Dynamics, Fluid Dynamics, Micro-Hydrodynamics, Monte Carlo, Circuit
Analysis, Protein Structures, High Energy Physics, Neutron Transport,
Atmospheric Studies (pollution migration), Seismic Migration and
Oceanography (current flow).A number of parallel algorithms in general
use were also successfully implemented. The LCAP effort also included
the development of parallel software to preprocess, schedule and manage
the parallel jobs. This will be discussed later in this paper.

197

Figure 4: LCAP1l - Toosely-Coupled Array of Processors

2914 2014

(o} 4381 S0 4341 | {wo 55

- 3350

3330

3380

{3203}
' ' 3880

3705
Network [———____

4341] ==

Graphlcs 3350
= /
?arﬂpglf’ Terminals 3203

198

Figure 5:

Speedup for Parallel Applications

SPEEDUP RATIOS

MOLECULAR SIMULATION
IBM KINGSTON

MOLECULAR DYNAMICS
1BM KINGSTON

SEISMIC MIGRATION
18M ROME

10 -4
a— -
6 -
o 80% 847% 82%
2 —
0 =
3-0 STRUCTURE OF PROTEINS NEUTRING MASS DETERMINATION ASTAP (EXECUTION PHASE)
CORNELL UNIVERSITY UNIVERSITY OF FLORIDA 1BM FISHKILL
10 -
a-4
6 .
797% 79% 85%
4
2+ ’
0
HIGH~ENERGY PHYSICS MOLECULAR DISPLAY METROPOUS MONTE CARLO
CERN MCMASTER UNIVERSITY 1BM KINGSTON :
10
8 ~4
8 -4
: 93% 71% " 74%
2—.
0
MOLECULAR DYNAMICS MONTE CARLO CRYSTAL GROWTH PHARMACOLOGICAL TESTING
TEMPLE UNNERSITY TAMPERE UNIVERSITY OXFORD UNIVERSITY
10
8 -4
s - ;
) 90% 99% 85%
2-—
0 T T T T T T T T T T T T T 1 T
¢ 2 4 & 8 10 o 2 4 & 8 10 o 2 5 8 10

NUMBER OF PROCESSORS

199

Figure 6: Extended LCAP1 and LCAP2

LCAP-1 & LCAP-2

wzzze::::n,%&@ %@ P“;“;:"
N

FPS-264 with Disks (512 Mbytes)

®=T] Fps-164 with Disks and MAX Boards @ SCA Shared Bulk Memory

3 SCA Bulk Shared Memory ﬁ FPS Bus (22 or 19 Mbytes/sec)
(32 Mbytes)
—=p IBM 3081, 3084
SCA Data Path .) m] (3 Mbyte/sec Channels)

(44 Mbytes/sec)
(38 Mbytes/sec)

200

VULCAN

The VULCAN Supercomputer is a massively parallel MIMD engine being de-
signed at the IBM Research Division. The design of VULCAN is modular,
expandable, and is specifically tailored to permit scaling to the teraflop
range in performance. The design philosophy is to utilize state-of-the-
art, high performance, single-chip microprocessors, with matching memory,
communication and DASD storage. Each processor is connected to the
switching network by its own high performance (50 Mbyte/sec) channel,
using message-passing with many path choices. Utilization of the IBM
4-Mbit memory chip technology permits 32 Mbytes of memory per processor.

Processors are packaged 4 per board, with associated memory, and 4 boards
are grouped to an assembly called a Tub. A Tub consists of 16 processors
plus a switch board. (see figure 7), while 8 Tubs comprise one rack (128
processors and 20 switch boards). With a 40 MFLOPs per processor per-
formance, a rack is capable of 5 GFLOPs performance. DASD at 200 Mbyte
each is packaged 36 per DASD board, or 7.2 Gbytes, with 16 boards per rack
for a total of 115 Gbytes.

The initial prototype, scheduled for operation in the first quarter 1992,
will consist of four processor racks and two DASD racks. The 512
processors have a total of 20 GFLOPs peak, 16 Gbytes of memory, and 230
Gbytes of DASD. The total bandwidth at 40 Mbytes/second per processor is
20.5 Gbytes/second, yielding byte-per-flop ratio of 1! This high data
delivery rate, or low communication latency implies an opportunity beyond
the peak processing speed alone, since it increases the spectrum of po-
tentially effective applications significantly.

The full VULCAN configuration, consisting of 32,768 processors would
scale to 1.2 TFLOPs, 1 Tbyte of memory and 15 Tbytes of DASD while main-
taining a constant data rate of 1 byte/flop.

