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1. INTRODUCTION

One major objective of the FGGE was to evaluate and compare
the performance of different types of new observing systems,
in particular their impact on global analyses and numerical
forecasts. During the FGGE year a global observational data-
set ('level II-b dataset') with a coverage and quality not
achieved before, or after, was assembled (Bengtsson et al.,
1982). These data have been used for several observation
impact studies, reported at the present seminar, and else-
where. In this study we will concentrate on automated air-
craft data (ASDAR/AIDS) and satellite temperature profile
data (SATEM) during a period in November 1979.

When examining the behaviour of an observing system in an
objective analysis/numerical forecast scheme, two lines of
approach are common, Observing System Experiments (OSE) and
Observing System Simulation Experiments (OSSE). In the former
approach, real observations, with their actual geographical
distribution and actual errors, are used, while in the latter
'‘observations and observation errors' are generated in a
controlled manner from a consistent meteorological field,
usually a numerical forecast. In both approaches parallel
data assimilations, including and excluding the particular
observation subset to be studied, are performed. Evaluation
usually consists of comparison of analyses with observations,
analyses with analyses, forecasts with verifying analyses and
forecasts with forecasts. Furthermore, the experiments can be
classified as 'single system' experiments where a single
additional observing system ('experiment') is compared with a
'minimum' ('control') analysis, for instance using only con-
ventional, ground based observations (TEMP, PILOT, SYNOP,
SHIP), or 'best mix experiments', where several systems are
tested together in different combinations.

Due to imperfections both in data distribution and in data
guality, there are great difficulties to extract clear sig-
nals of data impact from ensemble OSEs; the impact of a par-
ticular observation set is easily swamped by other, irrele-
vant factors such as sparsity of control observations or
forecast errors. In OSSEs, on the other hand, ideal experi-
mental conditions can be generated, which makes the data
impact much easier to identify.

1) Present affiliation. This work was done at ECMWF.
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Thus OSSEs have a tendency to overemphasize the impact of a
particular observational system, while it may be underesti-
mated in an imperfect OSE. When using real data in OSEs a
general feature of the evaluations, at least from our expe-
rience at ECMWF, is the great variability of the impact from
cne analysis to the next, and from one geongraphical location
to another. Such variations cannot always be anticipated, if,
for instance, the first guess forecast happens tc be good for
a certain synoptic system, the presence or absence of data
may not be crucial for the forecast development of that par-
ticular system. On the other hand, it may happen that even a
single observation is absolutely essential to get a reasonab-
ly realistic analysis of another system that is not prebent
in the first guess forecast.

A consequence of this is that many cases are needed to detect
any systematic impact in the statistical average; too small
samples give unreliable results which may be modified if more
cases are added to the ensemble. With the effort needed, both
in computer time and manpower, exhaustive statistical evalua-
tions of OSEs are still almost impossible, at least if seve-
ral observation subsets are to be tested. On the other hand,
in individual synoptic situations the data impact may be very
easily demonstratable, as already pointed out. Thus case
studies have to be an important part of OSE evaluations.

Another difficulty in examining the impact of different ana-
lyses on numerical forecasts has been described by Arpe et
al. (1985). In a set of experiments where three different
analysis/forecast systems were intercompared, using the same
FGGE input data, it was clearly demonstrated that in the time
range 2 to 6 days, i1 e the range of prime interest for medium
range forecasting, the total prediction error was dominated
by the inherent errors of the forecast models. The analysis
errors, or differences, dominated the total error only during
the first day. A consequence of this finding is that even
rather clear analysis differences due to the presence-absence
of a certain observation set are quickly hidden by forecast
errors. Neither the experiment, nor the control forecast may
verify very well against analyses. Thus evaluation of OSE
forecasts by comparison with verifying analyses is very dif-

ficult. PFortunately, the impact of analysis differences on
the ensuing forecasts is easier to identify by comparing
forecast against forecast. Since the same forecast model is

used for control and experiment, the temporal increase of the
amount of separation between the two forecasts is due only to
analysis differences, 1 e the impact of the uvbservations.

