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Abstract:

Convection often exhibits mesoscale organization in the atmosphere. In recent
years a dynamical description of the mesoscale has been formulated and it is now
appropriate to consider the representation of fundamentally mesoscale phenomena in
large—-scale models. Both theory and observations of frontal systems indicate the
crucial role of the mesoscale, L ~v V/f, in mid-latitude cyclones. Much precipita-
tion in mid-latitudes is associated with such systems whilst the large-scale models
cannot resolve their detailed structure. In this paper, therefore, the recently
developed theories of convection forced by frontogenesis and by mesoscale instabil-
ities are reviewed. Several ideas for parameterisation in large-scale models are

presented but detailed schemes await further theoretical work.

1. INTRODUCTION

The existence and description of the mesoscale has become an increasingly important
problem in the theoretical study of the basic dynamics of the atmosphere and for
parameterisation in large-scale models. The definition of the term mesoscale is an
illustrative example of the difficulties of this subject. Observations of atmos-
pheric phenomena have led to grouping into mesoscale such diverse systems as severe
local storms, mountain waves, fronts, and sea breezes. Indicative of the fuzzy
nature of such a definition of mesoscale 1is the need to subdivide into further
classes meso o, B, and vy (Orlanski, 1975). This discussion would be of purely
semantic interest if it were not for the emergence of a dynamical definition of the
mesoscale which allows consideration of a hierarchy of scale interactions - large-
scale -+ mesoscale + cloud scale - and attendant parameterisation problems. In some,
perhaps many, cases parameterisation has been attempted of the cloud scale into
large—scale models without consideration of the mesoscale. Whilst this may be
successful in some cases, for example, tropical convection, it may be less well-

posed for mid-latitude systems.

The emergence of high resolution mesoscale numerical models (horizontal grid-length
% 20 km) may provide a bridge to enable specifically mesoscale parameterisation
schemes to emerge. Tt seems worth-while to restate the more-or-less obvious concept

that to parameterise a scale of motion it first has to be understood and modelled
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explicitly. An example is that of tropical squall lines which have been modelled
using simple analytical and cloud-scale numerical models (Moncrieff and Miller,
1976) and so parameterisation schemes for momentum and heat fluxes can be devised
for inclusion in larger—scale models (see article by Moncrieff and Miller in this
volume) . To take the example to be described in this paper, it would be difficult
to imagine representing moist processes at fronts in large-scale models without

understanding the mesoscale.

Implicit in the hierarchy of scales is that there exist identifiable peaks in the
energy spectrum. The existence of a mesoscale peak has long been the subject of
some controversy and it may be that routine data have insufficient resolution to
adequately define mesoscale structures. At any rate a cursory glance at weather
charts of mid-latitudes shows a dominant mesoscale organisation to be fronts and
their association precipitation bands. The theory of frontogenesis has been an
important development in dynamical meteorology in the last ten years and has helped
to provide a dynamical definition of the mesoscale. As will be discussed later, the
quasi-geostrophic equations only allow the formation of a sharp front in an infinite
time and are therefore inadequate in describing realistic frontogenesis. Conseq-
uently the semi-geostrophic equations were developed in which the advection by both
the geostrophic and ageostrophic components of the flow are important. These
equations capture the collapse of frontal scale in a finite time. Inherent in this
description is the importance of the earth's rotation and ageostrophic advection and
this leads to the motion being characterised by Rossby number Ro v 1. Consequently
it is consistent that the typical length scale L v V/f or VZH/f. Typical values
give L v 100 km which defines a mesoscale. 1In the frontal case therefore there is a
relatively clear distinction between horizontal scales of large scale (Ro << 1,

L = NH/f v 1000 km), mesoscale (Ro v 1, L = VZH/f N 100 km), and cloud scale

(Ro >> 1, L =H"n 10 km).

A distinction is now apparent between fronts and, say, deep convection. The latter
is frequently referred to as mesoscale although the dynamics of deep convection can
be adequately described by neglecting the effects of the earth's rotation; see, for
example, Thorpe, Miller and Moncrieff (1982). The horizontal scale of anvil cloud
can be of order several hundred kilometres but this represents advection of a more-
or-less passive tracer - the scale of active dynamics in, say, the updraught is of
order 10 km. Subsidence around the cloud can be of larger scale than that of the
cloud but its dynamical structure may not require the effects of rotation to be

included.

Frontogenesis is only one example of a phenomenon which involves dynamics on the
mesoscale. Inertio-gravity waves, sea-breeze circulations and symmetric instability

are other example of mesoscale phenomena by this dynamical definition. A more
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detailed description of the concept of the mesoscale can be found in Emanuel (1983).

Alongside these improvements in our understanding of the mesoscale, in particular
with reference to frontal systems, there have been observational programmes to
collect mesoscale data, and also development of numerical models. As thesé data,
from both sources, are assimilated it is timely to consider what implications this
progress has for large-scale models and numerical weather prediction in general.
However, the observational data sets are, as yet, incomplete and as new field
experiments are planned it is important to determine not only detailed dynamical
hypotheses to be tested but also the uses of such data sets in initialization of

mesoscale models and in developing parameterisation schemes for large-scale models.

This contribution to the workshop will attempt to review mesoscale aspects of
frontal convection and suggest various possibilities for parameterisation schemes.
Amongst these will be a scheme using the mathematical form of CISK although, as
stated by Ooyama (1982), it may be inappropriate to label such a theory in this
way. It has become, perhaps unfortunately, suggestive of a particular represen-
tation of diabatic heating rather than of the original idea. The review aspects of
this paper draw heavily on published and unpublished work by Professors B.J. Hoskins
and K.A. Emanuel, amongst others, and on current research of the author. Many
speculative ideas will be presented which may prove to be incorrect finally but

which are intended as points for discussion and further development.

