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1. INTRODUCTION

How does the tropical atmosphere dynamically respond to the release of latent
heat in clusters of convective clouds? This depends on several factors, including:
(1) the Tatitude of the cluster, (2) the horizontal scale of the cluster; (3) the
time scale of the cluster; (4) the "static" and "inertial" stabilities of the flow
in which the cluster is imbedded. The first three factors can be studied using
Tinear models on an f-plane (e.g. Schubert et al., 1980) or an equatorial g-plane
(e.g. Silva Dias et al., 1983). The last factor is essentially nonlinear because
the static and inertial stabilities (and hence also the response) change as the
flow. field evolves. In particular, the pressure fall and the tangential wind
acceleration produced by a heat source imbedded in a strong vortex can be much
larger than the corresponding changes produced by the same heat source in a weak
vortex (Schubert and Hack, 1982). In order to understand the crucial nature of
this nonlinear effect in hurricane development, let us consider the following model
experiments performed with two simplified versions of the axisymmetric, 18 level, ©
coordinate hurricane model described by Hack and Schubert (1980).

The axisymmetric, f-plane, inviscid response to the specified heat source

Q(r,z,t) is determined by the system of equations1
g_‘t‘:+ﬁ‘;-+£giz‘—-(f+£)v+%%=0, (1.1)
R S T (1.2)
%%_= g;_e , (1.3)

1 Although the numerical results presented in this section were obtained from
a o-coordinate model, for convenience of later discussion we present the governing
equations in pseudo-height coordinate form.
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where z = [1- ( ) ] —8—9 is the pseudo-height, p(z) the known pseudo-density, u,
v, w the radia] tangent1a1 and vertical components of velocity, © the potential
temperature, and ¢ the geopotential. We shall refer to the system (1.1)-(1.5) as
the nonlinear model. If all the underlined terms in (1.1)-(1.5) are neglected and
ﬁ%;@_ is replaced by a specified mean tropical atmosphere profile ﬁ%gﬁ_ , the
resulting system will be referred to as the Tinear model. We wish to illustrate
the different responses produced by the linear and nonlinear models. As for the
specified heat source Q, let us assume that

~

alz) e72° 5 g
Q(Y‘,Z,t) = : (1.6)

0 t <0

where a=150 km. The vertical structure é is chosen such that the horizontally
averaged @ inside 250 km matches the vertical profile of apparent heat source given
by Yanai et al. (1973). The instantaneous switch-on of the heating at t=0 excites
some transient gravity wave activity, but this activity leaves the computational
domain because of the radiation boundary condition (Hack and Schubert, 1981).

In Figs. 1 and 2 we present the time evolution of the central surface
pressure, the maximum tangential wind, and the radius of maximum tangential wind
for the linear (dashed lines) and the nonlinear (solid lines) models. The linear
model produces a vortex with a fixed radius of maximum wind (160 km), a central
surface pressure tendency of 0.75 mb/day, and a maximum tangential wind change of
about 3ms‘1/day. The nonlinear model produces a vortex which begins to deviate
significantly from the linear model vortex after 24-48 hours. As the radius of
maximum wind moves inward, the central surface pressure and the maximum tangential
wind begin to change more and more rapidly. Near the end of the five-day
integration the surface pressure tendency in the nonlinear model is about twenty
times that in the linear model while the maximum tangential wind change is three
times the linear rate. In general the nonlinear model results are much more
reminiscent of the type of behavior observed in developing hurricanes and typhoons.
In the remainder of this paper we shall try to understand the nonlinear behavior
from the viewpoint of the Eliassen balanced vortex model.
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Fig. 1. Time evolution of the central surface pressure.
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Fig. 2. Time evolution of the maximum tangential wind (scale on right) and
the radius of maximum tangential wind (scale on left) for the linear
(dashed lines) and nonlinear (solid lines) models.
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2. BALANCED VORTEX MODEL

We now consider axisymmetric flows which are forced by heat sources with slow
time variations. The flow is then always close to a state of gradient balance, and
(1.1) can be approximated by

Yy, = 9%
(f + r,)v 5

Above the boundary layer the absolute angular momentum per unit mass f%i =rv + f%i
is conserved., We call R the potential radius, i.e. the radius to which a parcel
must be moved (conserving absolute angular momentum) in order to change its
tangential component of velocity to zero. We can now write the governing equations
for the flow above the boundary layer as (2.1)-(2.5), which are given on the left
side of Table 1. The effect of friction is crudely incorporated through the
pumping relation (2.6), which serves as the lower boundary condition on (2.1)-
(2.5). Herer =f ;%;~(%i) is the vertical component of absolute vorticity, and
subscript zero denotes a top of the boundary layer (i.e. z=0) value. A more
extensive discussion of (2.1)-(2.6), along with the associated pseudo-conservation
relations for vector vorticity, potential vorticity and energy, is given in

Schubert and Hack (1983).

