The forecast and analysis post processing package (revised version of Technical Memorandum 2)

J. Haseler

Research Department

May 1982

This paper has not been published and should be regarded as an Internal Report from ECMWF.

Permission to quote from it should be obtained from the ECMWF.

European Centre for Medium-Range Weather Forecasts Europäisches Zentrum für mittelfristige Wettervorhersage Centre européen pour les prévisions météorologiques à moyen

1. INTRODUCTION

The post-processing package provides an interface between the forecast model or the analysis system on the Cray and the archiving and dissemination systems on the Cyber. Selected fields are sent from the Cray, packed and in Cyber format. They may have been vertically interpolated, using linear or cubic spline fits, and they may have been horizontally interpolated, by fitting spherical harmonics, and then interpolating back to a regular latitude/longitude grid.

The post-processing package may be divided into 2 parts. In the first part, a work file is generated, containing selected fields in line form. This part may either be initialised at selected time steps while a forecast model is running, or it may be a separate job, which takes as input an analysis or forecast history file. The second part of the package is a separate job, which converts the data from line to field format, and may interpolate it horizontally before packing it and converting it to Cyber format.

Section 2 describes the theory of the method used to calculate the spherical harmonic coefficients for the horizontal interpolation. Section 3 describes the forecast-called version of the first part of the post-processing package, while Section 4 describes the stand-alone version. Section 5 describes the way in which the fields are rearranged, so that they are in the most convenient order for the spherical harmonic fitting routines. Section 6 defines the format of the work file, which is the interface between the first and second part of the post-processing package. Section 7 contains a description of the

second part of the package. Section 8 describes the space layout used in the second part, and the algorithms used to decide how many fields can be processed in each scan through the data. Section 9 describes the format of the 3 types of output file which may be generated by the post-processing package. Section 10 consists of tables describing the common blocks used by the post-processing package. Section 11 contains examples of the job control language used to run different parts of the package.

i majitel selenga e od sprak golikologualni ordi Osa (eskiologua

The section of the companies of the control of the

A CONTROL OF THE STATE OF THE S

2. Theory of the method of calculating the spherical harmonic coefficients

The spherical harmonic coefficients are calculated, using the method described by Machenhauer and Daley (1972). Given a function which may be represented by a truncated series of spherical harmonics:-

$$\psi(\lambda,\phi) = \begin{array}{ccc} M^* & N^* \\ \Sigma & \Sigma & \psi_{mn} & Y_{mn} & (\lambda,\mu) \\ m = -M^* & n = |m| & \end{array}$$
(1)

(where $0 \le M^* \le N^*$, $\lambda = longitude$, $\phi = latitude$, $\mu = sin\phi$) then this method calculates the coefficients ψ_{mn} exactly.

$$\psi(\lambda_{k},\phi_{j}) = \begin{array}{ccc} M^{*} & N^{*} \\ \Sigma & \Sigma \\ m=-M^{*} & n=|m| \end{array} \psi_{mn} P_{mn} (\mu_{j}) e^{im\lambda} k \qquad (2)$$

$$= \sum_{m=-M^*}^{M^*} \psi_m (\phi_j) e^{im\lambda} k$$
 (3)

$$= \psi_{O}(\phi_{j}) + \sum_{m=1}^{M^{*}} (\psi_{m} (\phi_{j}) e^{im\lambda_{k}} + \psi_{m}^{*}(\phi_{j}) e^{-im\lambda_{k}})$$

$$(4)$$

(since $\psi(\lambda_k, \psi_j)$ is real, $\psi_{-m}(\phi_j) = \psi_m^*(\phi_j)$ where $\psi_m^*(\phi_j) = \text{complex conjugate of } \psi_m(\phi_j)$)

Compare this with the format of the 'half-complex' Fourier transform

If
$$x_a = \sum_{b=0}^{B-1} C_b e^{2ia\pi b/B}$$
 and $C_{B-b} = C_b^*$ (i.e. C_o and $C_{B/2}$ are real)

then
$$\frac{B}{2}-1$$
 $x_a = C_o + \sum_{b=1}^{\infty} \{C_b e^{2\pi i ab/B} + C_b^* e^{-2\pi i ab/B}\} + C_{\underline{B}} e^{ia\pi}$

and

Given a field $\psi(\lambda_k, \phi_1)$ on a regular latitude/longitude grid, with

$$\lambda_{\mathbf{k}} = \frac{2\pi \mathbf{k}}{\text{NLON}}$$
 for $\mathbf{k} = 0, 1, \dots \text{NLON-1}$

NLON = number of longitude points

then the Fourier coefficients $\psi_m(\phi_j)$ may be exactly calculated by the transform

$$\psi_{\mathbf{m}}(\phi_{\mathbf{j}}) = \frac{1}{\text{NLON}} \sum_{\mathbf{k}=\mathbf{0}}^{\text{NLON}-1} \psi(\lambda_{\mathbf{k}}, \phi_{\mathbf{j}}) e^{-im\lambda_{\mathbf{k}}}$$

$$\text{if } 0 \leq m \leq M^* \leq \frac{\text{NLON}}{2} - 1 \tag{5}$$

(Within the post-processing package, half-complex transforms are used, so that by exploiting the fact that $\psi_{-m} = \psi_{m}^{*}$, only the Fourier coefficients for $m \ge 0$ need to be calculated explicitly).

The Fourier coefficients $\psi_m(\phi_j)$ may be divided into symmetric and antisymmetric parts with respect to the equator:-

$$\psi_{\mathbf{m}}^{\mathbf{S}}(\phi_{\mathbf{j}}) = \frac{1}{2} (\psi_{\mathbf{m}}(\phi_{\mathbf{j}}) + \psi_{\mathbf{m}}(-\phi_{\mathbf{j}}))$$

$$\psi_{\mathbf{m}}^{\mathbf{A}}(\phi_{\mathbf{j}}) = \frac{1}{2} (\psi_{\mathbf{m}}(\phi_{\mathbf{j}}) - \psi_{\mathbf{m}}(-\phi_{\mathbf{j}}))$$

$$(6)$$

The Legendre functions $P_{mn}(\mu)$ may be represented as trigonometric polynomials with latitude ϕ as argument:-

$$P_{mn}(\mu) = \begin{cases} \sum_{r=\epsilon 1}^{n} P_{mn}^{r} \cos(r_{\phi}) & \text{for (m+n) even} \\ \sum_{r=\epsilon 2}^{n} P_{mn}^{r} \sin(r_{\phi}) & \text{for (m+n) odd} \end{cases}$$
(7)

where
$$\sum_{r=\epsilon 1}^{n} \text{means } r = \epsilon 1, \epsilon 1+2, \epsilon 1+4, \ldots, n \text{ or } n-1$$

and

$$\varepsilon 1 = \begin{cases} 0 & \text{for m even} \\ 1 & \text{for m odd} \end{cases} \quad \varepsilon 2 = \begin{cases} 1 & \text{for m even} \\ 2 & \text{for m odd} \end{cases}$$

So $P_{mn}(\mu)$ is symmetric with respect to the equator when (m+n) is even, and antisymmetric when (m+n) is odd.

From (2)
$$\psi_{m}(\phi) = \sum_{n=|m|}^{N^{*}} \psi_{mn} P_{mn}(\mu)$$

$$= \psi_{m}^{S} (\phi) + \psi_{m}^{A}(\phi)$$
(8)

Using (7)
$$\psi_{m}^{S}(\phi) = \sum_{n=|m|}^{N^{*}} \psi_{mn} P_{mn}(\mu)$$
 (9)

$$\psi_{\mathbf{m}}^{\mathbf{A}}(\phi) = \sum_{\mathbf{n}=|\mathbf{m}|+1}^{\mathbf{N}^{*}} \psi_{\mathbf{m}\mathbf{n}} P_{\mathbf{m}\mathbf{n}}(\mu)$$

since for $n=\left|m\right|$, $n=\left|m\right|+2$, etc., (m+n) is even, and $P_{mn}(\mu)$ is symmetric.