Based on those experiences and reasonings, the data impact
study reported here concentrates on one hand on a particular
case study (section 3), and on the other on average forecast
separation (section 4). In section 2 the setup of the experi-
ment is described and in section 5 some conclusions are
drawn.
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2. THE EXPERIMENT

In the present paper, an OSE, using FGGE data from November
1979, is described. The main aim was to look into the impact
of satellite temperature profiles (SATEM) and automated air-
craft observations (AIDS/ASDAR). Based primarily on data
availability, two polar orbiting satellites were available
from the middle of October, but also on synoptic activities,
a period from November 8 to 18 was selected. For this period
eight parallel data assimilations were performed, using the
version of the ECMWF data assimilation system available at
the time of the experiments. This version differs from that
used for the ECMWF level III-b analyses (Bengtsson et al.,
1982) in several aspects, the most important being the ver-
tical interpolation between analysis pressure levels and
initialization-forecast o-levels. In the present assimila-
tions the so-called incremental interpolation was used. A
modified, somewhat steeper orography was also used.

A subset of the assimilations was used for a comprehensive
OSE on aircraft data (Baede et al., 1985) where more details
on the experiment setup can be found. The eight different
"experiments are summarized in Table 1, where the acronyms
used for each assimilation are defined. These acronyms, al-
though sometimes illogical, will be used throughout this
paper to identify the experiments.

Experiment |Ground-|Buoys Air- SATOB SATEM
acronym based¥* , craft

AT YES YES YES YES YES

AO YES YES NO YES YES

SO YES YES NO NO NO

sX YES YES YES NO NO

SB YES YES NO YES NO

SM YES YES NO NO YES

N1 YES YES NO NO ONE ONLY
sSp NO** YES YES YES YES

* TEMP/PILOT/SYNOP/SHIP
*¥* Surface pressure data used

Table 1 Summary of assimilation characteristics

The total set of FGGE level II-b data (we used the so-called
'main II-b' dataset) was divided into five categories, ground
based (= TEMP, PILOT, SYNOP, SHIP), buoys (= DRIBU), aircraft
(= AIREP, AIDS, ASDAR), satob (SATOB, = cloud drift winds)
and satem (SATEM = IR and u-wave soundings from satellites).

205



There are two control experiments, one using all data (AI)
and one using only ground based data (SO). The other experi-
ments contain different subsets of AI. In experiment SP the
ground based data were removed in order to simulate a possib-
le completely automated space-based observing system. To
simulate automated pressure sensors on land and drifting
buoys, surface pressure data were, however, retained in expe-
riment SP. The FGGE drifting buoys were used in all assimi-
lations, so far we have not made any OSE specifically addres-
sing the buoy data.

A typical example of data distribution during the experiment
is shown in Figure 1. From the maps the obvious fact that
aircraft data are primarily available from the main air rou-
tes of the world is clearly seen. Although the November pe-
riod was selected partly because two polar orbiting satel-
lites were operational, the SATEM map only shows one satel-
lite. This was actually not too unusual during the period,
large gaps now and then occurred in one or the other of the
TIROS-N and NOAA-7 satellite coverages. In particular, the
area immediately west of North America frequently showed gaps
due to operational practises. The DRIBU coverage was very
good during the period.

From each of the eight assimilations, seven forecasts were
run, using the same version of the (then) ECMWF gridpoint
model as was used in the assimilations. The forecast cases
are listed in Table 2. Forecast verifications were carried
out against the ECMWF level III-b analyses. Large amounts of
maps showing analyses, forecasts, forecast minus analysis and
forecast minus forecast were produced as well as other diag-
nostics.

Forecast Initial data
number

1 10 Nov OOGMT
2 11 Nov OOGMT
3 13 Nov 0OGMT
4 16 Nov OOGMT
5 18 Nov 12GMT
6 14 Nov 12GMT
7 11 Nov 12GMT

Table 2 Initial times of the seven forecasts. For
each time all eight cases were run up to +10
days.

206



3. A CASE STUDY

In this section we will focus on one particular situation on
the North Pacific Ocean from November 11th OOGMT. This case
was found to be one of the better examples of a synoptic
development where the impact of different data types could be
demonstrated. The data coverage at the time of analysis is
seen in Figure 1. Figures 2 and 3 show the 250mb and surface
analyses from the complete (AI) dataset, including available
observations. The central area is characterized by very few
upper air stations, only the Aleutians, Midway Island and, to
the east, ship PAPA, and thus the upper air analyses are
primarily defined by aircraft wind data, centered around
250mb and SATEM thickness data available throughout the atmo-
sphere. There are also a limited number of SATOB data, cen-
tered around the cirrus level and around 900mb. At the sur-
face a reasonable amount of SHIP data are available.