The paper is divided into three main sections followed by a discussion. In section
2 the role of frontogenesis in forcing convective organization is described and the
point is made that as latent heat is released in the forced ageostrophic circu-
lations the baroclinic flow can become dynamically unstable to small disturbances.
In this way symmetric instability may occur and the structure of these mesoscale
instabilities is reviewed in section 3. The instability organizes the convection
on the mesoscale and in a sense determines the structure of sloping convection in
baroclinic flows. Prospects for parameterization of convection at fronts are

considered in section 4 and various ideas for future work are presented.

2. CONVECTION FORCED BY FRONTOGENESIS

2.1 Summary of two-dimensional frontogenesis

Although atmospheric fronts have three-dimensional features it is adequate for the

present purposes to confine the discussion to two-dimensional dynamics.

The diabatic, Boussinesq, hydrostatic equations may be written using conventional

notation as:

141




Du _ % _o . av .

e fv + e v (kV u) (0

Dv 9 _ o . v

ﬁ + fu + ay = Y (kV V) (2)

od _ 0

Bog 2 (3)

Vev=0 )

DO _ —

T B+V (kV 6) (5)
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The function B represents diabatic heat sources and sinks.

Two-dimensionality is assumed in the sense that, if y is an axis along the front,
then all y derivatives are zero except for 3¢/dy, 08/0y and dv/dy. If typical
velocities U and V and length scale L are used to scale terms in equation (1), it

is apparent that

Du . V1|0

g < fvo if [_fL] [VJ << 1 (6)
2 . k u

kVu << fv if {FE;][V] << 1 . (7)

Values typical for a front are U =2 m s, Vv=20m s, L = 100 km, and
k < 10° m? s~'. Thus the inequalities in these equations are easily satisfied.
Therefore equation (1) shows that to a good approximation v is given by the

geostrophic value for all time.

It is convenient to make a decomposition into the geostrophic and ageostrophic

flow:
- - 13
u = ug(x,z) + ua(x,z,t) , ug T E Ty

Making the above approximations allows the equations to be written in the form:

- 123¢
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The thermal wind balances and Brunt-Vidisila frequency are defined as follows:

M & 2 )
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ov _ g 96

3z 0, ox g (13)
2 _ 8 90

N —Goaz - )

The equation for the cross—frontal circulation can be obtained from these equations

by constructing f g%—(9) - g%v§%~(10) and using the thermal wind equations:

Nty o-2sty  +FPY =~ 29- @gg B + DF (14)

where the basic flow frequencies are defined as:

2 _ o OV 2 _ v
§c = f 3z F® = f{f + aX]

and the diffusion term DF is given by the equation:
ok
X

S T e e ) O T S O
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It should be noted that DF is zero if there are comstant, but non-zero, diffusion

coefficients, and this will be assumed in what follows.

The quantity Q is the x-component of a vector which specifies the synoptic-scale

forcing of the ageostrophic ecirculation about fronts:

du 3 ou 5
Q=f _.Bov __gov
9z 9x oX 02z

The first term in the bracket represents the forcing due to deformation whilst the

second that due to shear.

The circulation equation (14) is an elliptic equation if the potential vorticity
q = F?N? - 8% > 0 everywhere in the fluid. On the other hand, if q < 0 then the

equation is hyperbolic and symmetric instability is possible (see section 3).

The potential vorticity.equation can be shown to be given by:

_ ov 9B _ dv 0B
Dt " 8, [@;55 32 8x]+DQ (15)

where DQ is the diffusion term.

In summary, the equations (9) for v and (10) for & (or alternatively (15) for q)
determine the evolution of the flow whilst the circulation equation is diagnostic
giving the ageostrophic flow at any time. These equations are referred to as semi-
geostrophic as the substantial derivative involves advection by the total flow and
not just the geostrophic component as in the quasi-geostrophic approximation. These
equations have been the subject of analytical (Hoskins and Bretherton, 1972) and

numerical solution (e.g. Hoskins and Heckley, 1981) to show the formation of sharp
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fronts in a finite time.

The circulation equation can be written in a compact way using the geostrophic

momentum coordinates X and Z
X=x+v/f , Z=2z
to give:

EE_?§1§.+ - - 29 _ g 3 (16)
£h ZZ F2 Bof?2 X )
This equation derived by Eliassen (1962) shows, among other things, that the
circulation about a region of positive Q, in the absence of diabatic forcing, is
in the form of a thermally direct flow (warm air rising, colder air sinking) whose
axis lies along constant X-surfaces. The slope of the X-surface is given by
dx/dz = - vz/(f + VX) = - S2/F? and this expression leads to the dynamical notion

of the mesoscale (L vZH/f).

A final equation of particular interest is that for the rate of change of fronto-

genesis function %éexz describing the tendency of the temperature gradient to

intensify:
- ou 2 oW
D (1,a 2% _ £0q _ov a _R a dB 3 . (VT
Dt ( éex ) - eX 3 {Q dz 0Ox f Bx] T T (Y (kVG))] ) an

Tt is clear from equation (17) that the rate of change of frontogenesis following
the flow has contributions from geostrophic forcing, the ageostrophic flow, diabatic

heating and diffusion.

In this paper the role of the diabatic term in these equations will be discussed to
illuminate the role of convection at fronts. This section will be concerned with
the case q > 0 and Q # 0 which contains the possibility of convection forced by
frontogenesis. In contrast, section 3 will comsider the case q < 0 and Q =0

which describes convective mesoscale instabilities ('rainbands') in a baroclinic
region remote from frontogenetic forcing. The most interesting, and least under-
stood, case is of a region in which q can have local minima but which has @ # 0

and is therefore frontogenetic. Possible parameterisation schemes in this case

are discussed in section 4.

2.2 Diabatic heating in an unforced baroclinic flow

Before describing convection forced by frontogenesis, it is instructive to consider
the response of a baroclinic flow to an arbitrary local diabatic source when there

is no frontogenetic forcing. In this case Q = 0 and equation (16) becomes:

(a vy ___ & 3

v V2 7 T Ee x (18)
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The solution to this equation was first described by Eliassen (1952) and later by
Charney (1973), and has since been used by many authors (for more details see Gill
(1982) pp 362-366). 1In Figure 1 the response to a point source heating function is

described.

