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ABSTRACT
Energy conserving finite element schemes are given for the divergent equations
of meteorological flow. The schemes are formulated for the divergent shallow

water equations. One of the schemes allows linear finite element spaces for

all fields.
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1. INTRODUCTION

For extended time integrations of the equations of atmospheric motion the
importance of observing energy and other conservation properties of the finite
difference equations has been recognised. The schemes in use are based on
ideas developed by Arakawa (1966). The use of energy conserving schemes
generally improves the nonlinear stability of the schemes and therefore
reduces the need for numerical diffusion. For climate models, conservation

properties of numerical approximations may be a desirable property in itself.

For the purposes of medium range weather prediction, it may be desirable to
refine the grid in certain areas of particular interest for the forecast in
the target area. Such models with grid refinement may suffer from nonlinear
instability. Consequently short range forecast models of this type are
usually implemented with relaxation procedures, as proposed by Davies (1976).
Since conservation properties of schemes are known to enhance the nonlinear
stability, it is interesting to formulate conserving schemes for irreqular

grids.

Finite element schemes can be supposed to have a good nonlinear stability
because of the reduced aliasing error of the Galerkin methodg Furthermore,
they automatically transfer their conservation properties to the case of
irregular resolution. Standard finite element schemes can be expected to
conserve quadratic moments, from which energy conservation for the non-
divergent flow follows (see Fix (1975) and Jespersen (1974)). Also, the
semi-discretized equations, obtained by approximating only the vertical
coordinate in O-coordinate equations and considering the horizontal
coordinates as continuous, are normally energy conserving (see

Burridge et al. (1985)). Again in this case the energy is a second order

moment.



Conserving schemes, including those with energy conservation were formulated
by Cliffe (1981) for the Boussinesqg equations. A relation between the
approximation spaces for pressure and temperature is necessary to obtain
energy conservation. In particular, linear elements for the velocities and

pressure are not admitted by Cliffe (1981) for an energy conserving scheme.

This paper presents some energy conserving finite element schemes for the
primitive meteorological equations. Schemes are formulated for the
two-dimensional shallow water equations. All schemes presented can easily be
generalised to energy conserving schemes of the O-system equations. This may
be achieved by starting from the semi-discretized equations given by

Burridge et al., 1986, One of the schemes requires, as in Cliffe (1981), a
relation between the approximation spaces for pressure and temperature.
Another scheme uses only linear elements for all fields, and therefore may be

a good candidate for implementation in large models.

Since the schemes use only general relations between the basis function
spaces, the developménts are valid for other Galerkin schemes, such

as the spectral method or the parameter fluid models proposed by
Steppeler (1979a, b). Questions of practical implementation are, however,

discussed only for the use of linear finite elements for the velocity field.

2. GALERKIN PROJECTIONS

For fields ¢, we assume the following representation:

$(£)=
v

Il >~

$, e,(x) (1)
1

In equ.(1), r is the vector x,y, with X,y being horizontal coordinates.
Depending on the choice of the basis functions e,r different approximating

spaces 91,92... are obtained. We consider here only linear and quadratic



finite element (FE) spaces, though this specialisation is used only to discuss

questions of practical implementation.

To formulate FE schemes for prognostic equations, it is necessary to
approximate a rather general field ¢(v) by a function 5(3) of the space given
by equ.(1). This is achieved by the Galerkin projection, where the

coefficients ¢v in equ.{1) are defined by:
(egrq’) = (eglq))l g€{1l"'lN} 7 (2)

The scalar product (a,b) is defined as:
(a,b) = fa(x) b(r)du (3)
Here, it is sufficient to assume the measure du to be of the form
du = w(r)dxdy, , (4)
with w being a positive continuous function. The relation between the fields

¢ and 5, given by equ.(2), can be written as:

il

¢ =G (5)

with G being the Galerkin projection operator.

The following properties of G can easily be verified:

(Ga,b) = (a,Gb) (6)

G(ag,+b¢,) = aGd +bGo,

By choosing different spaces of basis functions, and different w in equ.(4),
different Galerkin projections G1, G2,..., belonging to scalar products ( , )1

and ( , ) can be defined.

2 LI )

For prognostic equations of the form

$ = Rs, | (7)



the approximation

¢ = GRS : (8)
is referred to as the standard FE-scheme. Of course, in equ. (8), a different

G can be used for different components of ¢.

3. ENERGY CONSERVING SCHEMES FOR THE SHALLOW WATER EQUATIONS

The schemes are presented here for the x-y plane. The generaliation to the
rotating sphere is obvious. An energy conserving scheme for the shallow water

equations is

U==-G (uu +vu +H)
1 X Yy X

vy=-G.(uv +vv + H) (9)
1 X Yy y :

i =

-G, ((u H) + (u H) )
2 X y
The above scheme will be referred to as scheme A. Let 91 and 92 be the spaces

and ( , ), and ( , ), be the corresponding

belonging to the projections G1, G 5
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scalar products. The conditions of energy conservation are:

2
2, c 2 | | (10)
(a,b) ; = [H(r)al(z)b(r)dxdy (11)
(a,;b), = [a(r)b(r)axdy (12)

The quadratic space 921 of 91 is defined as the space generated according to

equ. (1) by all products ev(g)eu(z), where the e, form a basis of 91.