Combining (9) and (7) gives

Hombregs as a substant after staires flog our managers

$$\psi_{m}^{S}(\phi) = \sum_{r=c1}^{N^{*}} \psi_{m}^{r} \cos(r\phi)$$

$$\psi_{m}^{A}(\phi) = \sum_{r=c2}^{N^{*}} \psi_{m}^{r} \sin(r\phi)$$

$$(10)$$

where
$$\psi_m^r = \sum_{n=r}^{1/2} \psi_{mn} P_{mn}^r = E1, \dots, N*$$
 (11)

Using the orthogonality relations for trigonometric functions on (10) gives

$$\psi_{m}^{\mathbf{r}} = \begin{cases} \frac{\delta}{\pi} \int_{0}^{2\pi} \psi_{m}^{\mathbf{S}}(\phi) \cos(r\phi) d\phi & \mathbf{r} = \varepsilon 1, \varepsilon 1 + 2, \dots, N^{*} \text{ or } N = 1 \end{cases}$$

$$\frac{2\pi}{\pi} \int_{0}^{2\pi} \psi_{m}^{\mathbf{A}}(\phi) \sin(r\phi) d\phi & \mathbf{r} = \varepsilon 2, \varepsilon 2 + 2, \dots, N^{*} \text{ or } N^{*} - 1 \end{cases}$$

$$(12)$$

where

$$\delta = 1 \quad \text{for } r \neq 0 \quad \text{in } \beta = 0 \quad \text{in } \beta =$$

$$\delta = \frac{1}{2} \quad \text{for } r = 0$$

The trapezoidal quadrature formula and trapezoidal quadrature formula and trapezoidal quadrature formula and trapezoidal quadrature for

$$\frac{1}{\pi} \int_{0}^{2\pi} f(\phi) d\phi = \frac{2}{k} \int_{j=1}^{k} f(\phi_{j})$$
(13)

(where
$$\phi_j = \alpha + (j-1)\frac{2\pi}{k}$$
 and $0 \le \alpha \le \frac{2\pi}{k}$)

is exact for $f(\phi)$ being any trigonometric polynomial of degree < k-1. The polynomials of equation (12) are of degree $\le 2N^*$, so they can be integrated exactly by:-

$$\psi_{m}^{\mathbf{r}} = \begin{cases} \frac{2\delta}{B} \sum_{\mathbf{j}=1}^{B} \psi_{m}^{\mathbf{S}}(\phi_{\mathbf{j}}) \cos(\mathbf{r}\phi_{\mathbf{j}}) & \mathbf{r}=\epsilon 1, \epsilon 1+2, \dots \\ & & & & \\ \frac{2}{B} \sum_{\mathbf{j}=1}^{S} \psi_{m}^{\mathbf{A}}(\phi_{\mathbf{j}}) \sin(\mathbf{r}\phi_{\mathbf{j}}) & \mathbf{r}=\epsilon 2, \epsilon 2+2, \dots \end{cases}$$

$$\text{where } \mathbf{B} \geq 2\mathbf{N}^{*}+1, \ \phi_{\mathbf{j}} = \alpha + (\mathbf{j}-1)\frac{2\pi}{B}, \ \mathbf{0} \leq \alpha \leq \frac{2\pi}{B}$$

For the forecast model grid, α = 0 will be used for all fields except v-velocity, which will use α = $\frac{\pi}{B}$.

With these values of α , and if B is chosen to be a multiple of 4, i.e. B = 4*C, equation (14) can be further simplified:-

$$\psi_{m}^{\mathbf{r}} = \begin{cases} \frac{2\delta}{C} \sum_{j=1}^{D} W_{j} & \psi_{m}^{\mathbf{S}}(\phi_{j}) & \cos(r\phi_{j}) & r=\epsilon 1, \epsilon 1+2, \dots \\ \frac{2}{C} \sum_{j=1}^{D} W_{j} & \psi_{m}^{\mathbf{A}}(\phi_{j}) & \sin(r\phi_{j}) & r=\epsilon 2, \epsilon 2+2, \dots \end{cases}$$

$$\text{where, if } \alpha = 0, \quad D = C + 1$$

$$W_{j} = \frac{1}{2} \quad \text{for } j = 1 \text{ and } j = D$$

$$W_{j} = 1 \quad \text{for } j \neq 1 \text{ and } j \neq D$$

and, if
$$\alpha = \frac{\pi}{B}$$
 , $D = C$
$$W_{j} = 1 \quad \text{for all values of } j \ .$$

This simplification is possible because each term in (14) is a trigonometric polynomial of even degree, including only cosines or only sines.

Consider for example the case where $\alpha=0$ and m is odd. Then $\epsilon 1=1$, and for r odd

$$\cos(\frac{2\pi r}{B}) = -\cos(r\pi - \frac{2\pi r}{B}) = -\cos(r\pi + \frac{2\pi r}{B}) = \cos(2r\pi - \frac{2\pi r}{B})$$

and since
$$\psi_m^S(\phi_j) = \sum_{r=c1}^N \psi_m^r \cos(r\phi_j)$$

$$\psi_{m}^{S}(\frac{2\pi r}{B}) \ = \ -\ \psi_{m}^{S}(r\pi - \frac{2\pi r}{B}) = \ -\psi_{m}^{S}(r\pi + \frac{2\pi r}{B}) = \ \psi_{m}^{S}(2r\pi - \frac{2\pi r}{B})$$

so

$$\begin{split} \psi_{m}^{S}(\frac{2\pi r}{B})\cos(\frac{2\pi r}{B}) &= \psi_{m}^{S}(r\pi - \frac{2\pi r}{B})\cos(r\pi - \frac{2\pi r}{B}) \\ &= \psi_{m}^{S}(r\pi + \frac{2\pi r}{B})\cos(r\pi + \frac{2\pi r}{B}) &= \psi_{m}^{S}(2r\pi - \frac{2\pi r}{B})\cos(2r\pi + \frac{2\pi r}{B}) \end{split}$$

Using the orthogonality relations for Legendre functions on (8)

$$\psi_{m}(\phi) = \sum_{n=|m|}^{*} \psi_{mn}(\mu) P_{mn}(\mu)$$

gives

$$\psi_{mn} = \frac{1}{2} \int_{-1}^{1} \psi_{m}(\phi) P_{mn}(\mu) d\mu$$
 (16)

Inserting (10) into (16) gives

$$\psi_{mn} = \begin{cases} \sum_{r=\varepsilon 1}^{2} \psi_{m}^{r} \frac{1}{2} \int_{-1}^{1} P_{mn}(\mu) \cos(r_{\phi}) d\mu & \text{for m+n even} \\ \sum_{r=\varepsilon 1}^{2} \psi_{m}^{r} \frac{1}{2} \int_{-1}^{1} P_{mn}(\mu) \sin(r_{\phi}) d\mu & \text{for m+n odd} \end{cases}$$

$$(17)$$

And inserting (15) into (17) gives

$$\psi_{mn} = \begin{cases} \sum_{j=1}^{D} \psi_{m}^{S}(\phi_{j}) Z_{mn}(\phi_{j}) & \text{for m+n even} \\ \\ \sum_{j=1}^{D} \psi_{m}^{A}(\phi_{j}) Z_{mn}(\phi_{j}) & \text{for m+n odd} \end{cases}$$
(18)

where

where
$$Z_{mn}(\phi_{\mathbf{j}}) = \begin{cases} \frac{\mathbb{W}_{\mathbf{j}}}{C} \sum_{\mathbf{r}=\epsilon 1}^{2} \delta R_{mn}^{\mathbf{r}} \cos \left(\mathbf{r}\phi_{\mathbf{j}}\right) & \text{for m+n even} \\ \mathbb{W}_{\mathbf{j}} \sum_{\mathbf{r}=\epsilon 2}^{2} R_{mn}^{\mathbf{r}} \sin \left(\mathbf{r}\phi_{\mathbf{j}}\right) & \text{for m+n odd} \end{cases}$$
 and
$$R_{mn}^{\mathbf{r}} = \begin{cases} \frac{1}{\int} P_{mn}(\mu) \cos \left(\mathbf{r}\phi\right) d\mu & \text{for (m+n) even,} \\ \mathbb{V}_{\mathbf{m}}(\mu) \cos \left(\mathbf{r}\phi\right) d\mu & \text{for (m+n) even,} \\ \mathbb{V}_{\mathbf{m}}(\mu) \sin \left(\mathbf{r}\phi\right) d\mu & \text{for (m+n) odd,} \\ \mathbb{V}_{\mathbf{m}}(\mu) \sin \left(\mathbf{r}\phi\right) d\mu & \text{for (m+n) odd,} \\ \mathbb{V}_{\mathbf{m}}(\mu) \cos \left(\mathbf{r}\phi\right) d\mu & \mathbb{V}_{\mathbf{m}}(\mu) & \mathbb{V}_{\mathbf{m}}$$

The coefficients $R_{mn}^{\mathbf{r}}$ are evaluated using Gaussian quadrature, which is exact if N^* Gaussian latitudes are used.

 $r=\varepsilon 2, \varepsilon 2+2, \ldots$

It has been shown so far that the spherical harmonic coefficients may be calculated exactly by this method, providing that the data fitted may be represented exactly by a truncated series of spherical harmonics of the form:

$$\psi(\lambda_{k},\phi_{j}) = \sum_{m=-M^{*}}^{M^{*}} \sum_{n=|m|}^{N^{*}} \psi_{mn} P_{mn}(\phi_{j}) e^{im\lambda} k$$

where $0 \leq M^* \leq N^*$

and providing that certain relations between the grid and the truncation limits are satisfied.