Figure 1. Response to point source heating

The quantity m = X f = v + fx is the absolute momentum.

The response is of vertical motion along a comstant m (or X) surface through the
source with compensating descent given by potential flow in the scaled coordinates
(X,2). 1In the atmosphere m surfidces are not necessarily straight lines and the
line segment in the figure is a local tangent to the m surface at the source.
Therefore in the case of diabatic forcing, as well as Q-forcing, the motion is
orientated along X surfaces which, it should be noted, are mnot constant B-surfaces.
This point is of some importance to the later discussion and can be clarified by

considering the simplest case of a uniform baroclinic zone given by the formulae:
8 = %f-(szx + N2z)

vV=vX+tvz (19)
X z

m %-(sz + S2z)

where all gradients are constants.

Thus the slopes of the 0, v, and m surfaces are given as follows:

ax) N fdx) Yz fdx) __ 82
dz sz ? dz v dz F? |
6 v X m

where 1t can be shown that

dx| ¢ ldx . >
[dz] > {EE) ifqz0.
0 m ‘
Of course the slow, steady response shown in figure 1 is only applicable in the

case q > 0.

In summary, it is apparent immediately that in a baroclinic flow heating due to
condensation produces a circulation oriented along absolute momentum surfaces and

this is suggestive of the notion of sloping convection. In a baroclinic zome such
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as a front with large velocity gradients [(dx/dz)ml can be rather large (> 50)

suggesting a shallow slope to the latent heat release.

2.3 Diabatic heating in a forced baroclinic flow

The circulation equation (16) shows that the motion produced either by geostrophic
forcing (Q) or by diabatic forcing (By) tends to align along absolute momentum
surfaces. This suggests that in a frontogenetic situation latent heating will tend
to enhance that upward motion in the ageostrophic circulation present in the dry
case. However it would appear that the descending return flow induced by the
heating, shown in figure 1, could disrupt the thermally direct circulation produced
by positive geostrophic forcing. As will be shown in this section, the precise
dependence of the diabatic term on the motion itself leads to two rather distinct

regimes.,

There are two relatively simple ways to represent the dependence of latent heating
on the motion which highlight the different regimes. The first imagines the diabatic
term to be proportional to the vertical velocity and imagines parcel ascent and

descent along a constant GW trajectory:

DO Dew
1—)-E=B='YW or _DT=O (20)
where 7y N-gi-gg Toar ? and r is the specific humidity. This is equivalent to

fluid parce?s remaining saturated on vertical motion. Substituting this form for B
into the circulation equation (14) gives

2 2 2 - -
NW Yy - 28 wxz + F wzz = - 2Q 21)

XX

where NW is the Brunt-Vaisala frequency based on the lapse rate of wet-bulb poten-
tial temperature. This shows that the circulation with diabatic forcing is equi-
valent to that in a region of reduced static stability and that the presence of the
heat source does mot change the form of the flow. The equation is elliptic as long

2(N2 — N 2 = F2N 2 - gt 2
as q > F2(N N, ) or q, = F*N; S >0 or vy < q/F2.
A similar result can be derived if the heating only occurs on ascent, i.e.
B=L (w+ |u)
N 2

(1 + sgn(w)) —%_ wxx - 28? wxz + F 1pzz =-2Q ? (22)

1ifw> 0
-1 if w < 0.

where sgn{w)

Therefore a parameterisation such as that in equation (20) simply increases the
circulation existing without the diabatic forcing. Solutions to a form of equation

(22) can be found in Sawyer (1956) and later in this article.
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An alternative parameterisation of latent heat release is to imagine that it is
dependent on moisture convergence in the boundary layer. If this occurs in an
étmosphere that is conditionally unstable then convection will be triggered. Such
a region of deep convection would produce heating in a vertical column above the
boundary layer convergence and is likely to contain many convective elements of
scale (L v H) considerably smaller than that of the region itself (L ~ V/f). In
contrast to the previous representation of the diabatic term which described latent
heat release following a parcel, this form parameterises a region of statistically
steady convection. As such the diabatic term is due to adiabatic warming caused by
subsidence balancing the mass flux in individual element updraughts. This formula-
tion relies on a scale separation between the convective elements and the mesoscale
band. It is convenient, if not entirely accurate to the original concept, to label
this parameterisation scheme as being of CISK type. The mathematical form of B in

this case is as follows:

5 ,
B =?°N2b(z) (wzo +lw [}, (23)

Z0

where Yy S w(z = z¢) and zo is typically the height of the top of the boundary
layer. The presence of N2 in equation (23) is indicative of the role of subsidence
warming in this scheme. The function b(z) is known as the structure function and
determines the vertical distribution of diabatic forcing. As this is not determined

by the flow itself it remains the least satisfactory aspect of CISK-type schemes.

The latter scheme (CISK) has been used in Thorpe and Nash (1983) and Thorpe (1983)
and solutions to the circulation equation were obtained for a frontal structure with
a jet. In figure 2 the velocity and potential temperature structure is shown along
with the Q forcing resulting from a constant deformation field. Figures 3 and 4
show the ageostrophic circulation about the front with B = 0, B from equation (22),
and CISK form of B from equation (23). It can be seen that the CISK form (figure &)
produces a disruption of the circulation by introducing descent in the warm air.
This is a consequence of the phase difference between the heating (constant on x-
surfaces) and the inherent motion (constant along m-surfaces). The circulation
with diabatic heating of this type represents the response not to sloping convection
but to more vigorous upright convective elements. This phase difference is of some
importance in the discussion of the symmetric CISK instability to be described in
section 3.2, and is responsible in that case for there being a wavelength of maximm

growth. These instabilities are not present in the solutions just described.
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Figure 2. Basic geostrophic structure and forcing for a cold front situation taken
: from Thorpe and Nash (1984). Thin solid and dashed lines indicate the
location of the frontal transition zonme. The horizontal dimension is

scaled with the Rossby radius of deformation based on the height of the

domain.
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Figure 3. (a) Cross-front ageostrophic streamfunction applicable to the fields
shown in Fig. 2 for no heating. (b) Streamfunction with diabatic
heating proportional to the local vertical velocity (y © 0.9 N2).
Notice the more upright and intense updraught. (c) The total heating
produced in case (b).
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Figure 4. Cross-front streamfunction and heating for the CISK-type heating function
with b(z) « sin{m(z - 0.1)/0.4} in the range 0.1 < z < 0.5. [Note change
in contour interval for the heating compared to Figure 3.]