Table 1.
122 (R°- v*) _ 3¢ 1.2 (R®- r?) _ 230
7f = 5 (2.1) A el (2.7)
r r
3 _(R? 3_(R? 3 (R%y _ 3 (r2
H(T]+u57(2—)+w§~z—[2—)—0 (2.2) (7)) - Rux =0 (2.8)
9 5=23 9 g-22
0= (2.3) —0=73 (2.9)
0 o
aru oW ' : BRU* . Bow* _
rar poz 0 (2'4) RaR DaZ 0 (210)
LT L Y (2.5) 28, 20 4ok - (2.11)
ot ar 3z ' 3T T g 9°V¥ =Q :
wo= = (5 ol sr2- r2) (2.6) wr= 200 £ o1y |n(r2- v 2 )} (2.12)
o ror Lo DY\ g e o R3R Lo Dol [+} :

We now wish to transform (2.1)-(2.6) from (r,z,t) space to (R,Z,T) space,
where Z=z and T=t. The upper case symbols for pseudo-height and time are
introduced to distinguish derivatives at constant radius (%7 and %f) from
derivatives at constant potential radius (gi-and gT). In analogy with semi-
geostrophic theory (Hoskins, 1975; Hoskins and Draghici, 1977) we introduce the
potential function
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Ru*=r(u—wa—z) ,

wk = g— W o,

Then, as discussed more fully in Schubert and Hack (1983), our governing system
(2.1)-(2.6) becomes {2.7)-(2.12), which is shown on the right of Table 1 for easy

comparison. Here the vertical component of abso]uteagorticity z is given by % =
ﬁ%ﬁ'(%i) and the potential vorticity q by pq = %-g_ngj. In comparing the two

columns of Table 1 we note that (2.7)-(2.12) represent a considerable
simplification over (2.1)-(2.6) since the mathematical forms of the hydrostatic,
continuity and boundary layer pumping equations have remained essentially unchanged
while the gradient, tangential momentum and thermodynamic equations have all been
simplified.

3. DUAL FORMS OF THE TRANSFORMED MODEL

If we use the gradient wind equation (2.7) in (2.8) and the hydrostatic
equation (2.9) in (2.11) we obtain

®.. + spu* =0 , (3.1)

RT

@ +qu*:%_Q N (3.2)

T o

where the inertial stability s is given by ps = f2 B; . There are now two ways to
proceed. The first is similar to the method discussed by Schubert and Hack (1983)
and consists of eliminating oy between (3.1) and (3.2) to obtain the transverse
circulation equation. The second consists of using the continuity equation (2.10)
to eliminate u* and w* between (3.1) and (3.2), which results in the tendency
equation for &. We now discuss each of these approaches.

a. Transverse circulation form

Defining the streamfunction y* such that

= | 3Y*  SRy*
(pu*, pw*) { az-’JRgﬁ] , (3.3)
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then subtracting-%z of (3.1) from-%R of (3.2) we obtain the transverse circulation

equation
¢ 3 (. ARy D o Ky _ 3Q 1
® @R ) * 57 (557 )"g‘o‘ 3R
{ v*(0,Z) = w*(R,ZT) =0, Ry* >0 as R+w ,} (3.4)
RO*(R,0) = T o c v | Lre- v2)
L ’ o O Do 2 ) )
b. Potential tendency form

Multiplying (3.1) by g

and then taking ES—R multiplying (3.2) by % and then
9
taking 37 o and finally combining these results with the aid of the continuity

equation (2.10) we obtain

'_2_( R gflj $ 2 (L EEI) -9 2 (4 )
R3R Y s 3R 3L 'q 3L 8 9 ‘q
B@T B®T
] sm = 0atR=0,zp->0asR+e , : (3.5)
0 =1
1) T
T d.q-
L 8o wx 7=0
L q0p00 J
In the case where Q vanishes at the top and bottom boundaries and wg = 0, the
An

solution @T can be determined only to within an arbitrary additive constant.
additional global condition can then be imposed to insure uniqueness (e.g. Courant
and Hilbert, Vol. I, pages 248-249).