On the model grid, data is given at the points

$$\lambda_{\mathbf{k}} = (\mathbf{k}-1)\Delta\lambda \text{ for } \mathbf{k}=1,2,...4Q \text{ (for all fields except u)}$$

$$= (\mathbf{k}-\frac{1}{2})\Delta\lambda \text{ for } \mathbf{k}=1,2,...4Q \text{ (u only)}$$

$$\phi_{\mathbf{j}} = \pm (\mathbf{j}-1)\Delta\phi \text{ for } \mathbf{j}=1,2,...(Q+1) \text{ (for all fields except v)}$$

$$\phi_{\mathbf{j}} = \pm (\mathbf{j}-1)\Delta\phi \text{ for } \mathbf{j}=1,2,..(Q+1) \text{ (for all fields except v)}$$
$$= \pm (\mathbf{j}-\frac{1}{2})\Delta\phi \text{ for } \mathbf{j}=1,2,..Q \qquad \text{(v only)}$$

with $\Delta \lambda = \Delta \phi = \frac{\pi}{2Q}$ and the second second

and Q = NLON/4 where NLON = number of longitude points = (NOREC-1)/2 where NOREC = number of latitude rows

From (5), the Fourier transform will be exact if

$$M^* \leq 2Q - 1 = NLON/2-1$$

the constraint and the second second with the second secon

in in the Community of the Community of

Equation (18) will be exact if

$$2N^* \leq 4Q - 1$$

i.e. $N^* \le (NLON-1)/2$ and $N^* \le NOREC-1-\frac{1}{2}$ so we need

$$O \leq M^* \leq N^* \leq \begin{cases} (NLON-1)/2 \\ NOREC-2 \end{cases}$$

In general, grid point fields will not satisfy the above restrictions, since the number of grid points will always be larger than the number of spherical harmonics used. Instead the function $\psi'(\lambda,\phi)$ will be fitted to the data, where

$$\psi'(\lambda,\phi) = \sum_{m=-M}^{M} \sum_{n=|m|}^{N} \psi_{mn} P_{mn}(\phi) e^{im\lambda}$$

with
$$M \leq M^*$$
, $N \leq N^*$ and M , $N \leq \begin{cases} (NLON-1)/2 \\ NOREC-2 \end{cases}$

 $\psi^{\star}\left(\,\lambda\,,\phi\right)$ can be shown to be, in some sense, a least squares fit to the data.

Within the post-processing package, triangular truncation is used, i.e. M = N = T, say.

2.1 <u>Velocity fields</u>

The method described above is modified for the calculation of spherical harmonic coefficients for the velocities. First the coefficients for divergence, D, and vorticity, ζ , are calculated from the grid point values of u and v. Both divergence and vorticity are well defined at the poles. The coefficients for u and v are then derived from the divergence and vorticity coefficients.

In the forecast model, the u-velocity components are In the lorecas, most, defined at the points (λ_k^u , ϕ_j^u), where

$$\lambda_{k}^{U} = (k-\frac{1}{2}) \Delta \lambda$$
 for k=1,2,...4Q

$$\phi_{\mathbf{j}}^{\mathbf{u}} = \pm (\mathbf{j}-1) \Delta \phi \quad \text{for } \mathbf{j}=1,2,\dots(Q+1)$$

 $\Delta\lambda$ '= $-\Delta\phi$ '= $-\Delta\phi$ ($-\Delta (\frac{\pi}{2Q})$) is the constant of the sublimited of the definite production of the constant of the

The v-velocity components are defined at the points $(\lambda_{k}^{V}, \phi_{i}^{V}),$

where

$$\lambda_{k}^{V} = (k-1) \wedge \lambda \quad \text{for } k=1,2,\dots 4Q^{\infty}$$

$$\phi_{\mathbf{j}}^{\mathbf{V}} = \pm (\mathbf{j} - \frac{1}{2}) \Delta \phi \quad \text{for } \mathbf{j} = \mathbf{1}, \mathbf{2}) \cdots Q$$

$$\mathbb{Q} = \mathbb{Q}(\mathcal{B}_{\mathcal{A}}) \quad \mathbb{Q} \quad \mathbb{Q}(\mathcal{B}_{\mathcal{A}}) \quad \mathbb{Q}(\mathcal{B}_{\mathcal{A}) \quad \mathbb{Q}(\mathcal{B}_{\mathcal{A}}) \quad \mathbb{Q}(\mathcal{B}_{\mathcal{A}}) \quad \mathbb{Q}(\mathcal{B}_{\mathcal{A}}) \quad \mathbb{Q}(\mathcal{B}_{\mathcal{A}}) \quad \mathbb{Q}(\mathcal{B}_{\mathcal{A}) \quad \mathbb{Q}(\mathcal{B}_{\mathcal{A})$$

 $U = u\cos(\phi)$ and $V = v\cos(\phi)$, then Let ന്നുകുന്നു. എന്നുക്ക് പാരിച്ചുകൾ സ്വാശം പുത്തിന്റെ നായത്തിലെ ഒരു വരുക്കുന്നു.

$$\zeta = \frac{1}{a(1-\mu^2)} \left\{ \frac{\partial V}{\partial \lambda} - (1-\mu^2) \frac{\partial U}{\partial \mu} \right\}$$

$$D = \frac{1}{a(1-\mu^2)} \left\{ \frac{\partial U}{\partial \lambda} + (1-\mu^2) \frac{\partial V}{\partial \mu} \right\}$$

a = radius of earth where

$$D_{mn} = \frac{1}{2a} \int \left\{ imU_{m}P_{mn} + V_{m}H_{mn} \right\} \frac{d\mu}{1-\mu^{2}}$$

where
$$H_{mn} = - (1 - \mu^2) \frac{dP_{mn}}{d\mu}$$

and least this met help komenne ovode metallissen. Det is a life

The coefficients D_{mn} and ζ_{mn} can be calculated using a modified version of (18).

$$D_{mn} = \begin{cases} \begin{array}{l} \frac{Q+1}{j=1} \operatorname{im} U_m^S(\phi_j^u) Z_{mn}^I(\phi_j^u) + \sum\limits_{j=1}^Q V_m^A(\phi_j^v) Z_{mn}^{II}(\phi_j^v) & \text{for m+n even} \\ \\ Q+1 \\ \sum\limits_{j=1}^Q \operatorname{im} U_m^A(\phi_j^u) Z_{mn}^I(\phi_j^u) + \sum\limits_{j=1}^Q V_m^S(\phi_j^v) Z_{mn}^{II}(\phi_j^v) & \text{for m+n odd} \\ \\ Z_{mn} = \begin{cases} \begin{array}{l} Q \\ \sum\limits_{j=1}^Q \operatorname{im} V_m^S(\phi_j^v) Z_{mn}^I(\phi_j^v) - \sum\limits_{j=1}^Q U_m^A(\phi_j^u) Z_{mn}^{II}(\phi_j^u) & \text{for m+n even} \\ \\ Q \\ \sum\limits_{j=1}^Q \operatorname{im} V_n^A(\phi_j^v) Z_{mn}^I(\phi_j^v) - \sum\limits_{j=1}^Q U_m^S(\phi_j^u) Z_{mn}^{II}(\phi_j^u) & \text{for m+n odd} \\ \\ \end{array} \end{cases} \\ \text{where} \\ \\ Z_{mn}^I(\phi_j) = \begin{cases} \begin{array}{l} w_j \\ \sum\limits_{r=\epsilon_1}^2 \delta R_{mn}^r \cos(r\phi_j) & \text{for m+n even} \\ \\ w_j \\ \sum\limits_{r=\epsilon_2}^2 R_{mn}^r \sin(r\phi_j) & \text{for m+n odd} \\ \\ \end{array} \end{cases} \end{cases}$$

With

$$\mathbf{w}_{\mathbf{j}} = \begin{cases} 1 \text{ for } \mathbf{j} \neq 1 & \text{and} \\ \frac{1}{2} \text{ for } \mathbf{j} = 1 \text{ at } \phi_{\mathbf{j}}^{\mathbf{u}} \\ 1 \text{ for } \mathbf{j} = 1 \text{ at } \phi_{\mathbf{j}}^{\mathbf{v}} \end{cases}$$

The coefficients $R_{mn}^{I\,r}$ and $R_{mn}^{I\,I\,r}$ are determined by Gaussian quadrature of the following integrals:-

$$R_{mn}^{Ir} = \begin{cases} \int\limits_{-1}^{1} \frac{P_{mn(\mu)}}{1-\mu^2} \cos(r_\phi) d\mu & \text{for m+n even,} \\ r=\epsilon 1, \ \epsilon 1+2, \dots, \ N^* \text{ or } N^*-1 \end{cases}$$

$$\frac{1}{1-\mu^2} \frac{P_{mn}(\mu)}{1-\mu^2} \sin(r_\phi) d\mu & \text{for m+n odd,} \\ r=\epsilon 2, \epsilon 2+2, \dots, N^* \text{ or } N^*-1 \end{cases}$$

$$R_{mn}^{IIr} = \begin{cases} -\int\limits_{-1}^{1} \frac{dP_{mn}}{d\mu} & \sin(r_\phi) d\mu & \text{for m+n even,} \\ r=\epsilon 2, \epsilon 2+2, \dots, N^* \text{ or } N^*-1 \end{cases}$$

$$-\int\limits_{-1}^{1} \frac{dP_{mn}}{d\mu} & \cos(r_\phi) d\mu & \text{for m+n odd,} \\ r=\epsilon 1, \epsilon 1+2, \dots, N^* \text{ or } N^*-1 \end{cases}$$

The coefficients \mathbf{U}_{mn} and \mathbf{V}_{mn} may be derived using the following relations:-