Another consequence of the CISK-type scheme is that the fluid can support larger
diabatic heating than the case B = yw. In the latter scheme the ellipticity
criterion limits the size of y to a value below that which produces symmetric
instability. However the evaluation of the ellipticity of the equation with CISK
heating is less obvious. It appears that ellipticity is preserved if b(zp) < 1
and as zy is the height of the top of the boundary layer where plausibly b(z,) = 0
this is easily satisfied. However for z > z; the heating can be of relatively
large amplitude without producing a breakdown in ellipticity and this is another

consequence of the phase difference between the heating and the inherent motiom.

In summary, diabatic heating in a forced baroclinic flow can produce at least two
responses relying on the dependence of the source on the motion. The CISK-type

scheme allows heating above a region of boundary layer convergence representing
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a band of relatively vigorous convective elements. In the example shown in Figures
2-4, the heating consequently occurs in a region of more upright m—surfaces
producing descent in the warm air. This is in sharp contrast to the parameterisa-

tion representing weaker sloping convection in which such descent is absent.

2.4 A rainband scale selection mechanism at fronts

The descent in the warm air produced by the CISK-type scheme provides a scale
selection mechanism as it produces boundary layer divergence thus limiting the
horizontal extent of the heating. It is shown in Thorpe and Nash (1983) that as
the amplitude of the heating increases the scale of the band decreases. For
plausible maximum heating the minimum horizontal scale is of order 100 km, typical
of observations of the wide cold frontal rainband described by Matejka et al. (1980)
as part of the CYCLES project. Furthermore the vertical motion produced by the
heating suggests that the band will have a relatively sharp cut —-off particularly
on the cold air side. This is also observed in satellite pictures of active cold
fronts in which the cloudiness has a sharp edge. The role of the upper level jet,
which is not discussed in Thorpe and Nash (1983), is also likely to be important
in this respect. Further work on the interaction of ageostrophic circulations
produced by upper and lower level jets is anticipated particularly as this is

likely to determine the location and scale of the convection.

2.5 Onset of mesoscale instabilities

As mentioned previously the onset of symmetric instability is related to regions
with ¢ < 0. It is necessary to consider whether the atmosphere is or can become
unstable in this sense. The potential vorticity equation (15) shows that if the
atmosphere is initially such that q > 0 then diabatic sources and diffusion can
produce negative values of q. This may be a relatively slow process away from
boundaries and regions of large condensational heating. However, in regions of
near saturation the potential vorticity equation can be rewritten in terms of 9.

the wet-bulb (or equivalent) potential vorticity.

Dq
_w_1fg 18 . . .
Dt = 9, [eo k + (76 x¥8 ) + (g Y)Bl:l + DO (24)

where B; is the diabatic source term due to processes other than latent heat

release, i.e.

The instability criterion now becomes a, < 0 and in an unsaturated atmosphere with
q, > 0 initially the generation of negative q, relies on diffusion and on there

being an angle between yhe andV_heW (where suffix h indicates horizontal).
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Bennetts and Hoskins (1979) suggest that this latter mechanism, which arises
because moist air has a greater ew than dry air at the same temperature, may make
4, negative following the motion in 1-2 days. The feasibility of this process

needs to be verified using observational or numerical model data.

In two-dimensional frontogenesis simulations where moisture is included there is a
tendency near fronts to produce regions of low potential vorticity and suitable
conditions for instability (persomal communication, Caetano). The form of the
instability at a front which is being forced by the synoptic scale to be fronto-
genetic is unknown and the subject of current research. There is some evidence in
a numerical simulation (Ross and Orlanski, 1978) that the instability may rapidly
decay although this was not examined in detail. However it is of interest to
consider the structure of the instability in unforced regions and this forms the

topic of section 3.

As an introduction to the discussion of symmetric instability it is useful to
consider the representation of potential vorticity in physical space and in
geostrophic momentum coordinates (X,Z). The transformation between the two coord-

inate systems is as follows:

ax  f? 3X
9 .8 23,3
9z £2 3X  93Z (25)

Thus it is possible to rewrite wet-bulb potential vorticity in the new coordinates:

fg _ F’g aew
)]

W 5 T, T . (26)

It is clear now that given inertial stability F2 > 0 the symmetric instability
criterion is simply that the gradient of wet-bulb potential temperature along a
constant m-surface is negative. This can occur before convective instability
develops as this requires the gradient of GW along a constant x-surface to be
negative. Another way to state this is that q, = FzN;’ - 8% can be negative for
NJZ > 0 so that the flow becomes symmetrically unstable before convectively
unstable. A cascade of the flow to smaller scales is therefore possible in which
the ageostrophic circulations (L v Ly) produce a region unstable to symmetric

instability (L ~ v/f) which itself can become convectively unstable (I v H).
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3. CONVECTIVE ORGANISATION BY MESOSCALE INSTABILITIES

3.1 Conditional symmetric instability. (CSI)

Symmetric instability is a special case of three-dimensional baroclinic instability
in which the zomal wavenumber is zero. This instability was first described by
consideration of symmetric meridional perturbation of a circular vortex. It was
pointed out by Eliassen and Kleinschmidt (1957) that the criterion for dry symmetric
instability, q < 0 or R < 1, is usually not satisfied in frontal regions. However
Bennetts and Hoskins (1979) suggested that if the motion were in a saturated
atmospere the new criterion for instability, q < F2(N? - Nwz) or q_ < 0, might

well be satisfied at or near fronts and that this might provide an explanation for
frontal rainbands. They considered ascent along a 9W surface and dry descent

along O-surfaces. In this case rigorous linear theory is difficult due to the
non-linear nature of the diabatic source term. However they provided a heuristic
argument for instability and described numerical integrations of conditional

symmetric instability.