The feature of prime interest is the upper level trough at
o} o} - o
30 N, 170 E, with an incident weak surface low at 20 N,
o}
170 E. In 48 hours the surface low has developed into an
intense cyclone with surface easterlies of more than 30 m
-1 (o) o] :
sec at 33 N, 175 W, see the AI analysis from OOGMT, Novem-.
ber 13th in Figure 4. The 250mb trough has developed into a
’ e} o
cut-off cyclone centered at 29 N, 179 E.

The minimum, ground based observing system (SO) is almost
void of upper air data,; and the initial analyses are very
different (Figure 5), from AI at 250mb. A map of the differ-
ence between the two analyses shows height differenies up to
182 gpm and vector wind differences up to 44 m sec - (Figure
6). At the surface the analyses are much more similar with
pressure differences never exceeding 3mb anywhere in the
area.

The very marked impact on the 250mb analyses is due to the
combined effect of SATEM, SATOB and aircraft data. To try to
separate what role each observing system plays, the 250mb
difference maps 'A0-SO' (Figure 7) 'SX-SO' (Figure 8) 'SM-S0'
(Figure 9) and 'SB-S0' (Figure 10) are displayed. It can
first be noted that AO-SO and SM-SO are very similar, indi-
cating that the SATOB data added in AO hardly add any infor-
mation.

On the other hand, SB-SO also shows the same main trough-
ridge pattern, although with some differences. Obviously the
SATOB data, at Nov 11 OOGMT and earlier contain useful data-
per se, which help to improve the SB analysis compared to SO.
There is some amount of redundancy in the SATOB data.

The differences AO-SO (or SM-S0) are due to the SATEM thick-
ness data. The height patterns have a large scale with a
positive discrepency at 35°N, 180°E and a negative at 45°N,
165°W. Bi-modal height difference patterns of this type indi-
cate a phase difference between the two components.
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The SATEM thickness data contribute to improve the analyzed
position of the large scale main trough in Figure 2. Through
the multivariate coupling in the data assimilation, consist-
ent wind differences are also seen in the maps.

Now turning to the aircraft impact, a comparison of AI-SO
with SX~SO indicates that the aircraft data alone are also
able to improve the 250mb analysis considerably. The bimodal
pattern indicating a phase error in the main trough in assi-
miation SO, is found in both maps. There is, however, addi-
tional impact in the structure of the devloping part of
trough around 30°N, 175°W. With aircraft data included,
vector wind differences to SO of more than 40 m sec™! occur,
in the case of no SATEM (SX-SO) even 51 m sec™}. The aircraf
observations intensify the jet and sharpen the trough.

A crucial question when analysing single level wind data, is
how their impact is distributed vertically. This problem has
been discussed by, among others,Sumi (1982). In Baede et al.
(1985), the present experiment is discussed in some detail
from this point of view. In the ECMWF optimum interpolation a
fairly wide vertical correlation was assumed for the wind
first guess prediction error, which has the effect of distri-
buting the observed wind deviation throughout a large posi-
tion of the atmosphere, see Figure 11. By this assumption it
is hoped that the wind data will impact the so-called 'slow
manifold' (Leith, 1980) and will survive the ensuing initia-
lization to contribute to the forecast. A comparison between
our approach and the converse approach of inserting the wind
data at the level of observation only, has been made by
Lorenc (1982). His findings confirm that more of the aircraft
wind information is projected on to the main flow in the
ECMWF system. In the UKMO data assimilation system used by
Lorenc, a considerable part of the aircraft information ra-
pidly radiates away as gravity waves.

At the same time it must be pointed out that the ECMWF sys-
tems assumes that the first guess predicion error is separab-
le into a horizontal and a vertical part. A consequence of
this assumption is that only a 'barotropic' part of the air-
craft wind information impacts the analysis. The full poten-
tial of the single level wind data may not yet be exploited.

