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Summary: The theory of adjéint equations is presented, and is shown

to provide a powerful tool for studying the sensitivity of a numerical
model of the atmospheric flow to initial and boundary conditions, and

to physical parameters. Various possible meteorological applications

are discﬁssed. It is shown in particular how the adjoint model technique
can be used for adjusting a high resolution model simultaneously

to observations distributed in time and to large scale fields produced

by a lower resolution model.

1. INTRODUCTION

The adjoint equations constitute a very powerful tool which can be applied
to many theoretical and numerical problems. Their main interest for
numerical applications is that they provide efficient algorithms for
explicitly computing the gradient, or partial derivatives, of a "complicated"

compound scalar function of a set of arguments. They can in particular

be used in problems of optimal control, in which one wants to minimize
some scalar function u +-Cﬁh) of a set of arguments u = (ul’u2""'un)'
For given u, one integration of appropriate adjoint eguations will determine
the gradient of}J’with.respect to u. Successive gradients computed in this

v

way can then be used in an iterative descent process in order to
determine the minimizing u. A possible meteorological avplication

of optimal control is assimilation of observations,
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which can be stated in the following terms. Given a forecasting numerical
.4

model, a set of observations and a scalar function 4 which,for any model

solution, measures the "distance" between that solution of the observations,

find the model initial conditions at some time t, such that the correspon-

ding solution minimizes the function;;;

Adjoint equations can also be used in meteorological situations where

one is interested in knowing a gradient for itself, independently of any

minimization process. A typical example is the following. A general

circulation model is used for climatic studies, and one wants to evaluate

>

the sensitivity of some particular climatic indicator “ (e.g. the tempe-

rature averaged over some spatial and temporal domain) to the model's

physical parameters. One integration of the adjoint equations will

suffice in order to determine the gradient of t'with respect to all

physical parameters, thus defining an extremely efficient way to evaluate

the required sensitivity to the various parameters.

The idea of applying adjoint equations to meteorological problems is by

no means new. It has long been advocated by various authors, especially
from the Soviet Union ( Marchuk , 1974, 1982; Kontarev, 1980). In

recent years, various works have been performed in order to study the
sensitivity of numerical models with respect tc physical parameters

(Hall and Cacuci, 1983, 1984). However, probably because of their semewhat
sophisticated mathematical technicality, adjoint eguations have not so far
been much applied to meteorological problems, and a precise assesment of
the possibilities they could offer in practical situations has still to

- be made.
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In this article, the general principle of adjoint equations is first
described (Section 2) and appliedv(Section 3) to the problem of data
assimilation, considered in the terms stated above. The theory is

then extended (Section 4) to the problem of determining both the initial
and boundary conditions of a limited area model in the case where

one wants to adjust that model, not only to a set of observations, but also
to a large scale forecast already produced by another model. OQther
possible meteorological applications of adjoint equations are briefly

described (Section 5) and conclusions are presented (Section 6).
The theory presented in Section 3 is at the basis of the numerical
experiments described in the article by Courtier (this volume) which will

hereafter referred to as C 85.

2. GENERAL PRINCIPLE QOF ADJOINT EQUATIONS

The appropriate mathematical framework in which to use adjoint equations

is provided by the theory of Hilbert spaces, the basic elements of which

can be found in many text books on linear analysis, for instance in
Reed and Simon (1980). A Hilbert space is a linear space in which an
inner product has been defined and which has the additional property
of being complete with respect to the distance defined by the inner
product. Although this last theoretical requirement does have some
practical implications, we will only mention that a finite dimensional
space on the field of the real numbers, and on which an inner product

has been defined, is always complete, and that no difficulty can therefore
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arise in practical situations as to the existence of adjeint eguations.

We will first briefly recall the definitions of two general notions
which are basic to what will follow, namely the notions of a gradient

and of an adjoint operator.