Co Summary of the dual forms

The dual forms of the transformed Eliassen balanced vortex model are

summarized in Table 2. The left column gives the transverse circulation form and

form.

the right column the potential tendency
makes use of each equation in the order
purposes is that the coefficients q and

evolves. Thus, the response to a given

given.

Roughly speaking. a computer program
The important point for present

s in (3.10) and (3.19) change as the vortex
Q also changes.

In passing we note the following interesting mathematical difference between

the two forms of the balanced model.

Because the transverse circulation form

(3.6)-(3.13) uses the thermal wind equation (3.6) to compute r from 6, a reference

level value of r must be known.

This is determined by (3.13).
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potential tendency form (3.14)-(3.19) uses the gradient wind equation (3.14) to
compute r from &, and (3.13) is not needed. Apparently, the price of this
simplification is that the Dirichlet boundary conditions of (3.10) are replaced by
the Neumann conditions of (3.19). ' .

Table 2.
1 3 2 R(R*- r?) _ 3%
g2 R_ar_g 39 (3.6) s , K (3.14)
3 3 8 R r
r 0
2 ‘ g -2 (3.15)
.8 [ 83 .
T = ’R [z ] (3.7) o
2 [ )
oq =% .g; £ (3.8) r " R 2] (3.18)
4 ' =& 2.3 3.17
ps = 72 By (3.9) SRS A (3.17)
r
2 R
3 foam .2 [s2*] g 9 ps=f—b {3.18)
3R |9 RaR 72 3z 6, o r
8.C. ¢*(0,2) = W*(R,Z;) = 0, Rg* + 0 as R+= , | (3.10) 2 gaﬁd_[l E"_T]=g_ FIC
! T RIR {s R L iq 3 8, g
f 2 2
* = -
Ry*(R,0) T PoCpl Vo ¥R - T ) a0y a0
B.L. pp-=0at R0, gp- +0asR+= (3.19)
* BR o
(pu*, pw*) = [- giz » ﬁ'é'-] (3.11) )
; W g . 0 1=1;
—e-L q- i
_g% + _gQ pow* = @ (3.12) oL o GePHs  2=0
3 o
2 o -
L T Tl P U (3.13)
r‘D

4. SIMPLE ANALYTICAL SOLUTION

We consider the idealized situation in which q and s are constants and the
heating is given by

a sin (%ZJ R < R
Q(R,Z) = L (4.1)

~

0 R >R

where 6 is a constant. If all this heating were to appear locally as a temperature

change (i.e. if w* in (3.2) were zero), then the resulting potential tendency would
be

9+ ~
- ——%—Q cos (%ZJ R<R

ar(R,2) =4 ° T ) (4.2)
0 R>R

In reality, of course, w* is not zero, and the actual potential tendency is found
by substituting (4.1) into (3.5) and solving the resulting equation by the method
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of separation of variables. The radial structure equation is a modified Bessel
equation of order zero. It is inhomogeneous in the region 0§R<§ and homogeneous in
the region R<R<w. Once solutions are found in these two regions they must be
matched across R in such a way that both o7 and g;lfare continuous. The result is

@T(R,Z) uRKl(pR)IO(uR)—l R<R
T:__a____ = cos {
@4

(0,0 -uRll(uﬁ) K (uR) R >R

SR

), (4.3)

-1 ql/ZT . .
where p~+ = (g)2 Ef-1s the generalized Rossby radius.

Using (4.3) we have compdted @T(R,Z)/|$T(O,O)| at the top of the boundary
layer (Z=0) for the three cases wR = 0.2, 1, 5. These results are displayed in
Fig. 3. For comparison we have also included aT(R,Z)/laT(O,O)[ at Z=0. This
rectangular well pattern represents the normalized tendency which would occur if
all the heating appeared as a local thickness change (i.e. if w* were zero). Fig.
3 reveals the enhanced response which occurs as u increases for fixed R.
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Fig. 3. The three smooth curves are the normalized potential tendency
®T(R,O)/[§T(O,O)I for three different values of yR. For comparison
the rectangular pattern @T(R,O)/|®T(0,O)| is also shown.