It is clear that CSi is just one form of the instability and other parameterisations
of the diabatic source in terms of the motion will give slightly different results.
Two related forms will be discussed, in this and the next subsection, for which
analytical theory is possible. The first is where both ascent and descent are along
Gw surfaces corresponding to the situation in which all the vapour condensed in

the updraught is evaporated in the downdraught. In fact the structure of this
instability is closely similar to that of dry SI. The second is due to Emanuel
(1982) in which the diabatic term is of the CISK type described earlier in this

paper and this gives rather different results involving propagating modes.

The horizontal scale of these instabilities has been a matter of some study.
Emanuel (1979) showed that the scale of dry SI is a very weak function of
diffusion for L < v/f and therefore the scale of the instability is given typically
by the horizontal projection of the O-surfaces. Similarly, CSI, and moist SI to be
described in this subsection, has a scale given by the horizontal projection of the
GW—Surface which, although slightly less than that for dry SI, is also of order 100
km.

Consider equations (1)-(5) with k = 0, B = yw and a basic geostrophic flow V(x,z),
i.e. ug = 0, with perturbations denoted by primes which are independent of the

y-coordinate. The perturbation equations are:

ut o, 8307

T fv7 + =5 =0 27)
BV) F? - S2 - _

.ﬁ + —f—' u + T w o= 0 (28)
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307, g‘g: (29)

Bz 80

du” | w” _

—ag + 'a—z— = 0 (30)
_QQ' gﬂ, 2 1 Eﬂl 2 -

T + 2 §2 u” + 2 NW w =0 31

A perturbation streamfunction can be introduced in the usual way and equations
(27) and (29) can be combined to give:

3 (%) _ . ov” _ g 2387

E[azz-fgz £ 207 (32)
This shows that the instability grows as there is thermal wind imbalance of the
eddy. Substituting into the right-hand-side of equation (32) from equations 27

and (31) gives:

82 aZw _ aZw aZw 321’!}
T {8?} B NW2 9x2 28 9xdz * dz2 (33)

This equation with appropriate boundary conditions defines the dispersion relation
and structure of the instability. It is interesting to compare this equation with
equation (21) which describes the ageostrophic circulation in a forced flow. The

forcing term, -2Q, is replaced in this case by the time development term. This is

consistent with there being growth if equation (33) is hyperbolic, i.e. q, < 0.

For eddies between rigid boundaries at z = 2z and z = z1, the solution for the

vertical velocity (w” = - 99/3x) is

w” = ReallA sin {v(z - zo)} expli(kx + az) + ot}]

where v = nn/(z; - zg)

o = kS?/(c?® + F?)
N2 k2 / ¥ 2"
2 2 W 487 v
o° + F —-'—é-\-)-z——[j 1+W-1] . (34)

In the limit of k/v large these complicated expressions reduce to:

These results are quantitative verification of those quoted in the earlier
discussion about the growth and scale of the instability. Realistic values might

be N2 N 107% 572, N2 A 2 x 1075 72, F2 A 10~% s~2, 82 v 2 x 1077 s—2, giving:
W

q = +6 X 10-3% =% | q, = -2 x 10~t* g=*
o

and ~1 n 8 hours. o/k ™~ 100 (or L ~ 200 km for H™ 2 km).
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Although these values are realistic, there is likely to be a large range of such
values and observational data need to be carefully analysed to verify the applicab-

ility of the theory to frontal rainbands (see Bennetts and Shatrp, 1982).

For parameterization purposes the important aspects of the theory are the
transports of heat and momentum produced by the instability. These will be
discussed in subsection 3.4. It is of interest however to examine the structure of
the instability. 1In Figure 5 (overleaf) results from a simulation of CSI are repro-
duced {figure kindly provided by C.A. Nash, U.K. Meteorological Office). It is
apparent in these simulations that the non-linear stage of development tends to
produce regions, particularly near the upper boundary of the motion, in which
convective instability (38w/3z < 0) is likely. This evidence of the cascade of
scales discussed earlier is of great interest but requires a more detailed
numerical model to be described in adequate detail. [It should be noted that the
structure of CSI can be deduced with a full nonhydrostatic equation set but the

conclusions are very similar to those just described.]

3.2  Symmetric CISK

An alternative way to parameterise condensation heating using CISK has been
developed by Emanuel (1982). The diabatic term related to that of equation (23)
has been included in the symmetric perturbation equations. As described previously
the CISK hypothesis requires the notion of a scale separation between individual
convective elements and an ensemble containing a statistically steady distribution
of such elements. It is therefore very different from CSI where heating following
the motion of a parcel is described. However the CISK parameterisation may there-

fore be more applicable for inclusion in larger-scale models.

As analytical solutions were sought in this case the complicated mathematical form
of equation (23) was reduced by admitting the existencé of ‘negative' clouds
producing cooling in regions of low-level divergence. This unphysical aspect is

. . . . . . ]
typical of other applications of the CISK parameterisation, i.e. B =-EfN213(z)wzo.

In the same way as for CSI the streamfunction equation for the eddy can be derived

to be:
2 2 2 2 2 2
2 (BY e e L e e v B (35)

Zo
Emanuel (1982) solves equation (35) in a semi-infinite atmosphere with a radiation
condition in an upper layer representing the stratosphere. The resulting dispersion
relation is complicated, but for realistic parameter values there appear to be two
modes. . Both modes propagate towards the warm air and correspond to short— and long-
wave peaks in the growth rate curves, with e-folding times of 31 hr and 24 hr and
wavelengths of 380 km and 1050 km respectively. The speed of propagation is

typically of order 10 m s~!.
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Fig. 5 Results are shown from a non-linear simulation of CSI {produced by C.A. Nash)
in a periodic domain with an upper stable layer. The fields are given for a
time equivalent to approximately five times the linear e-folding period. The
streamfunction shows that the slope of the updraught, whilst being less than
that of the 6,-surfaces, is greater than that of the downdraughts. Regions
of descent have lesser slopes than those of the m—-surfaces. Also it is
apparent that the right-hand cell is the least intense. The Oy~field demon-
strates the tendency to produce convectively unstable regions (938,/9z < 0)
as-shown by the dotted areas. The zonal velocity distribution is consistent
with conservation of m following the motionm.
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These results suggest the structure of symmetric CISK to be plausibly similar to

the warm sector rainbands described by Matejka et al. (1980).