Letc?(be a Hilbert space on which an inner product noted ( , ) has
been defined, and let v-—??}v) be a scalar differentiable function defined

ot

Vel . B
on j'. At any point v in ff, there exists a uniquely defined wvector VV y

. g
such that the first order variation Q)- of .resulting from a variation dv

of v is equal to the scalar product

4 ,
S = (k. sv) (2.1)

Y j}' is the gradient of ;}. As for ordinary gradients in physical space,
v - v
A,
v ’3/ is directed along the direction of fastest variation of 7, and its
v {
modulus is equal to the rate of variation of ;Pper unit length along that
direction. In particular, the function ;;is stationary at a given point
T . %5 . T .
of j if and only if vV ) is equal to zero at that point. When has finite
Vi

dimension and is described by orthonormal coordinates x. , it is well known
i

>
“ L
4

that the components of v';Lare the partial derivatives %44 . But

v{ X,
the concept of a gradient is much more general, and we will use in the
sequel the general abstract expression (2.1) rather than explicit coordina-

tes.

Letzf-be another Hilbert space, with inner product noted < , >, and
u—» Lu a continuous linear operator of z;into 5?. There always exists

a uniquely defined continuous linear operator L* of 71 into & such that
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P o

G , R
for any u belonging to C and any v belanging to j + the following equality

between inner products holds

(Lu, v) = <u, L'v > (2.2)
">_ .
LY is called the adjoint of L . When 7 and ¢ have finite dimensions

N and M respectively,and are described by orthonormal coordinates, it is
.well known that the matrix which represents L* is the transpose (or

transconjugate in case of complex components) of the matrix (lij ) which
represents. L. . Equality (2.2) only corresponds in that case to a change

in the order of summation indices

N M M N
32=:11[1E=1 ljiui] Vj i j§1 [j=1 ljivj] Y

But again the concept of an adjoint operator is much more general, and we
will use in the following the general abstract expression (2.2) rather

than explicit indices.

? r ? and /2 still having the same significance, we now consider a
(normally non-linear) differentiable function u — v = G(u) of E
into 7: Through G, :}(V) =;}[G(u)]is a compound function of U, and we
consider the problem of numerically determining , for given u ; the
components of the gradient Vu"?’/ - In many cases (as in meteorological
applications, where the operation u—G(u) will denote the temporal integra-
tion of a dynamical model of the atmospheric flow)rit will be impossible
to find a usable analytical expressions for the components of Vuﬂjif .

One conceivable way for determining Vu:/], would be to perturb in turn

all components of u and, for each perturbation, to explicitly compute
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v=g(y) and the resulting perturbation on }}’. This would lead to finite

difference approximations for the components of V jj' ;, but would require
u 7

as many explicit computations of G as there are components in u, an

obviously impossible task for systems with large dimensions.

Now, the first-order variation of éLis given by (2.1}, while the first

order variation v of v is equal to
§v = G'Su (2.3)

where G'is the linear operator obtained by differentiating G with respect
to u. Carrying (2.3) into (2.1) and introducing the adjoint G'* of G'

leads to

6’/1{» = < G'* VV;:/ ' Su >

which, by the definition of a gradient, shows that the gradient Vu/} is

equal to

Vo (2.4)

}’can be easily determined (which will be the case

Therefore, if v °
v
whenever ;? is an analytically "simple" function of v) and if a program

is available which computes c'*y for given w, (2.4) defines a practical

way for computing vﬁi}ﬁ
v
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The computations which, starting from u, lead to G(u) being decomposed as

the product of a number of elementary operations

Differentiation leads to

G' = cCc'....c!c!
n 2 71
where, for each i, Ci is the linear operator obtained by differentiating
Ci~-It is readily obtained from the adjointness relationship (2.2) that
the adjoint of a product of operators is the product of the corresponding
adjoints, taken in reverse order. Therefore

|*C|*

[ -
G Cl 5

c...Cr¥
‘1’1
which shows that, in the computation of G'*w , the basic operations which

make up G will have to be performed (after they have been linearized and

their adjoints have been taken) in reverse order. In particular, if the

computations which make up G include a temporal integration of a dynamical
model, the corresponding adjoint computations will include some form of

reversed time integration.