The final analysis difference map, Figure 12, shows the
'space-based' system SP-50. Even here the pattern is quite
similar to that of the control, AI-SO. The space-based analy-
sis and that from the complete FGGE dataset are mutually more
similar over the North Pacific than any of them is to the
ground based analysis SO. This may indicate that it is more
important to have reasonably good data with a complete global
coverage than high gquality radiosonde data with very uneven
distribution between land and ocean. A reservation to this
statement is, however, that the AI control analysis to a
large extent is defined by space based systems over the
ocean, highlighting the inherent difficulty of the O0SE app-
roach.
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To demonstrate the importance of the analysis differences
discussed above, a series of forecast difference maps AI-SO
are shown in Figures 13 a-c with the initial difference of
Figure 6. Over land areas, well covered by radiosonde data in
SO, the forecasts are remarkably similar. The central Pacific
difference on the other hand rapidly develops into the ver
dramatic +48h differences in 13 ¢, with height differences at
250mb amounting to 470 gpm and vector wind differences up to
76 m sec .

The initial analysis difference rapidly progresses downstream
with the group velocity in the manner demonstrated by, for
instance, Cats and Akesson at ECMWF (1983). It is interesting
to note that, although the initial analysis differences at
the surface were small, the upper air differences rapidly
organize themselves into a baroclinically developing system
throughout the entire atmosphere, already after 12 hours (13
a) there are pressure differences of 8mb and vector wind
differences of 19 m sec”

The +48h forecast from analysis AI (Figure 14) verifies well
with the AI analysis from Nov 13 00z in Figure 4. The fore-
cast surface low is not quite deep enough, 1004mb compared to
1001lmb and its position is a bit too far west. At 250mb a
cutoff low is formed, again somewhat too slow, but the over-
all pattern indicates a very good forecast.

The landbased, 'minimum' observing system, SO, is not able to
give a useful +48h forecast for the North Pacific ocean,
Figure 15. The surface low is found at 37°N, 165°W, far away
from the verification, and the 250mb flow is very different,
with one elongated trough stretching from Alaska towards
20°N, 175°E, instead of the double structure with a cutoff
cyclone at 175°E and a deep trough at 155°W. In short, AI
gives the best forecast, as expected, and SO the worst, also
expected.

An examination of the other forecast cases; AO in Figure 16,
SX in Figure 17, SM in Figure 18 and SP in Figure 19, gives
an interesting insight into the strengths and weaknesses of
the aircraft and SATEM observations respectively. Beginning
with A0, we see that the developmet is less intense, both at
the surface and at 250mb, while the position of disturbances
are similar to those in AI. The single level wind data have
assisted in sharpening initial gradients in order to give the
observed intense development. In AO some single level wind
data were still used, i1 e those from the cloud drift winds,
SATOB. When they are removed too, in experiment SM, hardly
anything remains of the surface development, Figure 18. The
large scale 250mb features are still in their correct posi-
tions, although the cut-off low now is very weak.
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The SX forecast in Figure 16, shows a very intense develop-
ment at the surface, similar to that in the complete AI case
The central pressure of the cyclone is 1005mb. It is hard to
give a definite judgement on which is the better, possibly it
can be said that a line connecting the anticyclonic center to
the north with the cyclonic center, which in the verification
runs straight from north to south, is somewhat better pre-
dicted in AI than in SX. :

Finally, the space-based forecast, SP in Figure 19, also
gives the main features of the development in a reasonable
way. The surface low is too weak, and too slow, and the 250mb
cut-off low too far to the southwest. 8Still the SP forecast
is clearly better than tnat from the groundbased system in
experiment SO.

Concluding this subjective evaluation of one single case, it
can be stated that the complete FGGE level II-b dataséet gives
the best forecast and the minimum ground based system the
worst. The SATEM data are able to define the major trough-
ridge pattern in a good way, but finer details, such as sharp
gradients leading to baroclinic developments, are not caught.
Adding single level wind data improve these features, if the
data are available in the crucial positions. It is a common
experience that new frontal developments in the lower tropo-
sphere are often triggered off by divergent wave disturbances
at the jet stream level. A good, high resolution analysis of
such disturbances may be important. In the FGGE database, ‘the
aircraft (and SATOB) blngle level wind data were contributing
to achieve this.