In one space dimension, the quadratic space of the space of linear splines is
the space of quadratic splines with the same node points. In two space
dimensions, not every quadratic space can be used. For example, the quadratic
element space defined by Steppeler (1976) is not the quadratic space of the
corresponding linear element scheme. For a regular rectangular mesh the grid
for the definition of the quadratic space of the linear splines is given in

Figo Te
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Fig. 1 The grid for the definition of the quadratic space of linear splines
for regular rectangular resolution. ’



Let ev(x) be the basis functions of linear splines in one space dimension, and

let the basis functions of linear splines in two space dimensions be given

as:

1 -
bv u(x,y) = ev(x)eu(y) (13)

14

Then the following basis functions are associated with the node points in

Figs 1 for its quadratic space:

b2 = | » (14)

ev(x)ev+1(x)eu(y) (15)

ev(x)eu(y)e (y) (16)

v, ut+i

2
1 L (x
V+3 ,H+7

u+1

b ,y)=ev(x)ev+1(x)eu(y)e (v) (17)

p+1

The basis function b was missed out in the quadratic spline space

Vg, Ut
defined by Steppeler (1976). The condition given by equ.(10) is rather
similar to a condition used by Cliffe (1981) to obtain energy conservation.

In this study the observation has already been made that not every space of

guadratic splines for the pressure field leads to energy conservation.

To prove the energy conservation of equs.(9), form the time derivative of the
total energy and denote the vector u,v by u. We assume that the FE

discretization of u implies u=0 at the boundaries of the region.

e 4
1}

9 2
pr J4 H(u® + H)axdy
(18)

-

2 L]
(), + (LE), + (wd),

The definitions equs.(11) and (12) have been used in equ.(18). According to

equs. (9) we obtain:

2
= - ; L
E = (G, div(Hu),zu”+H),
5 (19)
-(E,G1grad(f2 +H))



Using equs.(6), one can eliminate the Galerkin projections in equ. { 19):

E = -(div HE,%E?+H)2

2 2 20)
= (uH, (7u’ +H) ), - (vH, (4u +H)Y)2 (
Performing a partial integration in equ.(20), using the condition that uis 0

at the boundaries, one can see that the energy is conserved.

For easy practical implementation it may be convenient to have a scheme which
allows linear finite element spaces for the approximation of all fields. Such
schemes can be obtained using a form of the shallow water equations used in
Steppeler (1976) to obtain difference schemes with conservation properties.

It will be referred to as scheme B.

e _ ing - 1 2
b=6,(nv - (6,(u" +m )

L] — -'\I - _L 2
¥ =6, (-nu - (6,(u" + W) (21)
k= —G2div(H_E)
n=v_-u
X Yy

Again we require that G1 corresponds to the scalar product given in equ.(11)
and G2 corresponds to that of equ.(12). ﬁ can be interpolated arbitrarily

from n. No condition on the approximation spaces belonging to G1 and G2 is

imposed.

To prove energy conservation for equs.(21), we consider the energy equation:

-3 142

= ~(u, G (grad G,(3u*+m)), - (G,divun,tu+m),

Using equs.(6) and performing a partial integration, observing the boundary

conditions for u, we obtain:
\ 12 . 1.2
E = -(div Hu, G,(fu"+H)), + (G,div uH, ju"+H), (22)

Using again equ.(6), we see that the right hand side of equ.(22) is zero.



4. A NUMERICAIL CALCULATION

The possible impact of energy conservation on the stability of meteorological
models has to be explored by two dimensional models. Here only the result of
one dimensional calculations is given. Since a very small timestep was used,

time discretization does not do much to destroy energy conservation.

A one dimensional model was obtained by putting v and all y-derivatives to 0
in equ.(9) and equ.(21). The equations can be nondimensionalized using a
space scale X0 and a time scale to. The finite element scheme‘was obtained by
using a periodic channel with 22 node points being XO apart, except for points
10 to 12, which were only %XO apart. A gravity wave was obtained by using as

initial condition u=0 and H=1 for x € (5X0,10X0) and H=.8 for X ¢ (5XO,10XO).

For comparison, a nonconserving scheme, referred to as the control scheme, was

obtained by replacing G1 in eq.(9) by G2. The timestep used was .01to.

Figs. 2-4 give the energy diagram for t € (0,10to)'for the control scheme and
schemes A and B. A better conservation of energy by schemes A and B is
apparent. In this simple example no nonlinear instability occurs, even for

very long integrations, for any scheme.

5. CONCIL.USIONS

Two energy conserving Galerkin finite element schemes were obtained for the
primitive meteorological equations. One of them, the B-scheme, allows the use
of linear elements for all fields, and is therefore relatively easy to

jmplement in large models.
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Fige 2 Energy diagram with the ( nonconsexving) control finite element scheme
for a one dimensional gravity wave.
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Fig. 3 As Fig. 2, for scheme A.
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Fig. 4 As Fig. 2, for scheme B.
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