The computation of VHJ}‘for a given value of u will successively require
the direct computation of v=G(u) , the determination of the corresponding
value of Vv;kand the adjoint computation (2.4). In practice, the
numerical cogt of the adjoint computation will be of the same order of

magnitude as the cost of the direct computation. The determination of
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one gradient Vﬁ:} will therefore require a few times at most the cost of
one direct computation of v=G(u). It is seen that considerable gain is

achieved over the other way considered above. for determining Vu'}' '

namely explicit perturbations of the components of u.

3. APPLICATION TO ASSIMILATION OF METEOROLOGICAL OBSERVATIONS

The general principle described in the previous section will now be

applied to the problem of assimilation of meteorological observations. The
vector u will denote the set of initial conditions from which a dynamical
model of the atmospheric flow is integrated. The model equations are

written symbolically as

dx

dt (3.1)

where, for any time t, x(t) is the vector describing the state of the flow,
which belongs to a space g? ; with inner product < , >. Equation (3.1)

will therefore be integrated from the initial condition =x(tg) = u

The vector v will denote the entire history x(t), tO £t s t1 ’

produced by the integration of (3.1). As for the scalar function 7, it

14

will measure the "distance"™ between the solution x(t) and a set of
available observations. For instance,‘;} can be a weighted sum of

squared difference between the model values and the observed values,

which we write symbolically as

2
3.2
(Tiﬂ ( )

obs

—;I= Z oci[x(”fi) - X
i
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where the Ty are the times at which observations have been performed.

To (3.2) can be added, for example, a term measuring the amount of small

scale noise in the solution x(t). The effect of thisterm will be to reduce
1 :
the amount of noise in the minimization of (i;‘ . We will assume for ., the

general form

£

:‘J’[X(t)] = H[X(t)lt] dt (3.3)

!’(r\

where for any t, x—9H|x,t] is a regular scalar function defined on

The first-order wvariation & 1 resulting from a perturbation du on the

initial condition is equal to

. 1
S } = < V_H(t), 8x(t) > dt (3.4)

t
o

where for any t, the argument t in V,H(Y) means that this gradient
is taken at point [x(t),t], and where 6x(t) is the first-order variation
resulting from §u through the integration of (3.1). The variation ©&x(t)

is obtained from §u by integration of the tangent linear equation

8% | iy ex ' (3.5)
X

where F}'((t) is the operator obtained by differentiating F with respect

to x, and taken at point x(t). Equation (3.5) being linear, its

solution 6x(t) at time t is obtained from the initial perturbation Su at

time t, through a linear operator, called the resolvent of (3.5) between
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to and t, which will be noted R(t,tg)

$x(t) = R(t,ty) Su (3.6)

More generally, the resolvent R(t,t') is defined for any two instants

t and t' and possesses the following properties

R(t,t) =1 for any t (3.7 a)

Yo

where I is the unit operator of ¢ , and

fob)

LE R(t,t') = F;(t) R(t,t") for any t and t' (3.7 b)

QJ,

*
Carrying (3.0) into (3.4), introducing the adjoint R (t,to) of R(t,to)
and taking the integral into the inner product leads to

©

3 R*(t,t ) V H(t), Su >
(@] X

t
¢}

which, by the definition of a gradient, shows that the gradient of

with respect to the initial condition u is equal to

t
1

v “} = R¥(t,t ) V H(t) dt (3.8)
u,\‘ @] X

We introduce at this point the adjoint tangent equation

*

4§ x
dt

= - F)‘{*(t) §%x (3.9)
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whose variable §*x also belongs tocé‘, and where F;*(t) is, for any t,
the adjoint of F;(t). System (3.9) is linear, and we will denote S(t,t"')
its resolvent between times t' and t. The inner product < 8x(t), §*¥(t) >
of any two solutions of (3.5) and (3.9) is constant with time since

a §*x
dt

<88y, sty >+ < sx(t),

d *
< 8x(t), §7x(t) > 7S

dt

(t)y >

11

< F;(t) Sx(t), §*x(t} > +

< 8x(t), —Fé*(t) §¥x(t) >

Denoting by y and z any two elements of L;, the solution of the direct
equation (3.5) defined by the condition Gx(to) =y takes at time t

the value R(t,to)y , while the soiution of the adjoint equation (3.9)
defined by the condition 6%x(t) = z takes at time tO the value S(to,t)z.