The SATEM temperature profiles have a resolution of about 250
km in the level II-b database. This resolution is apparently
not sufficient in defining such finer details in the initial
states that may turn out to be important for successful pre-
dictions. On the other hand the SATEM data, already in the
FGGE resolution, are invaluable in defining the large scale
flow. '
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4. "ENSEMBLE FORECAST IMPACT

In evaluation of OSE forecasts, a major difficulty is how to
verify. The verifying analyses must, necessarily, suffer from
the same problems of incomplete and erroneous data as the
experimental analyses. Furthermore the inherent errors of the
forecast model tend to hide the sometimes subtle analysis
differences, at least after one or two days, as already dis-
cussed. One way of circumventing these difficulties is to use
a control forecast as verification. The scores will then not
show how good a forecast is, just how different, or separat-
ed, it is from the control. In this section we will discuss
the forecast separation and how it varies in the different
experiments and in different areas. The forecast separation
is expressed simply as root mean square difference, gridpoint
by gridpoint between the experiment geopotential height and
that of the control, AI, for every 12th hour from initial
state to +10 days.Other scores were also calculated, but for
the purpose of discussing forecast separation in this sec-
tion, only the RMS will be used. The calculations were done
for 250, 500 and 850 mb. In Figures 20 a, b, c¢ and d the
separation of 250 mb geopotential is shown for both hemi-
spheres (as defined in the caption).

In the Southern Hemisphere removal of aircraft in AO has very
little impact, as expected from the data distribution, after
six days the separation is not more than 20 gpm. The satel-
lite data are, on the other hand, of paramount importance
here, removing them in SO gives an initial separation of 60
gpm, which grows to 120 gpm in six days. Adding the air-
craft, in SX, hardly makes any difference. Thus it can be
safely stated that the southern hemisphere AI analyses are to
a very large externt defined by the satellite data. Remember
that the drifting buoy data were used in all our experiments,
their importance for the assimilation of SATEM-data has not
been studied yet by us.

In the present experiment the cloud drift winds were assigned
relatively large observation errors, based on earlier expe-
rience with SATOB data from the main level II-b set at ECMWF
(K&llberg et al., 1982). In particular the height assignments
of clouds were unrealiable, or even absent, and systematic '
underestimating of windspeeds were also found. Thus the
SATOB data were given low weights in the November assimila-
tions, and as seen from Figure 20c, the SATEM data provide
the major satellite impact on the AI analyses.

The initial separation of the SATOB analyses, SB to the cont-
rol AI, is large, more than 45 gpm. Since wind data give
information on mass-field gradients only, the thermal struc-
ture of the SB analyses are defined mainly by the few radio-
sondes and the forecast model itself. For the southern hemi-
sphere this is not enough, it seems necessary to have a rea-
sonably even distribution of mass data, which can only be
achieved by the SATEM profiles.

211



The initial separation SB to AI does not grow appreciably
during the first day of the forecast, either in the southern
(Figure 20c) or the northern (Figure 20d) hemisphere. Such a
behaviour would not be unreasonable if the SATOB data are
assumed to contain information that is not representative of
the large scale flow, as it is observed in AI. Local, small
scale wind systems, given by the cloud drift data, may dege-
nerate rapidly and not have a major impact on the medium
range forecasts.

In Figure 20c we also note that the space-based system, SP,
is the second closest to AI, next to 8M only. Again this
shows that the control analyses AI are, to a very large ex-
tent, defined by the satellite profiles.

In the northern hemisphere (20°N-82.5°N) the aircraft data
availability, and impact are very different, Figures 20b and
20d. As on the southern hemisphere, the A0 forecasts are
closest to’'AI, but the separatlon is larger, almost 60 gpm at
+6 days, compared to 20 in the south.

The ground-based data alone, in SO, give a very different
development with a +6 day separation of 110 gpm. This is
almost as much as in the southern hemisphere, albeit the
initial separation is much less, only 25 gpm compared to 60
gpm in the south. High resolution, high quality radiosonde
data over inhabited continents are not sufficient to define
the hemispheric flow with an accuracy sufficient for medium
range forecasts.