If
$$\zeta = \nabla^2 \psi$$
, then $\zeta_{mn} = \frac{-n(n+1)}{a^2} \psi_{mn}$
If $D = \nabla^2 \alpha$ then $D_{mn} = \frac{-n(n+1)}{a^2} \alpha_{mn}$
 $U = (\frac{\partial \alpha}{\partial \lambda} + (\mu^2 - 1) \frac{\partial \psi}{\partial \mu}) \frac{1}{a}$

$$V = -(\mu^{2}-1) \frac{\partial \alpha}{\partial \mu} + \frac{\partial \psi}{\partial \lambda}) \frac{1}{a}$$

$$H_{mn}(\mu) = (\mu^{2}-1) \frac{dP_{mn}}{d\mu}$$

$$= nF_{m,n+1} P_{m,n+1} - (n+1) F_{m,n} P_{m,n-1}$$
with $F_{mn} = \left(\frac{n^{2}-m^{2}}{4n^{2}-1}\right)^{\frac{1}{2}}$

$$and G_{mn} = \frac{-m}{n(n+1)}$$
so $U_{mn} = a \left(-\frac{1}{n} F_{mn} \zeta_{m,n-1} + iG_{mn} D_{mn} + \frac{1}{n+1} F_{m,n+1} \zeta_{m,n+1}\right)$

$$(29)$$

$$V_{mn} = a \left(\frac{1}{n} F_{mn} D_{m,n-1} + iG_{mn} \zeta_{mn} - \frac{1}{n+1} F_{m,n+1} D_{m,n+1}\right)$$

If a subset of spherical harmonic coefficients are calculated, with triangular truncation T, i.e.

$$\hat{\zeta} = \sum_{m=-T}^{T} \sum_{n=|m|}^{T} \zeta_{mn} P_{mn}(\lambda, \mu) e^{im\lambda}$$

$$\hat{D} = \sum_{m=-T}^{T} \sum_{n=|m|}^{T} D_{mn} P_{mn}(\lambda, \mu) e^{im\lambda}$$

then the derived velocity fields are

$$\hat{\mathbf{u}} = \frac{1}{\cos(\phi)} \sum_{\mathbf{m}=-\mathbf{T}}^{\mathbf{T}} \sum_{\mathbf{n}=|\mathbf{m}|}^{\mathbf{T}+1} \mathbf{U}_{\mathbf{m}\mathbf{n}} \mathbf{P}_{\mathbf{m}\mathbf{n}}(\lambda,\mu) e^{i\mathbf{m}\lambda}$$

$$\hat{\mathbf{v}} = \frac{1}{\cos(\phi)} \sum_{\mathbf{m}=-\mathbf{T}}^{\mathbf{T}} \sum_{\mathbf{n}=|\mathbf{m}|}^{\mathbf{T}+1} \mathbf{V}_{\mathbf{m}\mathbf{n}} \mathbf{P}_{\mathbf{m}\mathbf{n}}(\lambda,\mu) e^{i\mathbf{m}\lambda}$$
(30)

where

$$U_{m,T+1} = a \left(-\frac{1}{T+1} F_{m,T+1} \zeta_{m,T} \right)$$

$$V_{m,T+1} = a \left(\frac{1}{T+1} F_{m,T+1} D_{m,T} \right)$$

and
$$U_{m,T} = a \left(-\frac{1}{T} F_{m,T} \zeta_{m,T-1} - \frac{im}{T(T+1)} D_{m,T}\right)$$

$$V_{m,T} = a \left(\frac{1}{T} F_{m,T} D_{m,T-1} - \frac{im}{T(T+1)} \zeta_{mT}\right)$$

It can be shown that equation (29), defining u and v, is also valid at the poles.

For any value of m, the T-m+1 coefficients D_{mn} and ζ_{mn} define T-m+2 coefficients of U_{mn} and V_{mn} , so that by elimination of D and ζ coefficients from (28), relations between U and V coefficients may be derived. In particular, when m = 0 the following relations hold:

English and the species of

$$U_{O,T+1} = -\frac{1}{\sqrt{(2T+3)}} \sum_{n=\epsilon_1}^{T-1} \sqrt{(2n+1)} U_{On}^{T-1}$$

$$V_{O,T+1} = -\frac{1}{\sqrt{(2T+3)}} \sum_{n=\epsilon_1}^{2} \sqrt{(2n+1)} V_{On}^{T-1}$$

$$U_{O,T} = -\frac{1}{\sqrt{(2T+1)}} \sum_{n=\epsilon_2}^{2} \sqrt{(2n+1)} U_{On}^{T-1}$$
(31)

$$V_{O,T} = -\frac{1}{\sqrt{(2T+1)}} \sum_{n=\epsilon 2}^{T-1} \sqrt{(2n+1)} V_{On}$$

where, if T is odd, $\epsilon 1 = 0$ and $\epsilon 2 = 1$ and if T is even, $\epsilon 1 = 1$ and $\epsilon 2 = 0$

$$P_{mn}(\phi = \pm \frac{\pi}{2})$$
At the poles,
$$\frac{\cos(\phi)}{\cos(\phi)} = 0 \quad \text{for } m > 1$$

It can be shown that
$$\lim_{\phi \to \pm \frac{\pi}{2}} \sum_{n=0}^{T+1} U_{0,n} \frac{P_{0,n}(\phi)}{\cos(\phi)} = 0$$

i.e.
$$\sum_{n=0}^{T+1} U_{on} \frac{\partial P_{o,n}(\phi)}{\partial \cos(\phi)} = 0 \text{ when } \phi = \pm \frac{\pi}{2}$$

$$\sum_{n=o}^{T+1} U_{on} \frac{\partial P_{on}(\phi)}{\partial \cos(\phi)} = \sum_{n=o}^{T+1} \frac{1}{\sin(\phi)\cos(\phi)} U_{on}$$

$$x \left[nF_{0,n+1}P_{0,n+1} - (n+1)F_{0,n}P_{0,n-1} \right]$$
 (32)

Substituting the relations (30) into (31) and using

$$P_{o,n} = \frac{1}{F_{mn}} (\mu P_{o,n-1} - F_{o,n-1} P_{o,n-2})$$

it can be shown that each term in (32) is proportional to $\cos(\phi)$, and thus vanishes at the poles.

So at the poles

$$\mathbf{u}(\phi) = \sum_{n=1}^{T+1} \mathbf{u}_{1n} \frac{\mathbf{P}_{1n}(\phi)}{\cos(\phi)} e^{\mathbf{i}\lambda}$$
(33)

$$v(\phi) = \sum_{n=1}^{T+1} v_{1n} \frac{P_{1n}(\phi)}{\cos(\phi)} e^{i\lambda}$$

AND TO BURE THE STATE OF THE ST

3. Forecast-called version

This section describes in detail the forecast-called version of the first part of the post-processing package, in the order in which it is executed. Subroutines from the forecast model are marked (M), and are described in (Haseler and Burridge, 1977).

3.1 Subroutine PRESET (M)

<1.1> I/O unit numbers used by the post-processing package are preset (units 15,16,17,18,19,60).

<1.6> Logical switches are set

NLSTAL = false (this is the forecast-called version, not the stand-alone version)

NLINI = false (forecast, not initialisation, type file names are to be constructed in the operational version)

医透射压性 医微性性 医二氏性 医水流性神经管 化二烷二烷 网络二强遗传工学品

3.2 Subroutine DATA (M)

<7.1> Call INISTP to set post-processing parameters - 10 18 1 10 18 10 1

3.3 Subroutine INISTP

- <1> Call PRESTP to preset post-processing parameters with default values
- <2> Read the namelist POSTIN. Fig. 3.1 describes the variables of POSTIN, and their default values.
- <3> Calculate NPPTR and NPSTEP, where NPWTIM(NPPTR) = NPSTEP NPWTIM(200) contains the step numbers at which post-processing is to be done. NPSTEP is the first element of NPWTIM such that NPSTEP>NSTEP, where NSTEP is the current forecast step.
- <4.5> In the spring experiment and operational versions of the post-processing, read data cards containing the parameters to assign

the work files and output files to specific disks. By placing files on different disks, controlled by different disk controllers, the I/O efficiency can be improved. It is also more efficient if post-processing files are not on the same disks as forecast work files.

- <4.7> For the spring experiment version of the model, read data cards giving the VSN and SN of the private disk to which post-processed files will be disposed.
- <7.2> Call INITXX. This initialises parameters used in the vertical interpolation from sigma to pressure levels.
- <7.4> Call HAFFT. This initialises parameters used by the fast Fourier transforms in the second part of the package.
- <7.4> Call MAKEDS. Calculate coefficients F_{mn} and G_{mn} (defined by equation 28 of Section 2, used in the generation of u and v spherical harmonic coefficients), and store them in the arrays DD and SS from COMSH1.
- <7.4> If NLCALC= true, call MAKEZZ. Generate the following functions used in the calculation of spherical harmonic coefficients:
 - (a) $Z_{mn}(\phi_j^T)$ defined by equation 19 of Section 2 and given at latitudes of T grid points.
 - (b) $Z_{mn}^{I}(\phi_{j}^{u})$, $Z_{mn}^{I}(\phi_{j}^{v})$ defined by equation 25 of Section 2, and given at latitudes of both u and v grid points.
 - (c) $Z_{mn}^{II}(\phi_{j}^{u})$, $Z_{mn}^{II}(\phi_{j}^{v})$ defined by equation 26 of Section 2 and given at latitudes of both u and v grid points.

These functions are expensive to calculate. They depend only on the resolution of the model grid and the triangular truncation used in fitting the spherical harmonics. The first time a particular resolution and truncation are used, NLCALC should be set to true, so that these functions are calculated, and they should be saved as permanent files.