201

Processor

-

-
——

Switch Bd ~
7’

Figure 7: VULCAN Architecture

Vulcan

Machine for Teraflop Performance

P?&essor Rack
/25 % yulcan Prototype

a
Tub | Tie
Cd)y
] Switch
— = 16 Procs I
& Switch|,”
DASD Bd

e

40 MF/100 | MF U o—7 .
double pracision|—3 2} - m‘ﬂ'ﬂﬂﬂﬁ]
Za a— 200 MB/BOO MB Igggggg
50 MByte/Sec —8 87 1I'ogong |~

Message Format

|loaguan
‘600000

[T6gtR] Routing | Measage axt]

Bandwidth is 50M bytes/sec/processor

Channel
10 wires 30

- 8 Chonneis x 8 Channels

. Disk Rucﬁ
7G68/28 68 115 GB/461 68

- 16
Baards

20 GF/50 GF

« 230 GB /922 GB DASD

Vulcan
1.2 TF/3 TF

\ 15 TB/59 TB DASD

aaaoad UﬁDDDDDDDBDDCJDDEJJEJG

ooo0a000000000a0a0a0d8:8a4a,

Switch- Board
S et -1
"’sa; S-i‘;ﬁ‘"?
- Channels run clong
S - columns ond rows
St Swit, Switchut-mm §
Teut-w Chip Chip =t 7
- 8

e . .
u....sa‘\‘.é s ”": D303 302837
ot -z 009000044
N,
Ygg-goe SWiILCE all'c’\'.. u
B Chip Chip cgomee 18

- -

330000304 DDIJJJ
£003304003300300500333,
£00a33330f803003335 aaaaa,_ 20 switch boards per rack

ag4aa0ad, DGDJDDUU ¥ DDUDDx l

ogoooooo00000000saaa0aa3ac

202

Every message passes
through 10 switch chips.

IBM 3090-ES/9000

The IBM 3090 processor complex is, in itself, a tightly-coupled, shared
memory, multiprocessor consisting of up to 6 powerful vector (SIMD)
processors. Previous papers presented in the 1984 and 1986 workshops on
parallel processing at ECMWF (ref 6,7). In those papers, only coarse-
grained parallelism using the IBM VS FORTRAN Multitasking Facility was
discussed. Subsequent experiments were conducted regarding the limits
of the IBM 3090 system used for fine-grained (micro-tasking) parallelism
(ref. 8).

At the lowest level, so called 'native" microtasking, assembler level
macro calls are used to implement parallelism. The basic synchronization
overhead was measured as 2 microseconds. In a FORTRAN environment, this
overhead, including the cost of subroutine start-up, was shown to be of
the order of 5 microseconds for vectorized, micro-scale parallelism. This
corresponds to the equivalent floating point synchronization overhead
parameter, S 1/2 = 150 (after Hockney & Jesshope, ref. 9). When the ef-
fect of vector pipeline start-up is removed to isolate the synchronization
overhead alone, this reduces to S 1/2%* = 100. This means that effective,
low overhead computations of the order of one vector section size (vector
register length, 128) on early 3090 models, or one-half of the section
size (256) on later models.

At the other extreme, the LCAP/3090 configuration and software, and other
efforts described elsewhere in this paper, have been oriented to the use
of clusters of 3090 multiprocessor configurations. One such effort in-
cludes the coupling of two 3090 model 600 processor complexes at the
Cornell University NSF center. The collaborative effort between IBM and
Cornell began in 1985 as part of the NSF center's concentration on par-
allel processing. The initial effort centered around a single 3090/600
(6-processor) system and was central to the development of Parallel
FORTRAN, described later in this paper. The subsequent installation and
coupling of a second 3090/600 system provided the opportunity to inves-
tigate a loosely-coupled processor MIMD cluster of tightly coupled,
shared memory, MIMD configuration of vector (SIMD) processors. The
Clustered FORTRAN software support is described later.

203

III. PARALLEL SOFTWARE

IBM VS FORTRAN MULTITASKING FACILITY

In 1985, IBM announced a parallel interface extension to its VS FORTRAN
compiler product. Although it consisted of only coarse-grained parallel
features, it was still possible to perform useful work and to achieve
parallel performance improvements. A description of this facility and
performance results were presented at the 1986 workshop at ECMWF (ref.
7.

PARALLEL FORTRAN

Parallel FORTRAN is a facility for writing and executing parallel programs
on IBM 3090 processors. It is based on the collaborative effort between
IBM and Cornell Universities NSF center, where the prototype code was
developed and tested. Two mechanisms were used to evaluate and gain ex-
perience with the compiler. The first was the strategic user program at
Cornell Umiversity, where a broad spectrum of scientific investigators
could obtain the benefit of parallel performance for their investi-
gations, while evaluating the functions and features of the compiler.
At the same time, IBM provided limited distribution of a version of this
compiler as a specisl quotation (PRPQ) software (reference 10).