Of more general interest is this demonstration of CISK in a baroclinic flow. It
has been shown that CISK-modes in a barotropic flow between rigid boundaries, such
as the application to tropical cyclones (Charney and Eliassen, 1964), are most
unstable for k + « or very short waves. This is an unsatisfactory feature as it
appears to contradict the original scale separation hypothesis. However in a baro-
clinic flow there is a finite (mesoscale) horizontal scale to the fastest growing
mode and this is because the heating, which is vertically orientated, is out of
phase with the motion which tends to be orientated along m or 0 surfaces. This
phase difference is also responsible for the existence of growing propagating modes
(Bolton 1980). This feature also led to the distinctive response to CISK-type
heating described in section 2.3. In a sense a CISK parameterisation is more
consistently applicable to a baroclinic flow than to the barotropic flow for which

it was first conceived.

3.3 Wave-mean flow interactions

As our current interest is in descriBing the role of the mesoscale in large-scale
models, it is important to understand how these instabilities interact with the
large-scale (mean) flow. In previous sections it has been shown that the large-
scale flow can produce local regions in which the criterion for the onset of
symmetric instability is satisfied, i.e. q, < 0. However as the instability itself
is two-dimensional the eddy flow conserves q, in the absence of radiation or frictiom.
It is therefore pertinent to ask if a steady-state or even a decay phase is possible
for CSI. Various mechanisms are possible to limit the growth of CSI and these
include: radiation, diffusion of heat and momentum, and breakdown to non-symmetric
or convective motion. Although Walton (1975) has shown that a finite amplitude
viscous steady state is possible the numerical simulations indicate that a break-
down to upright convective (36,/9z < 0) motion is more likely. In that case evap-

orative cooling, dry subsidence, and mixing are likely to be sources of q,-

The equation for the rate of change of eddy kinetic energy can be shown to be:
Z3

z

2 > T _
EE-J (u”® + v7%)dz = J
Zo Z0

- v 20V _ g T
[u v + v'w eIy w8 sz (36)

[T

where the overbar is an average over one horizontal wavelength.

Using the solution quoted in section (3.1), the flux terms can be evaluated as:




1al2 (242 . , B2 :
uv’ = iéf {FRX cos?(v(z = z)) - zgfgzgfijz'Sinz(V(z - Zo))}ezct
—_——— _lal2 2 ,
2 o 2 ~2)
%0lal? (Ja_| - n20?)
2g 0 £(g? + F2)

g
]

20t

sinz(v(z - zo))e 37

Thus the second term on the right-hand side of equation (37) is positive, for
dv/3z > 0, indicating that the eddy extracts kinetic energy from mean vertical
shear. The third term is positive but small as 0% " IqWI/N;. The first term is

more complicated but for 3v/9x > 0 it too can be shown to be positive.

The momentum and heat transport equations can be deduced by making an expansion of

the eddy fields using a small parameter € which might be (VZH/f)/LR v 0.1:
v=V+ey + €2~v2 +oee.

eu” + gus ¥ ...

u=
- 2
w=£Ew + E£°Ws + ...
B =0g +€0” + €20, + ... etc.

Taking a horizontal average over one wavelength allows the mean flow to be writtenm,

for example, as:

=V +e2vy, + ...

<
|

= e?u, + ... etc.

=]
[

It can be seen that the x-averaged second order term, which is in fact non-zero, is

the change in the mean flow caused by the eddy. These changes satisfy the equations:

a—z_f_ ___3__(;;) .]
ot V2 =T g W
dv, . F® - 3 ==
—2 - = e e
¢ T F U2 dz (w7
* (38)
V_\T2=O
38, . 0 - 3 ==
S22 4 J0 g2 = -2 (w'8”
e v g S U T Ty WD) J
Solutions to these equations are:
- 2 g2 3
i, = 3/al2 s* v G(z,t)

2(02+F2) (F2+452)

[A]% s® v(20%-F?)

G CETT) G(z,t) . (39)
- N 2 g2 y
= _ =|Al% v 8y Iqw1 w S
92 = 206+ F2) £ * W e agny| 8t
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where G(z,t) = sin[2v(z - zg)Jlexp(20t) .

These are similar to the solutions derived by Stone (1972) in the case F2 = f2,

It can be shown that Gz >0, v, > 0, and 52 < 0 in the lower half of the domain

2
and that they have the opposite sign in the upper half. This indicates for example

that the mean shear is reduced by the eddy.

Whilst these solutions represent the changes to the mean flow local to the eddy they
do not represent the quasi (or semi) geostrophic adjustment of a baroclinic flow to

a localised region of instability. The local corrections to the mean flow repres-
ented by the second order eddy terms are likely to be insignificant to the larger
scale (v LR) ageostrophic circulations produced as the flow responds to the presence
of the eddy forcing. To calculate this adjustment, which incidentally would form
the basis of a parameterization scheme for inclusion in a large-scale model, the
equations in section 2.1 need to be rewritten with source terms representing the
fluxes of heat and momentum produced by a localized region of imstability. In this
way the role of symmetric instability at fronts can be assessed. This problem is

one of current development and the appropriate equations seem to be:

Dv - 3 ==

petfu, =-5 Gw

) (40)
e =B -5, W07

with an extra forcing term on the right-hand side of the Sawyer-Eliassen equation
given by:
2

_ .9 - g 3% —=—=
£z O + 55 sy 070D

where the second term is likely to be much smaller than the first.
The overbar on the terms on the left-hand side of equation (40) indicate the
inclusion of the small correction te the flow local to the region of parameterized

instability. Solutions to these equations are being investigated in an attempt to

test these ideas as a viable parameterization scheme.