Thereafter, by setting NLCALC = false, they need not be recalculated.

- <7.4> If NLCALC = true, call MAKELG. Calculate Legendre functions at the latitude of the output grid, to be used in extracting fields on the output grid from their spherical harmonic coefficients. Again, these functions are expensive to calculate, and need only be made once, for any output grid resolution and triangular truncation.
- <7.5> Call REORDR to rearrange the fields selected for post-processing by the user to the order most convenient for the second part of the post-processing package. Section 5 describes in detail how the fields are rearranged, and how control arrays are constructed to describe the new order of the data.
- <7.6> For the operational version of the model, subroutine OPNPP1 is called to assign the work files to particular devices, and to generate operational-type file names.

3.4 Subroutine LINEMS (M)

- <2.9> Call SITOPR if it is a post-processing time step, then update the pointer to the next post-processing step. In the operational version of the post-processing, call subroutine CLSPP1 to internally save the work files. In the spring experiment version, call subroutine FGPOST to save the work files and launch a job to do the second part of the post-processing.
- <3.2> If post-processing is requested at the first or second timestep of a model run, call SITOPR, then update the pointer to the next post-processing step.

3.5 Subroutine SITOPR

Generate the work file which will be used as input to the second part of the post-processing package. Section 6 contains a detailed description of the work file.

The user may select 4 types of fields to be processed:-

en a region transposition in the Property Section of the Color Section of the Color

- (a) fields on multiple levels, to be interpolated horizontally using spherical harmonics
- (b) fields on single levels, to be interpolated horizontally, using spherical harmonics
- (c) fields on single levels on the model grid, which are not to be interpolated either horizontally or vertically. (These will usually be surface fields. They will be referred to in future as uninterpolated fields).

(d) diagnostics fields

Field types (a) and (b) are interpolated vertically from sigma to pressure levels, if the data comes from a forecast model, and if the variable NVINT is non-zero. Analysis data is already on pressure levels, and is not vertically interpolated.

Figure 3.5.1 gives a list of all the fields which can be handled by the post-processing, together with the code numbers by which they are represented.

- <1.01> Before the first row of data has been written, update the parameters describing the date and time of the data.
- <1.03> Before the first row of data has been written, write 7 common blocks, as separate records, to the work file on unit NPOUT.
- <1.1> Find the first field to be processed. This will be the first multi-level field (type (a) above) if there are any, or the first single level field (type (b) above).
- <1.2> If there are no fields of type (a) or (b), the first field to be processed will be the first uninterpolated field.
- <1.3> If there are no fields of type (a), (b) or (c) the diagnostic fields will be processed first.

<2.1> The area of blank common starting from the displacement NLINE2(2) is used as work space by SITOPR. The work space is laid out with fields starting at the following displacements: - London groups of the common starting at the following displacements: - London groups of the common starting from the displacement of the common starting from the comm

weatonement ad or alovat alginer on which it i

- (i) The IPNVP1 the area in which fields derived at the (NLEV+1) sigma half-levels are stored (e.g. geopotential, part of the vertical velocity).
- (ii) IOMEG work space used in the calculation of vertical velocity and relative humidity fields

。"薛马子一声笑:郭叶子说了话:"

Similar may no suffice recent of the Company of the

- (iii) IPC work space used by the vertical inter-
 - (iv) IWRITE the fields which are to be written to
 the work file are built up in a buffer,
 starting at displacement IWRITE.

of artist me it yills. Here boardayer but has (d) has the asy it alogs

(v) ISPLWK1, ISPLWK2, ISPLWK3, ISPLWK4 - the work space used by the optimised spline fitting routines, of total length 12*NLP2. This work space is placed at the end of the NLINE2(2) buffer (which is (12*NLEV+30)*NLP2 words long), since it may be overwritten by the uninterpolated and diagnostics fields.

The fields which are to be fitted by spline must be stored between IWRITE and ISPLWK1, i.e.

MFDIN*NLP2 < (9*NLEV+16)*NLP2

The fields which are to be interpolated + uninterpolated fields + diagnostics fields must be stored between IWRITE and the end of the NLINE2(2) buffer, i.e.

(MFDIN+N2D+NDIAWK)*NLP2<(9*NLEV+28)*NLP2

The tests for unlid numbers of fields are do

The tests for valid numbers of fields are done in INISTP <7.5>.

<2.27 > The code of the field to be processed is stored in ICODE, and the level (converted to pascals) is stored in ILEVEL.

- <2.4> The start address of the highest level of the current field is stored in IPFLD. If the field is relative humidity, it is calculated at all the model σ-levels by subroutine RELHMF. If the field is vertical velocity, it is processed in 2 scans, on the first scan, part of it is calculated by subroutine OMEG1. On the second scan, the rest is calculated by subroutine OMEG2. If the field is cloud cover, it is calculated by subroutine CLCOV. If the field is u or v at 10 metres or T or T_d at 2 metres, it is calculated by subroutine SURPAR.
- <3> If the field being processed is to be interpolated vertically from sigma to pressure levels, subroutine ANALYS is called. If cubic splines are being used to fit the data in the vertical, ANALYS uses data at all the sigma levels to calculate the coefficients of the splines, and store them in the work array IPC. For multi-level fields, ANALYS need only be called once, since the same array of coefficients in IPC can be used to extract data at any pressure level. Accordingly all the levels of a multi-level field are processed by SITOPR, before ANALYS is called again with a different field as input. Similarly, if linear interpolation is used in the vertical, ANALYS need only be called once for each multi-level field.
- <4.0> If the field being processed is to be interpolated vertically from sigma to pressure levels, subroutine EVALUD is called to extract the data at pressure level ILEVEL, using as input the array IPC constructed by ANALYS.
- <4.1> If mean sea level pressure is the field requested, it is calculated by subroutine SEALP.
- <4.2> If the field just processed was the first scan of the vertical velocity, the second scan is initiated.
- <4.3> If the field just processed was the second scan of the vertical velocity, the 2 parts are added together.

<4.4> If the field just processed was the relative humidity, any values calculated to be greater than 100% are reduced to 100%.

Compared transfer of the contract of the

<4.5> If the field currently being processed is an uninterpolated field, of type (c), or a diagnostics field, it is copied straight into the output buffer and a field of type (c).

The following uninterpolated fields are scaled: large scale rain (* \emptyset .5); convective rain (* \emptyset .5); snow fall (* \emptyset .5); boundary layer dissipation (* $\frac{1}{g}$); surface sensible heat flux (* c $\frac{(1-\sigma_{NLEV-\frac{1}{2}})}{g}$); surface latent heat flux (* L $\frac{(1-\sigma_{NLEV-\frac{1}{2}})}{g}$); surface stress (* $\frac{(1-\sigma_{NLEV-\frac{1}{2}})}{g}$)

- <5.1> The next field to be processed is found. The fields are processed by SITOPR in the order
 - (i) tall levels of first multi-level field (type a)

I grade the transition of the contract of the

- (ii) all levels of next multi-level field
- (iii) all single-level fields (type b)
 - (iv) all uninterpolated fields (type c)
 - (v) all diagnostic fields

The fields are stored on the work file in the order most convenient for the second part of the post-processing package, which is:-

医性血病 医乳腺性 化二甲酰乙基二甲烷 重新基础基础 化二十二十二十二烷

The first that the state of the second and the second

- (i) all multi-level fields at first level
- (ii) all multi-level fields at next level
- (iii) all single level fields
- (iv) all uninterpolated fields.
- (v) all diagnostics fields.

< 5.4> When all the fields for the current row have been built up in the output buffer, they are written to the work files. The first quarter of the fields are written to unit NPOUT; the second quarter to (NPOUT+1); the third quarter to (NPOUT+2) and the remainder to (NPOUT+3). If there are less than 4 fields, they are all written to NPOUT.

4. Stand-alone version

The stand-alone version of the first part of the post-processing package may take as input an analysis file, or a forecast history file at a single time level, or 2 forecast history files at adjacent time levels (the second history file is required for certain physics diagnostics fields). Much of the code used by the forecast-called version is also used by the stand-alone version, but the main differences are outlined below.

4.1 Subroutine OUTPAC(KIN, KOUT, KCARD, KPRINT)

The stand-alone version is invoked by calling OUTPAC, with the arguments

KIN = unit number of input analysis or forecast file
 (if there are 2 forecast files, then time T
 will be on unit KIN and time T+1 on unit
 KIN+1)

KOUT = unit number of output work file

KCARD = unit number of card input

KPRINT = unit number of print output

- <1.1> Read a data card to determine the number and type of
 input file(s), where the card has the format
 (9X,1R1,I10), and
 - F in column 10 means an analysis file
 - T in column 10 and 1 in column 20 means 1 forecast history file
 - T in column 10 and 2 in column 20 means 2 forecast history files
- <1.2> For an analysis file, skip the first record, which is a file descriptor record.