The Parallel FORTRAN compiler offers a number of parallel opportunities,
as highlighted in figure 8. A robust set of parallel extensions are in-
cluded to achieve both macro-scale and micro-scale parallelism. These
extensions are summarized in figure 9, and include comment-based Direc-
tives which extend the existing vector Directives embodied in the under-
lying compiler product version. A sample parallel FORTRAN environment
is shown in figure 10.

A brief summary of the parallel performance improvement using Parallel
FORTRAN on an IBM 3090/600 with 6 vector facilities appears in table 5.

Application Parallel Speed-up Effective
1 2 4 6 Parallel
Thin Layer CFD 1 1.8 3.0 3.9 89%
High Energy Physics QCD 1 1.8 3.1 4.3 92%
Statistical Methods 1 1.9 3.3 4.7 94%
Protein Folding 1 1.9 3.7 5.3 97%

Table 5: Parallel FORTRAN Performance

204

Ficure 8: Highlights of Parallel FORTRAN

Sharing of Storage Between Parallel Regions

More Than One Level of Parallel Execution

Dynamic Scheduling of Processors Throughout Execution
I/0 at All Levels of Paral}el Execution

Integrated Vector and Parallel Processing

Parallel Execution Under Both MVS and VM

Figure 9: Parallel FORTRAN Extensions

LANGUAGE

COMPILER

EXTENSIONS

) Parallel Tasks = Execute Subroutines in Parallel

Parallel Cases - Execute Sections of Code in Parallel

Parallel Loops - Execute Iterations of Loops in Parallel

EXTENSIONS

Automatic Parallel ~ Execute Eligible DO Loops. in Parallel

LIBRARY EXTENSIONS

Library Functions - Locks, Events, Traces

205

The success of this collaborative activity has resulted in the adoption
of the parallel features of Parallel FORTRAN into the IBM VS FORTRAN
version 2, Release 5 program product. This compiler incorporates all of
the scalar and vector features of the previous releases, including the
multitasking. In fact, parallel opportunity which was considered to be
too fine-grained for the multitasking (coarse-grained) approach was suc-
cessfully exploited by the loop-level parallel capability of the com-
piler, achieving as much as 20% performance improvement through the use
of directives alone, without other program modification.

206

Figure 10: Parallel FORTRAN Environment

FORTRAN Environment (one per user)

Parallel FORTRAN Application Program

|1 I | [

b [R 1]

FORTRAN FORTRAN . FORTRAN ‘.o FORTRAN
Task Task Task Task

Parallel FORTRAN Library

FORTRAN FORTRAN o o FORTRAN
Processor Processor Processor
i 1] 1 ¢ |

|| | | |

MVS/ XA or VM/ XA

Real Real : Real
CPU CPU CPU ce e
0 1 2

207

CLUSTERED FORTRAN

The IBM-Cornell University activity has also evolved to include software
to support the cluster of 3090/600 processors (12-way) now installed at
Cornell as described earlier. Another set of extensions to the software
and hardware have been defined. The IBM Clustered FORTRAN, a Supercom-
puter Systems Extension (SCSE) limited availability compiler and library,
are based on IBM's VS FORTRAN version 2, release 3 compiler and library
program product, including the functions and features of Parallel
FORTRAN, described above. It also includes a node manager to manage
multiple clustered FORTRAN address spaces, and a connection facility to
handle data transmission between 3090 multiprocessors (MP's). The con-
nection facility hardware is another SCSE and provides high speed coupling
between two 3090 MP's. A diagram of the Clustered FORTRAN environment
is shown in figure 11. This consists of a Root Virtual Computer (RVC)
and Clustered Virtual Computers (CVC), plus associated support extensions
(SCSE's). Clustered FORTRAN uses the IBM VM/XA operating system to manage
and support the parallel environment. This software is described in
reference 11.

LCAP/3090

Another approach to clustered parallelism is found in the LCAP/3090
software. Originally developed to support a host IBM multiprocessor with
numerous attached processors, the LCAP system was modified to provide
access to clusters of IBM multiprocessors in an extendable manner. The
basis for the coarse-grained parallelism which is the design paradigm for
LCAP/3090 was discussed earlier. A complete documentation for LCAP/3090
can be found in ref. 12. This software system is an MIMD, master-slave
oriented interface. The design philosophy of the software was to modify
the underlying operating system as little as possible, and to build the
LCAP/3090 system on top of IBM operating systems. In this way, the major
portions of the software could be made operating-system independent and
"~ only particular pieces of the software would need modification in order
to run LCAP on different operating systems.

LCAP/3090 uses the inherent support for parallel execution on IBM multi-
processors present in IBM operating systems. In the specific implemen-
tation of ref. 12, the IBM Virtual Machine, VM/XA system product is
utilized. LCAP/3090 provides a sort of "shell" around VS FORTRAN in the
form of:

Precompilers and Directives

Parallel Run Utilities

Run Scheduler and Resource Manager
Commands to Start, Monitor and Stop a Job
Communication Software

LCAP/3090 is operational at IBM's Kingston New York laboratory.