4. PARAMETERISATION OF CONVECTION AT FRONTS

4.1 Synoptic-scale diagnosis of fromtogenesis

Following the work of Hoskins and Pedder (1980) and Hoskins, Draghici and Davies
(1978), it is possible in a simple way to diagnose from the synoptic scale data
regions of active frontogenesis. From such a diagnosis the location of convection
at fronts could be deduced so that convective parameterisation schemes can be used
there. The basis of the synoptic scale diagnosis is the quasi-geostrophic omega

equation which can be deduced by taking equations (8) = (12) but using the
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geostrophic wind for the advection terms in the substantial derivative. Performing

the same manipulations described in section 2.1 gives the equatiom:

N2V, 2w + £ g—ZY} =%§—<_7 *Q |, ‘ (41)
where w is the vertical velocity and Q is the Q-vector givem by
ov, ov,
Q= [- w0, - 52w

Thus regions of convergence in Q correspond to ascent and regions of divergence
correspond to descent. At a front it is easy to see that this pattern of vertical
motion is consistent with a thermally direct circulation about the front. Examples
of the practical application of this diagnosis can be found in Hoskins and Pedder
(1980) and Buzzi and Speranza (1983), the latter case being one of cyclogenesis
over the Alps. As described in Hoskins and Pedder (1980) the routine analysis of
Q-vectors is more informative than, say, the vertical velocity, as they convey more
information. In particular analyses of Q-vector plots indicate ageostrophic motion,
ageostrophic vorticity, and tendency for frontogenesis or frontolysis. A super-—
position of the Q—Qector analysis and the moisture analysis would give a good
indication of those regions where the implied ascent might be enhanced by latent

heat release.

4.2  Sloping and upright convection

The location of regions, fronts, where release of latent heat is likely can be
ascertained as just described. The nature of the convection which then occurs has
been the subject of the earlier part of this paper. A simple criterion is that if
q, < 0, or equivalently BGW/BZ < 0, then moist symmetric instability and associated

transports of heat and momentum will occur.

The amount of potential energy available for such slantwise or sloping convection
can be estimated following Emanuel (1983). The total slantwise convective available
potential energy (SCAPE) is the sum of the CAPE (positive area on a tephigram) and

a contribution from centrifugal forces:
z
1

2
SCAPE = CAPE + J £ d

— — - 2
2F7 @z LV T vo)ilz

Zg
where F? has been assumed to be a function of z only, and (v - vg) is the difference

between v of the parcel and that of its environment. The parcel v can be obtained
as m = v + fx is conserved following the motion. For F? a constant the expression
simplifies to:

1 f2

SCAPE = CAPE + 5 T (vi - vo)?2 ,

where vy — vp is the difference in zomal velocity between the top and bottom of the

layer subject to the instability. Emanuel (1983) makes the point that the second
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term, representing the available kinetic energy, can be a substantial contribution
even compensating for significant negative CAPE, Thus if SCAPE > 0 the moist baro-
clinic atmosphere is unstable to finite slantwise parcel displacements in two
dimensions. This criterion is rather different from q, < 0 which is only applicable
to infinitesimal displacements in a saturated atmosphere. Furthermore, the atmos-
phere can be stableto upright convection (vertical displacements): with CAPE < 0 but

unstable to slantwise convection {(m-surface displacement) for SCAPE > 0.

It would seem likely that moist symmetric instability would continue until

BGW/BZ =0 or q, = 0 although, as mentioned previously, it is unclear exactly how
this fluid stabilization takes place. Thus a parameterisation for the heat trans-
port by symmetric instability involves 'mixing' Gw along constant absolute momentum
surfaces. This possibility is examined further in the next section by appropriate

solutions of the circulation equation.

Observations indicate that regions of active upright convection occur at fronts.
The results from numerical simulations of CSI also show that convective instability
can be produced as.a consequence of advection in a symmetric circulation. It is
apparent from the results presented in section 2.3 of the effects of diabatic
heating in a forced barocliniec flow that upright convection cannot be parameterised
by a heat source proportional to the local vertical velocity as would be the case
in a barotropic flow. It would appear that the CISK~-type of heating function is
most appropriate in a baroclinic flow for the representation of upright convection.
The heating should be orientated vertically as described by the relationship in

equation (23).

4.3 Parameterisation of heating due to sloping convection

As stated in the last section it seems likely that a region of CSI will tend to mix
ew along m—-surfaces. Some solutions of the circulation equation will now be
described including such a parameterisation. To release latent heat along m—
surfaces the circulation equation in geostrophic momentum coordinates will be used,
i.e, equation (16). The simplest case is for constant q, that is, a constant

gradient baroclinic zone:

q = F2N2 - s* = F2N2(R - 1)/R ,

where R = F2N2/S* is a Richardson number for the zome.

It is convenient to non-dimensionalize equation (16) in the following way:
== Xf2 R Z
> Jimadi _— —=
(X,2) {NHF Y R-1 ° H)

T gBf R
W,Q,8) ~ [stz * T257 * G STANF / R
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Thus equation (16) becomes:

= -2Q - Bz . (42)

Vit Yz %

Solutions of equation (42) will be presented for a geostrophic forcing given by:

Q

3o sin“§ - XOH sinﬁé.:_@]n) for Fo < X < %y and Zo <7 < 7y |
<1 - Xo Z1 " Zo ,
with Xo = -0.04, X; = 0.04, Zo = 0.2, Z; = 0.3 and Qp = 0.5.

Various forms for the diabatic term will be used:

(a) B =0
®) B = -Bo(l + [Tgl)
(¢) B = —gl(mi(ZQ) + Ilﬁi(Zg)l)b(Z)
= _ s ({z2 - 7 Ls - =
where b(Z) = 51n[[1 — Zo}ﬂ]’ with Zg = 0.1, for Zg < 2 < 1

Thus (a) represents no heating, (b) heating proportional to the local vertical
velocity, and (c) heating of the CISK type constant along X (equivalent to m)
surfaces). 1In figure 6 solutions are shown in which the heating amplitudes.are-as
quoted (note the streamfunction is shown in physical coordinates and not geostrophic

momentum coordinates).