<1.15> In the operational version of the post-processing, subroutine OPNPP1 is called to attach internally the initial data file(s).

tadocrof e mo ložit olegiero na treež al emel ger mježinaj

- <1.3> Read the first data descriptor record. For an analysis file, call DDANAL to construct the forecast model's common block COMHKP.
- <1.4> Call INISDS to construct the forecast model's common block COMSDS (mainly with dummy variables).
- <1.5> Initialise various common variables, including in particular NLINE1 and NLINE2 which define the displacements of the I/O buffers, so that the addresses of fields may be built up in the same way in subroutine SITOPR for both the forecast-called and stand-alone versions.
- <1.7> Initialise the pointers NLINPP(1) and (2) to 2 output buffers, which will be used alternately to permit overlapped output and computation. In the forecast-called version, there is insufficient space for a second output buffer, so it is not possible to achieve this overlap.
- <1.8> Call INISTP (as in Section 3.3) to initialise the post-processing parameters.
- <2.1> Scan from north to south, reading the data. The input buffers are cycled in the same way as those for the forecast model, i.e.
 - NLINE1(1) = start address of row NROW-1, to the north of the current row
 - NLINE1(2) = start address of current row, NROW.

 - NLINE1(4) = start address of row NROW+2, 2 rows
 to the south of the current row. The
 read for the data of this row is overlapped with the processing of the data
 for row NROW.

- <2.3> Call SITOPR to construct the output work file record for row NROW.
- <2.5> In the operational version, subroutine CLSPP1 is called to save internally the work files

4.2 Subroutine SITOPR

If a forecast file (or 2 forecast files at adjacent time levels) is being processed, then SITOPR is executed as described in Section 3.5. Analysis fields are given initially on pressure levels, so that fields which are to be fitted by spherical harmonics do not have to be vertically interpolated as well. For an analysis file, the following separate code is executed:-

- <7.1>,<7.2> Find the displacement of the highest level of the field selected (analysis files are arranged in a different order to forecast files)
- <7.3> Except for surface fields, the displacement of the level selected is found.
- <7.5> The field is copied to the output buffer, with a spare word before the first word, and a spare word after the last word. Although the input analysis data is not wrapped, analysis fields on the work file now occupy the space which they would need if they were wrapped.
- <7.6> Surface pressure is converted to pascals. Forecast pressures are held in pascals, while analysis files store pressures in millibars.
- <7.6> If the field selected was relative humidity, it is generated by subroutine RELHMA.
- <7.9> The displacements of analysis error fields are calculated.

5. Reordering fields

The method used to fit spherical harmonics to the velocity fields is first to fit the divergence and vorticity fields, using grid point values of both u and v, and then to derive the u and v coefficients from the divergence and vorticity coefficients. This means that if any of u, v, vorticity or divergence is selected for post-processing, then both u and v (but not vorticity or divergence) must be written to the work file. As a result, there are not necessarily the same number of fields on the work file as there are on the output post-processing files which are to be sent to the Cyber.

Sept. Tallet & March 4 to the second

The fields are classified as 'velocity' fields (u, v, vorticity or divergence) or 'scalar' fields (all other field types). They are not necessarily processed in the order given by the user, but may be reordered to simplify the control of the fitting of the spherical harmonics. The work file contains first the fields on multiple levels, which are to be fitted with spherical harmonics; then the fields on single levels which are to be fitted with spherical harmonics; then the uninterpolated fields; then the diagnostics fields. The multi-level fields are stored by level on the work file, i.e. with first all the fields at the first level, then all the fields at the second level, and so on. fields at each level are reordered so that all the scalar fields come at the beginning, followed by all the velocity fields. single-level fields are also reordered, with first all the scalar fields, then all the velocity fields. The uninterpolated fields are not reordered, but are stored in the order requested by the user.

The routines which fit the spherical harmonics have to decide how many fields may be fitted at the same time in the space available. To do this, the fields are split into groups, described by the control array NPTAR. NPTAR(1) contains the number of groups (if NPTAR(1) = 0, there are no fields to be fitted by spherical harmonics, just uninterpolated fields to be processed). A 'group' consists of

NPLEV levels of data, with each level containing NSCAL scalar fields and NVEL input velocity fields. To describe the $N^{\mbox{th}}$ group,

NPTAR (3*N-1) = NSCAL, the number of scalar fields at each level

The first group contains the multi-level fields. The next group (or first group, if there are no multi-level fields) contains all the scalar single-level fields, plus the first single-level velocity field (if there are any). There is a group for each remaining single-level velocity field. If NPLEV is the number of levels of data in each group, then NPLEV=1, unless the group contains the multi-level fields, when NPLEV = NMLV (where NMLV is the number of levels at which multi-level fields are to be processed).

Section 8 describes in detail how NOLV, the number of levels of data within a group which may be fitted in a single scan, is calculated. At least one scan is required to fit all the fields within a group, and if NOLV < NPLEV, several scans are required.

Several control arrays are built up in subroutine REORDR to describe the reordered data. MHAIN(200) describes the contents of the work file, in the form most convenient for the spherical harmonic fitting routines. It contains the field codes for all the groups in the order

- (i) codes for scalar fields in first group
- (ii) codes for velocity fields in first group

. .

- (iii) codes for scalar fields in nth group
- (iv) codes for velocity fields in n^{th} group

. . . .

If a group contains fields at more than one level, the codes are not repeated in MHAIN.

MHAOUT(200) describes the fields which have been fitted by spherical harmonics, and are to be sent to the Cyber on a post-processing output file. Like MHAIN, it contains the field codes for scalar and velocity fields within each group, without repetition for fields held at more than one level. The only difference between MHAIN and MHAOUT is that the velocities on the input work file may not be the same as those on the output post-processing file.

NCL(2,200) is the control array used on the Cyber to determine the contents of the output post-processing file which contains fields fitted by spherical harmonics.

- $NCL(1,J) = code of J^{th} field$
- $NCL(2,J) = level of Jth field (in mb*10, or model <math>\sigma$ -level number, if NVINT=0)

If fields are repeated at several levels, then they have several entries in NCL.

NCLIN(2,200) is a control array which is not used by the post-processing package, but has been added so that other programs may more easily determine the contents of the work file.

 $NCLIN(1,J) = code of J^{th} field on work file$

NCLIN(2,J) = level of Jth field on work file.

in the profession of the profe

If fields are repeated at several levels, then they have several entries in NCLIN.

The uninterpolated fields are described by the array NGPCL(2,20), where

 $NGPCL(1,J) = code of J^{th} field$

NGPCL(2,J) = level of Jth field

6. The post-processing work file

The work file has 7 records containing common blocks, followed by a data record for each row. The contents of all the common blocks are described in Section 10. The common blocks are:-

- (i) COMHKP, of length 925 words
- (ii) COMSDO, length 34 words
- (iii) COMGPH, length 45 words
- (iv) COMSHH, length 415 words
- (v) COMSH1, length 8716 words
- (vi) COMHDO, length 16 words.
- (vii) COMDIA, length 422 words

There follow NOREC records, each of length (MFDIN+N2D+NDIAWK)*NLP2 where NOREC (from COMHKP) = number of latitude rows

MFDIN (from COMSH1) = number of fields to be fitted by spherical harmonics

N2D (from COMGPH) = number of uninterpolated fields

NLP2 (from COMHKP) = size of a wrapped field of data (number of longitude points + 2)

NDIAWK (from COMDIA) = number of diagnostics fields

If (MFDIN+N2D+NDIAWK)>4, the work file is split into 4 separate files, which are positioned on disks controlled by 4 different disk controllers, to improve I/O transfer rates. In this case, the first file contains the 7 common blocks, followed by NOREC records of length

((MFDIN+N2D+NDIAWK)/4)*NLP2 (i.e. the first (MFDIN+N2D+NDIAWK/4 fields). The second and third files contain NOREC records of length ((MFDIN+N2D+NDIAWK)/4)*NLP2. The fourth file contains NOREC records of length

((MFDIN+N2D+NDIAWK) - 3*((MFDIN+N2D+NDIAWK)/4))*NLP2
(i.e. the remaining fields)

If the first file is on unit NPOUT, then the second, third and fourth files will be on units NPOUT+1, NPOUT+2 and NPOUT+3 respectively.

When the data is read back in the second part of the post-processing package, only the fields needed for a particular scan are read, so that all 4 sections of the work file do not necessarily have to be read in every time. This is possible because the data is stored on the work file in the order in which it is used by the second part of the post-processing package, rather than the order in which the work file is built up by the first part.

Each data record contains MFDIN fields which are to be fitted by spherical harmonics (described by the control array NCLIN, see Section 5), followed by N2D uninterpolated fields (described by the control array NGPCL, also defined in Section 5), followed by NDIAWK diagnostics fields.

The file is read using BUFFER IN.

7. The second part of the post-processing package

The second part of the post-processing package is a separate job which takes as input the work file generated by the first part, and the constants files created by MAKEZZ and MAKELG (see Section 3.3), and produces 4 types of output file, described in Section 9.

7.1 Subroutine HACNTL

The second part of the post-processing package is invoked by calling HACNTL.