The corresponding equality between inner products reads
<y, S(to,t)z > = < R(t,to)y ; 2 >

which, being valid for any y and z , shows that the adjoint of R(t,to)

is S(to,t) . Equality (3.8) accordingly becomes
3o [
Vu /0 = S(to,t) VXH(t) dt (3.10)
t
o

We now consider the inhomogeneous adjoint equation

§* 1
ddt X -F () 8'x -V _H(E) (3.11)
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The solution of that equation defined by the condition §*x(t,) = 0 is

equal to
Fx(t) = s(t,) V_H(t) dr

as can easily be verified from the resolvent properties (3.7), applied to

the resolvent S(t,t'). Equation (3.10) now shows that Vu‘l'is equal to

s¥*(t ).
@]

In summary, the gradient Vu;} can be obtained, for a given value u of the

initial condition, by performing the following operations

i) starting from x(to) = u , integrate the basic equation (3.1) f£rcm- tO

to t1 Store the values thus computed for x(t) , to =t s tl'

ii) starting from 6*x(t ) = 0, integrate the inhomogeneous adjoint

1

equation (3.11) backwardg'in time from t, to to, the operator F;*(t) and the

1
"forcing term" VXH(t) being determined, at each time t, from the values

x(t) computed in the direct integration of (3.1). The final value G*x(to)

is the  gradient Vu:L.

In any practical situation, where the function F in (3.1) will contain
spatial derivatives, equation (3.1) will be discretized with respect to
both space and time. If one wants to adjust a solution of the discretized

model to the observations, it is of course the adjoint of the discretized

model which will have to be used. In particular, the derivation presented
above, obtained under the implicit hypothesis of a continuous time coordi-

nate, will have to be performed again for the particular temporal discre-
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tization used in the model. Similarly, the adjoint Fé* will depend on the

particular scheme used for spatial discretization of F.

Once the gradient V;;} is available, it will be used in a descent process
in order to determine the minimizing u . A large number of descent
algorithms have now been developed, and are available in routine libraries.

We will mention the steepest descent algorithm, the conjugate gradient

algorithm, and the quasi-Newton, or variable metric, algorithm. These

algorithms are described, and their properties discussed, in Gill et al.

(1982).

The approach to data assimilation which has just been described seems to
have been first suggested by Penenko and Obraztsov (1976). More recently,
it has been used by Lewis and Derber (priv. com.), and by Courtier (this
volume) who has assimilated radiosonde observations of wind and
geopotential with two different models, based respectively on the

vorticity equation and the shallow-water equations.

4. APPLICATION TO THE DETERMINATION OF THE INITIAL AND BOUNDARY CONDITIONS

OF A LIMITED AREA MODEL

A specific problem encountered when using a limited area model (LAM) for
mesoscale numerical weather forecasting is the definition of appropriate
lateral boundary conditions in the course of the temporal integration of
the model. The procedure most commonly adopted at present is to extract
those boundary conditions from a forecast previously produced by a large
scale model(L.SM). Now, if a large scale forecast is already available, there

is no reason to trust it particularly along the boundary of the limited area
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model. By definition, the large scale forecast must be most reliable in

the largest scales of the flow. So, instead of requiring coincidence between
the two forecasts along the boundary of the LAM, one may wish to require
coincidence, over the entire spatial domain of the LAM, of those spectral
scales which are common to both models. This can be achieved, at least

in principle, by using the adjoint equations of the LAM, as will be

now shown.