1
B=0 Z
AY=z2x10 " ]
R=2 3
(a) ]
105
1 L 1 1 ] | O

-1.0 -08 -06 -0.4 -02 0 02 04 X

Figure 6(a)
[Caption opposite]
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Figure 6. Cross-front streamfunction for the case of a uniform
baroclinic zone with a localised Q-forcing:
(a) with no heating, (b) with heating proportional to
the local vertical velocity, and (c) with CISK-type
heating representing mixing of Gw along m (or X surfaces).
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The CISK~type formulation is most likely to represent heating due to mixing of GW
along m-surfaces. This is because the amount of heating in this situation is
likely to be related to the moisture convergence at low levels and to the value of
SCAPE. The amplitude El can be thought to be proportional to the SCAPE. The
alternative parameterisation in which B is proportional to the local w is less
realistic as the (unresolved) CSI will produce a heating distribution, along m
surfaces, related to its vertical velocity and not that of the forced circulation.
This distribution, given by b(Z), has been taken to be a simple sinusoid, a form

which is consistent with the numerical simulations of CSI.

It is apparent that, similar to the results in section 2.3, there are different
responses to the two heating functions. The more realistic CISK formulatiomn
produces an intensification of the updraught and a region of descent in the warmer
air. Although at the time of writing no quantitative calculations of the fronto-
genesis have been made it appears that the presence of sloping convection has
increased the frontogenetic tendency of the ageostrophic circulation. Clearly
these results could be extended to include evaporatively cooled downdraughts
produced by precipitation from the rainband. It would seem plausible to suggest
that the role of the downdraughts would be to produce frontolysis near the surface

although this needs to be shown by further modelling.

The practical application of this parameterisation of sloping convection in large-
scale models is not entirely straightforward. As shown the scheme is most naturally
formulated in geostrophic momentum coordinates. However these results suggest that
parametrisation of slant-wise convection may be of considerable importance in

adequate representation of mesoscale processes.

4.4  Parameterisation of momentum transports

In section 3.3 the problem of momentum transport by moist symmetric instability was
discussed. Although the local wave-mean flow interactions have been calculated, it
is not clear how the atmosphere on the scale larger than the region of instability
adjusts to the fluxes of momentum produced by the eddy. However it is likely that

the momentum fluxes will represent an important forcing of the large-scale flow.

The flux source terms in equation (40) are given from linear theory by the
expressions in equation (37). The transport of momentum is downgradient and in the

limit of large k/V the flux becomes:

F2NZN -
e T s e ute - a0) e

This expression is not of the eddy viscosity type in which the flux is proportional

to the mean gradient (S2), although it is apparent that as S? increases so does the

momentum flux.
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By way of contrast the momentum fluxes associated with some types of upright con-
vection are relatively well understood. Using the concept of steady convective
overturning, rather than linear theories which have proved rather unsatisfactory
for deep convection, appropriate momentum and heat fluxes have been ﬁeduced (see
article by Moncrieff and Miller). However, as yet these appear applicable only

to fluxes normal to the convective band or squall line. 1In the present nomenclature

this corresponds to specifying u”w”. Of particular interest in the frontal case is
the flux of momentum in the zonal direction which is parallel to the convective
line. As yet there has been little work done on simulating deep comvective bands
in the presence of strong shears parallel to the line. This would appear to be a
fruitful line of research as observations of line econvection, for example, at
fronts indicate this to be a common feature. It is likely that the momentum trans-~
ports associated with such a system are of a distinctly different form to those

calculated for systems in which the along-line wind shear is small.

5. DISCUSSION

This paper has attempted to review current ideas on the structure of convection in
baroclinic environments with particular reference to fronts. It is apparent that
dynamical theories of both slantwise and upright convection are emerging which give
a new perspective on the nature of the mesoscale. Consequently it is appropriate
to regard the mesoscale as a fundamental link between the synoptic scale and the

cloud scale in frontal systems.

There are several explanations postulated for the mesoscale organization of con-
vection which have not been described in this paper. These include ducted internal
gravity waves (Lindzen and Tung, 1976), gravity waves generated during the frontal
scale collapse (Ley and Peltier, 1978), and Kelvin-Helmholtz instabilities. Whilst
important in producing localized regions of flow perturbation they do not, in
general, consider the structure of the convection itself. The theories examined in
this paper all describe how latent heat due to condensation is released in a baro-
clinic flow. Furthermore moist symmetric instability is capable of defining a meso-
scale structure in a baroclinic environment which more gemeral gravity wave descrip-

tions do not take into specific account.

In particular, as suggested in the title of the paper, there is a distinctive role
played by the CISK~type parameterisations of diabatic heating in baroclinic flows.
For upright convection this description allows the convective band, probably made
up of many individual elements, to have an upright structure despite the inherent
shallow motion typical of ageostrophic circulations at fronts which slopes along
constant absolute momentum surfaces. Furthermore the diabatic heating involved in

such bands produces descent outside the band which acts as a scale selection
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mechanism. Fot slantwise convection the CISK-~type parameterisation can also be
used if the heating is released along m-surfaces. This method is most immediately
applicable to models using the semigeostrophic equations and the geostrophic
momentum coordinates. In this latter application of CISK the heating represents
the mixing of Gw along m-surfaces typical of the effect of moist symmetric instab-

ility.

There are many problems still left unanswered. How does CSI evolve in the non-
linear phase and in particular how does the instability eventually decay by stabil-
ization of its environment? What is the structure of the instability inm a region
forced by the synoptic scale to be frontogenetic? What are the momentum transports
produced by a localised region of instability, and how does upright convection
develop in a frontal environment? Answers to these questions will increase the
basic understanding of moist processes near fronts and also allow specification of

parameterisation schemes suitable for large-scale models.
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