208

.

Figure 11: CLUSTERED FORTRAN ENVIRONMENT
LS

Virtual Computer (CVC)

Virtual Computer (RVC)
Clustered Clustered
FORTRAN) FORTRAN
Applicaticn Application

g —1 - {HH| E, — F—— H -

S S
Clustered Clustered
FORTRAN FORTRAN

Library » Library
11 Il]k 11 i1 1L 11 11
11 LR B 1% i | |] i | 3 |

Clustered FORTRAN Interface 'Clustered FORTRAN Interface

11 Il 11 I 1l 11
1T 11 11 11 11 11
Virt Virt] +.. Virt Virt Virt| ... Virt
CPU CPU CPU CPU CPU CPU
0 1 n 0 1 n
{3 1l 11 10 It 11
11 11 11 10 11 11
VM/XA VH/XA
11 11 11 11 11 It
11 11 11 11 11 11
Connection
Real Real Real Facility Real Real Real
CcPU CPU «es |CPU Hardware CPU CPU ..« |CPU
0 1 n 0 1 n

209

IV. CONCLUSIONS

The parallel processing activities for scientific and engineering com-
puting described here were initiated from a variety of perspectives and
with a variety of objectives. Some were intended to investigate parallel
machine architecture and design, some were aimed at the definition of
parallel software interfaces, while still others had as a goal the sol-
ution of specific scientific problems, with parallel performance as the
means. In all cases, the observation was made that the value of the ma-
chine was a strong function of the solution approach taken for a given
problem, as expressed by application design, algorithm or data organiza-
tion. No completely general design has been found which is equally ef-
fective across all of the many and variable aspects of parallel machine
architecture, and design characteristics, and for all problem types and
parallel granularity.

A number of approaches to machine architecture have been investigated,
from SIMD to MIMD, tightly-coupled to loosely-coupled, shared memory to
distributed memory. The balance between the number of processors and
their power or complexity, the communication mechanism, switched or not,
dynamic or static, the network topology and storage hierarchy, all in
combination act to permit or prohibit the effective use of a particular
application and application design on a particular parallel machine.

A number of examples of parallel processing advances in IBM have been
discussed, including the RP3, GF11l, VULCAN, LCAP and ES/9000 (3090) par-
allel machines, and IBM's Parallel FORTRAN, Clustered FORTRAN, LCAP/3090
and VS FORTRAN parallel software. Developed in a variety of research and
collaborative efforts with universities and other research institutionms,
much of the detail and experiences of these efforts have been published
in the open literature. Some of these results have been used to influence
IBM products, and as the technology matures, been adopted into standard
products themselves.

210

V.

10.
11.

12.

REFERENCES

"The IBM Research Parallel Processor Prototype (RP3)",
Introduction and Architecture, G. Pfister, et al.
Proceedings of the 12th International Conference on Parallel Processing

"The GF11 Parallel Computer", J. Beetem, M. Denneau, D. Weingarten
IBM Technical Report TR 12364 Dec. 1986

"The GF11 Parallel Computer" - Programming and Performance
M. Kumar, Y. Baransky
IBM Research Report TR 15494 Feb. 1990

"An Implementation of Backpropagation Learning on GF11, A Large SIMD
Parallel Computer", M. Whitbrock, M. Zagha
"Parallel Computing' 14, North Holland, 1990

g

"LCAP/3090- Parallel Processing for Large-Scale Scientific and
Engineering Problems'", E. Clementi, D. Logan, J. Saarinen
IBM Systems Jourmal Vol. 27, No. &4, 1988

"Using an IBM Multiprocessor System", A. L. Lim, D. B. Soll
Multiprocessing in Heteorological Models, Ed. G-R Hoffmann,
D. F. Snelling, Springer-Verlag 1988

"Parallel Processing on an IBM 3090 with Vector Facility", D. B. Soll
Multiprocessing in Meteorological Modeis, Ed. G-R Hoffmann,
D. F. Snelling, Springer-Verlag 1988

"Microtasking on IBM Multiprocessors', P. Carnevalli, P. Squazzero,
V. Zecca,
IBM Journal of Research and Development V. 30, No. 6 1986

Parallel Computers 2, R. W. Hockney, C. R. Jesshope
Hilgar 1988

"IBM Parallel FORTRAN" - Language and Library Reference
IBM Corporation S5C23-0431-0 1988

"Parallel Processing on a Cluster of IBM ES/3090's", S. White
IBM Corporation, May, 1990

Modern Techniques in Computational Chemistry,
MOTECC (tm)-'90 - LCAP/3090, Ed. E. Clementi,
Escom, 1990

211