The results shown in Fig. 3 have been obtained under the assumption of
constant g and s. As shown in Schubert and Hack (1983) nature's tropical cyclones
have considerable radial and vertical variation of q and s. However, there is a
tendency for the local value of u to become large in the inner region where Q is
large. This apparently explains the results obtained in Figs. 1 and 2.
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It is interesting to note that tropical cyclone development dis primarily a
nonTinear process and is similar in some respects to frontogenesis, where very
Targe {infinite!) vorticity is produced in a finite time. Two important
differences are that frontogenesis is forced by a larger scale flow such as a
deformation field while the tropical cyclione is forced by the release of latent
heat, and that curvature effects can be neglected in most frontogenesis studies but
are important for the tropical cyclone.

5. ENERGETICS AND EFFICIENCY

From the balanced version of (1.1)-{(1.5) and the boundary condition (2.6) we
can derive the energy equations

»d_t H C s ( )
.d_K_= - 5.2

0

cD|v |v Po rdr . (5.7)

where
=[] o rardz , (5.4)
=[] qorarez (5.5)
¢ = [[ & weprarez (5.6)
o~ |

The radial integrals in (5.3)-(5.7) extend from r equals zero to infinity and the
vertical integrals from z equals zero to zr. Hence, P and K denote the total

potential and kinetic energies of the atmosphere, H the total heating, C the rate
of conversion of total potential energy into kinetic energy, and D the frictional

dissipation.
Using the fact that rdrdz = f RdRdZ we can write (5.6) as
C
C= ” 3— w* 60 RARZ . (5.8)
)

Following Eliassen (1952) we shall now express C in terms of the heating Q. For
simplicity we assume the flow is frictionless (cD=0). Using (3.11) and integrating

385



by parts we can rewrite (5.8) as

= a6
C = -ff g;-gﬁ- y* RdRAZ . : , (5.9)

Let us define ¥* as the solution of

(e m e ) thw
{ B.C. ¥*(0,Z) = ¥*(R,Zy) = ¥%(R,0) = 0 , ¢ (5.10)
R¢* » 0 as R+ )
so that (5.9) becomes
C=- JJ y* L ¥* RdRdZ = -JJ y* I ¢* RARAZ . (5.11)

The last step (i.e. the self-adjoint property) can be proved by integrating by
parts twice in both R and Z, and using the boundary conditions on y* and v¥*.
Finally, the right hand side of (3.10) can be substituted for Ly*, after which an
integration by parts yields

c=% ” 3RYY 0 RdRdZ-. (5.12)
5, || RoR

This way of expressing C allows us to argue as follows. Suppose we know the
structure of a vortex at a given time. We then know the coefficients q and s and
the right hand side.%* %g-in (5.10). We can solve for ¥* and construct the field
g%%t. Then, accord1n8 to (5.12), we can determine if the heating field Q is
distributed so as to give an efficient conversion of total potential energy to
kinetic energy. Our hypothesis is that certain tropical disturbances possess
combinations of vortex structure and heating which are very efficient, and these

are the ones that become hurricanes and typhoonsl.

In Fig. 4 we show a field of v(R,Z) patterned after the large typhoon
composite data of R. Merrill and W. Gray of CSU. The use of R stretches the radius
of maximum wind by almost a factor of four. Using this tangential wind field we
can easily determine the coefficients and the right hand side of (5.10). We have
then used the multigrid methods of Brandt (1977, 1982) to solve {(5.10) for ¥*. The

1 RY* 55 shown in Fig. 5. 1In this case deep convection

Tti field of = Zoi_
resulting field o = TR

1 For those so inclined, (5.12) could also serve as a basis of a hurricane
modification theory.
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reaching above 200 mb at R~ 400 km (r~ 200 km at p~ 200 mb) will be most efficient
at converting total potential energy to kinetic energy.
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Fig. 4. The field v(R,Z) based on the Targe typhoon composite data of
R. Merrill and W. Gray.
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Fig. 5. Isolines of % %%%i (meters). Large values indicate regions where
convective heating Q would be most efficient at converting total
potential energy to kinetic energy.

6. CONCLUDING REMARKS

The dynamical arguments given in this paper do not constitute a closed theory
of hurricane deve1opment; Closed theories usually incorporate an equation (or
system of equations) which relates Q to the other dependent variables of the model
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(i.e. a cumulus parameterization). Unfortunately, there is no concensus on how
this should be done.. Indeed, it is not too much of an exaggeration to say that
there are as many parameterization schemes as there are researchers in the field.
However, in spite of the wide variety of ways that the "moist physics" has been
treated in tropical cyclone models, there are certain common features to be seen in
the output from such models. Among these common features is the nonlinear behavior
illustrated in Figs. 1 and 2, and it is this behavior we have tried to understand

with the Eliassen balanced vortex model.
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