We consider the following situation. We want to make a LAM forecast for
some time interval (tq, t2), using observations available over some

time interval (to, tl) anterior to tl,and a large scale forecast already
available for the period (ty, t;) (see figure).

observations forecast

3 3 = > time

For each solution k(t) of the LAM, we define a functional

-~ ty t2
= / P [x(t)] at +f o [x(t)] at

t
(o]
Y

where, for t comprised between tO and t P [x(t)] is a measure of the

17
"distance" between x(t) and the observations available at that time
and, for t comprised between t1 and tZ’Q [x(t)] is a measure of the
discrepancy between x(t) and the LSM forecast over the largest scales
resolved by the LAM. We want to determine the initial and boundary

conditions of the LAM such that the corresponding solution minimize

the functionalii-.
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We rewrite the function~?¥as

o ty
&= B [x(t)] at
‘ t
(e}

where H[k(tﬂ stands for P [x(tﬂ or Q [x(t)] depending on whether

t < t1 or t > tl' The evolution equation will be written as

dax
3t = F [x, c(t)]

where, for any t, c(t) denotes the boundary condition at that time.

A solution x(t) over the time interval (to, t2) is completely defined
by the specification of the corresponding initial condition x(to) =u
and of the boundary condition c(t), for all t, tostgtz.
Our purpose is ﬁo determine the gradient of :lwith respect to the
ensemble (x(to), c(t), to$tstc). We will proceed along lines very
similar to those already followed in the previous section. For a pertur-
bation du and Sc(t) (togt<t2) of the initial and boundary conditions
respectively, the corresponding first order variation 5:10f jl

is equal to

t

. 1
§h= f < V_H(t), dx(t) > dt (4.1)
%%
where the perturbation §&x(t) is obtained by integration of the tangent

linear equation which now reads

ddx

Tl F}'{(t)éx + Fc':(t)cSc(,t) (4.2)
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The solution of (4.2) defined by the initial condition dx(t ) = du

is egual to

t
8x(t) = R(t,ty) Su +f R(t,T) F(‘j(r)&c('r)'d'r

t
o]

(4.3)

where, as in the previous section, R denotes the resolvent of the tangent
equation (3.5). Carrying (4.3) into (4.1), taking adjoints and changing
the order of the integrations with respect to t and T , one cbtains

t2

57/}= <§% (t.), 6u> +/ <FLT(£) 8% (£),8c(B)> at (4.4)
tO ts

where for any t, S*X(t) =J//‘ R*(t,T)va(T) dt

t
is the solution at time t of the inhomogeneous adjoint equation (3.11),
integrated from aﬁ;(tz)zo . The first term of the right hand side
of (4.4) is the same as in (3.10), and expresses that the gradient of'i
with respect to the initial condition u is equal to é*x(to). The
second term expresses that, for any t, the gradient,of\ji with respect
to c(t) is equal to F(':*(t)G*x(t) . In order tc determine
this gradient, we must therefore, in the course of the backward
integration of the inhomogeneous adjoint (3.11), apply to the current
value S*X(t) the adjoint of the operator Fé(t) which expresses the
dependence of the dynamical evolution with respect to the boundary

condition (see 4.2).
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5. ADDITIONAL EXAMPLES

Given a scalar functionjjfwhose explicit computation requires the
temporal integration of a dynamical model of the atmospheric flow, the
determination of the gradient of:j'with respect to initial conditions,
boﬁndary conditions and/or physical parameters will always require the
backward temporal integration of the corresponding adjoint model. The
forcing term of the adjoint integration (VXH(t) in the examples treated
above) will depend on the particular functionj;-which is considered.
Similarly the result Gfx(t)of the integration éf the inhomogeneous
adjoint will have to be treated differently according to whether one wants
to know the gradient ofj} with respect to initial conditions (as in
section 3), lateral bougdary conditions (as in Section 4), or physical
parameters (see e.g. Hall and Cacuci, 1984, for this last case). But the
basic adjoint equation (3.9), which makes up the core of the complete
adjoint computations leading to V?C will always be the same for a given

numerical model.

We will mention a few of the many possible meteorolbgical applications

of adjoint methods.