- <1.01> Read from a data card with format I10 the unit number, NPOUT, of the work file (or the first file, if it has been split into 4 parts). This should be the same as was used to create the work file.
- <1.01> Read the 7 common blocks from the start of NPOUT.
- <1.03> Initialise the creation data and time for the output files. Convert the date in COMHKP for forecast files from century days to the form YY*10⁴+MM*10²+DD. This format is already used by analysis files.
- <1.3> Call SPANAL to decide how many fields may be processed in the current scan. See Section 8 for a detailed description of the layout of the fields, and the algorithms used to decide how many fields may be processed in each scan.
- < 2.1> Call DISINI to initialise the arrays NDISGR and NDISSH (from COMSH2) containing the displacements in blank common of the input grid-point fields and spherical harmonic coefficients respectively for the current scan. The displacements are given for complex fields, since complex arithmetic is used in the calculation of the spherical harmonic coeffic-

- ients. The variable NDIS2D, which defines the real (i.e. not complex) displacement in blank common of the start of the buffer for building up uninterpolated fields for output, is also defined. The variable NDISDI, defining the real displacement of the buffer for building up diagnostics fields for output, is defined.
- <2.2> A work file record (or 4 records, if the file has been split into 4 parts) contains all the fields for a single row. The fields which are being processed in the current scan are wanted at all rows. Accordingly, for each row from north to south, a work file record (or records) is read, and the fields to be processed are copied into the area in which complete fields are being constructed. If the work file has been split into 4 parts, only the parts containing data for the current scan are read.
- <2.4> The velocity fields are multiplied by cos(latitude), since it is U = ucos(lat) and V = vcos(lat) which are used to derive the divergence and vorticity spherical harmonic coefficients.
- <2.7> If uninterpolated fields are to be processed in this scan, they are copied from the buffer containing the work file record for the current row into the area in which the complete fields are being constructed.
- <2.71> If diagnostics fields are to be processed in this scan, they are copied from the buffer containing the work file record for the current row into the area in which the complete fields are being constructed.
- <2.73> Diagnostics codes are extracted and stored in the array MDIACD in COMDIA. There are up to NDIMAX groups of diagnostics, where NDIMAX=NLON/4. Each group of diagnostics contains 4 fields, each of length NDIAWK*NOREC. Associated with each group of diagnostics are 6 codes. On the forecast file, the Jth code for the Kth group is held in the last wraparound point of the Jth level of diagnostics of the Kth row. In 2.73>, these codes are extracted from the wrap-around points

and stored in MDIACD(6,NDIMAX). If both MDIACD(1,K)=0 and MDIACD(2,K)=0, all 4 fields in the Kth group contain zeros, and later on, in subroutine OUTDIA, the entire group will be skipped (i.e. not written to the diagnostics output file). The number of land points in the Kth row is extracted from the last wrap-around point of the 7^{th} level of the Kth row and stored in MLAND(K), in COMDIA.

- <2.8> If both uninterpolated fields and fields fitted by spherical harmonics are being processed in the current scan, subroutine OUT2D is called to output the complete uninterpolated fields, before the space they occupy is overwritten by the work space for the fast Fourier transform. See Section 9 for a detailed description of the output file for the uninterpolated fields.
- <2.91> If both diagnostics fields and fields fitted by spherical harmonics are being processed in the current scan, subroutine OUTDIA is called to output the diagnostics fields.
- <3.1> Subroutine FFT99 is called to do a 'half-complex' fast Fourier transform for each of the complete input grid point fields of the current scan. (See equation 5 of Section 2).
- <3.11> For forecast data, the Fourier coefficients for the U-velocities have been generated from data which is staggered in the east-west direction. The corresponding 'unstaggered' coefficients are calculated using

$$\mathbf{U}_m^u \ = \ \mathbf{e}^{-\frac{i\,m\,\Delta\,\lambda}{2}} \ \mathbf{U}_m^S \ \text{and the entropy of the entr$$

where $\Delta \lambda = \frac{2\pi}{\text{NLON}}$

 $U_m^U = \text{unstaggered } n^{th} \text{ coefficient (complex)}$

 U_m^S = staggered nth coefficient (complex)

- <3.2> Subroutine SYMASY is called to calculate the symmetric and antisymmetric parts of the Fourier fields (see equation 6 of Section 2). The Fourier coefficients for each field occupy NOREC rows of length NLP2, but space is available for NOREC+1 rows. If NPE = NOREC/2+1, then the symmetric parts of the fields are stored over rows 1 to NPE, and the antisymmetric parts over rows NOREC+1 to NPE+1. For forecast model data, v is given on rows staggered in the north-south direction, so that one row less of data is available. The symmetric parts of the V field are stored over rows 1 to NPE-1, and the antisymmetric parts are stored over rows NOREC+1 to NPE+2.
- <4.1> Subroutine SHCOEF is called to calculate the spherical harmonic coefficients for scalar fields (see equation 18 of Section 2). If velocity fields are to be fitted, SHCOEF calculates the divergence and vorticity coefficients (see equations 23 and 24 of Section 2).

The functions
$$Z_{mn}(\phi_j^T)$$
, $Z_{mn}^I(\phi_j^u)$, $Z_{mn}^{II}(\phi_j^u)$, $Z_{mn}^I(\phi_j^v)$, $Z_{mn}^{II}(\phi_j^v)$

where $\phi_{,j}^{\,T}$ = latitude of T grid points

 ϕ_{i}^{u} = latitude of u grid points

$$\phi_{j}^{v}$$
 = latitude of v grid points

are read from unit NZFILE. For each value of m, n, there is a record containing the 5 functions defined at latitudes from the pole to the equator. The functions are given in the order for the summation

NTIN NTIN-k
$$\sum_{m,m+k}^{NTIN-k} \sum_{m,m+k}^{NTIN} \sum_{m+k}^{NTIN} \sum$$

truncation used to fit the spherical harmonics.

NB In the earlier versions of the package, the functions were held in the order

$$\begin{array}{ccc} \text{NTIN} & \text{NTIN} \\ \sum & \sum & Z_{mn} \\ m=o & n=m \end{array}$$

The output coefficient files are still held in this order, so that

old programs which used them before the change still work. However, it was found that the spherical harmonic to grid point transformation could be vectorised if the new order were used. So the coefficients are calculated in the new order, and swapped round before being written to the output file.

- <4.2> If velocity fields are being fitted with spherical harmonics subroutine UVCOEF is called to calculate the u and v coefficients from the divergence and vorticity coefficients. (See equations 29 and 30 of Section 2).
- <5.1> Subroutine SHTOLL is called to extract the fields on the output grid, and write them to unit NGPOUT. It is described more fully in Section 7.2
- <6> Find out which fields are to be processed in the next scan. Call REPOS to reposition the work file (or 4 work files) at the first data row.
- <6.1> If NOLV = 0, i.e. there is insufficient space to process all the fields at a single level simultaneously, process the next set of scalar or velocity fields at the current level.
- <6.2> If NOLV > 0 and all the levels in the current group have not yet been processed, do the next set of NOLV levels. If NOLV = 0 and all the fields at the current level have been processed, do the first set of NSC scalar fields at the next level.
- <6.3> If all NPLEV levels of the current group of fields have been processed, start to do the next group of fields.
- <7.1> If all the fields to be fitted by spherical harmonics have been processed, do the uninterpolated fields, in batches of N2D1 fields at a time. Subroutine OUT2D is called to write the uninterpolated fields to unit N2DOUT.

<7.3> If all the uninterpolated fields have been processed, subroutine OUTDIA is called to write the diagnostics fields to unit NDIOUT. They are processed in groups of NDISCN fields at a time.

7.2 Subroutine SHTOLL

If NLATO is non-zero, subroutine SHTOLL uses the spherical harmonics to calculate fields on the regular unstaggered latitude/longitude output grid. If NLATO=0, no output grid point fields are derived.

<2.1> For each latitude row of the output grid, the Legendre functions $P_{mn}(\phi)$ are read from unit NNLEG. There is one record for each row, ordered from north to south, and the Legendre functions are stored in the order corresponding to the summation

NTIN min (NTIN, NTIN+1-k)

\[
\begin{array}{ccccc}
\chi_{m=0} & & & P_{m,m+k}
\end{array}
\]

- <2.15>Subroutine POLARV is called to calculate the Fourier coefficients of the velocities at the poles, using equation 33 of Section 2.
- <2.2> For all fields except velocities, equation 8 of Section 2 is used to calculate the Fourier coefficients at each latitude of the output grid.
- <2.3> The Fourier coefficients of the velocity fields are calculated, using equation 30 of Section 2.
- <2.6> Subroutine FFT99 is called to perform an inverse Fourier transform and extract the entire field on the output grid.
- <2.7> The velocity fields extracted by this process have been $U = u\cos(\phi)$ or $V = v\cos(\phi)$, u or v can be calculated by dividing the appropriate field by $\cos(\phi)$.
- <3.1> Subroutine OUTSHG is called to pack the field on the output grid, and write it to unit NGPOUT, in the format described by Section 9.

<3.2> If spherical harmonic coefficients are to be sent to the Cyber, subroutine OUTSHC is called to write them, in the format described by Section 9 to unit NSHOUT.

8. Space control for the second part of the post-seizecode 200 processing package

Knowing NSPACE, the length of blank common available as work space, the number of fields which may be fitted with spherical harmonics in a single scan is calculated in subroutine SPANAL. On the input work file, the data is held in line form, but to fit spherical harmonics to a field, it must be converted to field form (i.e.all the rows must be held in core).

The input latitude/longitude grid has dimensions

NLP2 (number of longitude points + 2)
NOREC (number of latitude rows)

Space for an extra row of data is needed during the calculations, so that the input grid point field needs space NLP2*(NOREC+1).