Of the three single system experiments: SX for aircraft, SM
for SATEM and SB for SATOB, SX and SM give very similar sepa-
rations to AI of about 15 gpm initially and 65 to 70 gpm at
day 6. SB is further off, 19 gpm iniitally and about 90 gpm
at day 6. The space-based system, SP, shows about the same
separation to AI as the ground-based, SO.

Just as the case study in the previous section, the ensemble
separation statistics indicate that the aircraft wind data
contain much valuable information, which the assimilation
system is able to exploit to an appreciable extent. The re-
sult that the SX and SM separations are of the same order
indicates that both systems contribute to the definition of
the full FGGE analyses; the single level aircraft winds are a
very good complement to the SATEM profiles. This is also
underlined by the combination SM+SB, in experiment AO, which
shows the smallest separation. Even if SB itself is quite
far from the control, addition of the SATOB single level
winds is beneficial to the analyses in AO.
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5. CONCLUSIONS

Of all the different diagnostics that have been studied in
the evaluation of the November OSE, we have concentrated on
only two in this lecture. Nevertheless, it is possible to
draw some general conclusions on the relative performance of
several of the observing systems tested during the FGGE.
These conclusions refer to middle and high latitudes only.
The data impact in the tropics is not discussed here.

- The satellite temperature profiles are absolutely essential
to define the large scale flow pattern, not only on the
southern hemisphere, but also over oceans and other unin-
habited parts of the northern hemisphere. The ground-based
radiosonde system is not sufficient to give a good analysis
of the hemispheric flow on either hemisphere.

- The resolution of the FGGE 'Main level II-b' SATEM data,
about 250 km or more is too low to analyze some fine-scale
synoptic structures essential for short and medium-range
forecasts.

- Single level wind data are very useful to enhance the reso-
lution of analyses over areas without good radiosonde net-
works. They constitute an excellent complement to coarse
( 250 km) resolution SATEM data. '

- Aircraft observations, AIREP, ASDAR provide single level
wind data of very good quality. ASDAR is better than AIREP
due to higher density and the elimination of position er-
rors.

- In the Main FGGE II-b database the SATOB cloud drift winds
had lower quality than the aircraft data, primarily due to
difficulties in height assignment. They still provide use-
ful information not available in other ways, particularly
in the tropics. ’

- The problem of how to extract the full potential use of
single level wind data is not yet solved.

- An imagined future observing system, using only fully auto-
mated space-based data extracted from the FGGE database,
clearly outperforms the ground-based system in the southern
hemisphere.In the northern hemisphere this system is as
good as the present ground-based one.

In spite of the arguments so far, comparing the relative
performance of the different observing systems to each other,
the final aim of any observation system evaluation is to find
out how good the forecasts are. All the experimental fore-
casts in Table 2 have been verified against the ECMWF FGGE
level III-b analyses. '
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These analyses were prepared from the same observations as
assimilation AI, but with a somewhat older version of the
data assimilation system (Bengtsson et al., 1982). In Table 3
below the average time to reach an anomaly correlation of
60%, a measure of predictability commonly used at ECMWF, is
given for the 500mb geopotential height for both hemispheres
and all experiments (except N1).

It should be mentioned that the correlations were calculated
gridpoint by gridpoint, and not in the Fourier wavenumber
space commonly used at the centre.

Experiment Northern Southern
hemisphere hemisphere
AI 7.3 5.3
Ao 7.2 5.3
sX 7.0 3.5
SO | 5.7 3.5
SM 7.0 . 5.0
SB ' 6.3 5.2
Sp 5.7 4.9

Table 3 Number of days to reach a 500mb height anoma-
ly correlation of 60%. Average of seven fore-
casts in each experiment. ,
~Verification is done against the III-b ana-
lyses.

These scores clearly support the conclusions already given.

"This experiment, although containing many assimilations and
many forecasts, still cover only a short period. In order to
get some insight into the danger of drawing conclusions from
just one short experiment, a second set of assimilations and
forecasts was run. Some results from this set are presented
by Tibaldi at this seminar. Although there are some differen-—
ces, the second experiment confirms the present results.
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250mb (top) and sea level (bottom) analyses for 00 GMT 13 November.
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Fig.

assimilation AI expressed as the r.m.s. difference of the 250mb
heights. Average of 7 forecasts from each assimilation experiment.
See Table 1 for abbreviations.
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