1) Let us assume that a particular numerical forecast has produced

somé erroneous feature, such as for instance an abnormally low surface
pressure in some region, and that one wants to trace back the origin

of that error in the forecast initial conditions. Taking as function';i
the value of the surface pression at the time and location where it has
been abnormally low, one can integrate the adjoint model in order to
determine the gradient of ;%with respect to initial conditions (and

possibly also with respect to other parameters). Although this will not
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of course automatically identify the "cause" of the error in the forecast,
it will certainly contain useful information as to its origin.

2) The second example is borrowed from Marchuk (1982). Let us suppose
that industrial plants have to be located in some area, and that one is
concerned with reducing the amount of resulting atmospheric pollution. A
mesoscale circulation model is available which, given parameters éuch
as the geographical locations of the plants, the amount of industrial
effluents emitted by each plant into the atmosphere, etc, computes some
measure'?-of the nuisance produced by the resulting pollution. The
adjoint model can be used in order to determine the gradient of';¥with
respect to those parameters. Avminimization process can then be used
in order to determine the parameter values which minimize'ifwithin

some prescribed consﬁraints.

3) Many observing system simulation experiments (OSSE) have been
performed in order to assess the impact of modifications of observing
systems on the quality of subsequent forecasts. Once an assimilation
program and a forecasting model are available, it is possible, at least
in principle, to take the adjoint, not only of the model itself, but
also of the assimilation program (this is possible whether oxr not the
assimilation program uses the adjoint of the forecasting model). The
two adjoints, combined in reverse order, make up together the adjoint
of the global assimilation-forecasting procedure. This global adjoint
can then be used in order to determine the gradient of some quantity
measuring the quality of the forecast with respect to the para&eters
defining the accuracy, nature and spatio-temporal distribution of the

observations.
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Other examples of possible applications of adjoint equations are giwven
in Kontarev (1980) and Hall and Cacuci (1983, 1984) and in articles

referenced therein.

6. CONCLUDING REMARKS

The various examples discussed in this article show that adjoint techniques
can potentially be applied to a large variety of meteorological problems.

Some additional remarks are in order.

It has been emphasized in Section 2 that using adjoint equations for
computing the gradient of a scalar function achieves considerable numerical
gain over direct perturbations of the arguments of that function. More
generally, after one integration of the basic model equation (3.1) has

been performed, one integration of the adjoint equation will produce

~

the gradient of one output parameter ;’with respect to all input parameters

(initial and boundary conditions, physical parameters) of the model.

Direct perturbation of one input parameter, on the other hand, will

determine the sensitivity of all output parameters with respect to that

particular input parameter. Therefore, if one is interested in studying
the sensitivity of p output parameters of the model with respect to n
input parameters, it will be more economical to use the adjoint equations
if p < 1, while it will be more econcmical to perform direct perturbations

ifpo>n,

It is possible to integrate the adjoint model only if a direct integration

of the basic model has been performed previously. This direct integration
will produce the components of the terms such as F'*(

t), V4H(t), which are
X

required by the adjoint integration. The gradient produced by an adjoint
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integration is therefore local in the space of input parameters of the
model. This must be clearly realized since the localness of the gradient,
depending on the particular problem at hand, may be an advantage (as in
minimization procedures for instance) or on the contrary a disadvantage
(as possibly in some climatological studies, for which a gradient varying

rapidly in parameter space may not be significant).

Now, if adjoint techniques make it possible to perform computations which
it would be absolutely unthinkable to perform otherwise, their
computational cost remains high. Not only does the determination of one
gradient require one integration of the adjoint model, but that integration
itself requires in principle the previous storage of the complete model
history produced by the direct integration. At present, adjoint techniques
could possibly be used only for applications which are not submitted to
strict limitations in computing time. This probably excludes, for the

time being, any operational application. But one can be sure that the
continuous progress which has been observed in computing power in the last
decades will continue in the coming years, and detailed study of adjoint

methods, from both a theoretical and a practical point of view, is certainly

of great interest.
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