If spherical harmonics are to be fitted with triangular truncation NTIN, then the spherical harmonic coefficients need space (NTIN+1)*(NTIN+2)

If the output grid has dimensions

NLONO (number of longitude points)

NLATO (number of latitude rows) and the property of the first of

then the output grid point field needs space (NLONO+2)*NLATO.

To fit velocity fields with spherical harmonics, both u and v must be held on the input grid, and the spherical harmonics for divergence, D, and vorticity ζ, must be stored, as well as those for u and v. The divergence and vorticity spherical harmonic coefficients each need space (NTIN+1)*(NTIN+2), while the u and v coefficients each need space (NTIN+1)*(NTIN+4).

and an all target against the other was

If there are NSCAL scalar fields and NVEL velocity fields at each level, the program calculates NOLV, the number of levels of data which may be processed in a single scan.

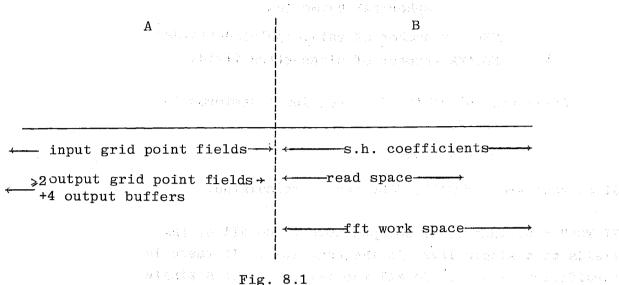


Fig. 8.1 shows how various fields share the work space. Section A has the length of the maximum of:-

eta eksku saarat, eskup ja saara

- space needed by NOLV*(NSCAL+NVEL) input grid (i) point fields = NOLV*(NSCAL+NVEL)*NLP2*(NOREC+1)
- (ii) space needed by 1 output grid point field + the workspace for the fast Fourier transform + space needed for 2 buffers each for packed output gridpoint and coefficient fields = 2*NLATO*(NLONO+2) + NLATO*NLONO/2 +MPRELO/2 + 2*((NTOUT+1)*(NTOUT+4)/3+MPRELO/3)

Section B has the length of the maximum of:-

- (i) space needed by the spherical harmonic coefficients for NOLV*NSCAL scalar fields and NOLV*NVEL velocity fields = NOLV*SCAL*(NTIN+1)*(NTIN+2)
 - + NOLV*NVEL*((NTIN+1)*(NTIN+2)+(NTIN+1)* (NTIN+4))

(ii) space to read in 2 lines of data
= NLP2*(MFDIN+N2D+NDIAWK)*2

where

MFDIN = number of fields to be fitted with spherical harmonics

N2D = number of uninterpolated fields NDIAWK =number of diagnostics fields

(iii) work space for fast Fourier transforms for input data

= NLP2*NOREC

Given that $A+B \le NSPACE$, NOLV can be calculated.

If NOLV = 0, then it is not possible to do all of the fields at a single level in the same scan. If there is insufficient space to do all the velocities at a single level in the same scan, the program terminates with an error message. Otherwise NSC, the number of scalar fields at a single level which can be done in a single scan, is calculated. Then for the first level, all the scalar fields are processed, with NSC (or a remainder < NSC) per scan, followed by a scan for the velocity fields (if there are any). This is repeated for the second and subsequent levels.

If NOLV > NPLEV, the total number of levels to be processed, there is a test to see if there is sufficient space to also process all of the uninterpolated fields in the same scan. If so, they are built up beyond the longest of B(i) and B(ii). Otherwise the uninterpolated fields are done after all the fields to be fitted by spherical harmonics have been processed. Each field needs space of length NLP2*NOREC, and the number which can be processed in each scan is calculated and held in N2D1.

If NOLV>NPLEV and all the uninterpolated fields can be fitted into a single scan, there is a further test to see if all the diagnostics fields can also be done on the same scan. Otherwise the diagnostics fields are processed at the end. Each field needs space of length NDIAWK*NOREC, and NDISCN diagnostics fields can be processed in a scan.

en 1960 de la como de la la composição de la composição d

Shorter, and the contrained of the second contract of the second con

in terminal in the figure of the second of t

43

9. Format of the output files Regardates and the back at the files

Four different types of output file may be produced by the post-processing package:-

- a) fields interpolated using spherical harmonics to a regular unstaggered latitude/longitude grid, written to unit FT17
- b) spherical harmonic coefficients, on unit FT18
- c) uninterpolated fields on the model grid, on unit FT19
- d) diagnostics fields, on unit FT64

Each file has 3 data description records, followed by a data record for each field. The data description records are converted from Cray to Cyber format, but not packed before being written out. The first 2 data description records are the same for all 4 file types. The first record is the common block COMHKP, described in Section 10.1, which contains information describing the initial model or analysis data - its horizontal grid, vertical structure, date and time, etc. The second data description record is the common block COMSDO, described in Section If the post-processing package was called during a forecast model run, then COMSDO contains parameters describing the model options selected for the particular run such as the time step, the physics version or the tuning parameters. If the stand-alone version of the first part of the package was used, then COMSDO contains default The third data description record is different for each of the 4 file types. It contains sufficient information to describe the fields output, their horizontal grids, vertical levels and any parameters used for interpolation.

For file type (a), the third data descriptor record contains words $1 \rightarrow 406$ and $409 \rightarrow 415$ of common block COMSHH, described in Section 10.4. For file type (b), the third data descriptor record contains words $1 \rightarrow 408$ of common

block COMSHH. For file type (c), the third data descriptor record is common block COMGPH, described in Section 10.3. For file type (d), the third data descriptor record is words 1-415 of common block COMDIA, described in Section 10.8.

rideal Coas Middle wrote on testion and Consign a line of the

, Lukturthigony to adocaptizacon Enuropes agadan nagar a lin akh.

varied remediated add to the to

Each data record contains a field of data, preceded by a preliminary array. The entire data record, including the preliminary array, is packed. Spectral coefficients of geopotential, in file type (b), are packed with 3 20-bit integers per word. All other spectral fields, and all fields for the other 3 file types, are packed with 4 15-bit integers per word. The preliminary array is the common block COMHDO, see Section 10.7. For grid point data on files of type (a) and (c), the data is ordered in rows from north to south, and from west to east within the rows. The rows of data are unwrapped, i.e. they do not have extra points before the first longitude point, or after the last point.

For file type (b), and triangular truncation NTOUT, the coefficients

NTOUT
$$\alpha$$

$$\sum_{m=0}^{\alpha} \sum_{n=m}^{\infty} (\psi_{mn}^{real} + \psi_{mn}^{imaginary})$$

(where α = NTOUT for all fields except velocities

 α = NTOUT+1 for velocity fields)

are stored in the order

$$\psi_{00}^{\mathrm{I}}, \psi_{01}^{\mathrm{R}}, \psi_{02}^{\mathrm{I}}, \psi_{02}^{\mathrm{R}}, \psi_{02}^{\mathrm{I}}, \dots, \psi_{0\alpha}^{\mathrm{R}}, \psi_{0\alpha}^{\mathrm{I}}, \psi_{11}^{\mathrm{R}}, \psi_{11}^{\mathrm{I}}, \dots, \psi_{1\alpha}^{\mathrm{R}}, \psi_{1\alpha}^{\mathrm{I}}, \dots$$

$$\psi^{\rm R}_{\rm NTOUT}$$
 , $_{\alpha}$, $^{\psi}^{\rm I}_{\rm NTOUT}$, $_{\alpha}$

 $\psi^R_{00},$ which represents the mean value of the field, is stored in the preliminary array, for reasons concerning the accuracy of the packing method, described below.

9.1 Packing routines

(i) Subroutine MAXMING searches all the values of a data field for the maximum (ZMAX) and minimum (ZMIN) values.

For all fields except spectral coefficients of geopotential, (ii) subroutine CODEREA is called to store ZMIN as 3 15-bit integers in words 9, 10 and 11 of the prelimary array (see Section 10). The algorithm used is

ZMIN =
$$(K1*2^{15} + K2)*(10** AND (K3,17777B))$$

where K1, K2 and K3 are words 9, 10 and 11 respectively. The sign of ZMIN is held in bit 15 of K3, and the sign of the exponent is held in bit 14 of K3. For spectral coefficients of geopotential, subroutine CODER3 is called to store ZMIN as 3 20-bit integers, using the algorithm space and the additional and the second second and the second s

ZMIN =
$$(K1*2^{20} + K2)*(10** AND (K3,777777B))$$

(iii) The scaling factor, ZSCAL, is calculated where S = (U-ZMIN)*ZSCAL with S = scaled integer

U = unscaled real data element

o Alba Waar of Decadors gaz

Let IP be the number of bits used to pack each integer (i.e. IP=15 for all fields except spectral coefficients of geopotential, when IP=20).

If negative numbers could be packed, the method would be

IN = INT(Log₂ (ZMAX-ZMIN) +
$$\varepsilon$$
)

where ε = machine precision

$$ZSCAL = 2^{(IP-1-IN)}$$

giving
$$S = \frac{(U-ZMIN)2^{IP-1}}{2^{IN}}$$

so S<2
$$^{\mathrm{IP}}$$
, since $\frac{(\mathrm{U-ZMIN})}{2^{\mathrm{IN}}}$ <2

To keep IN (the integer stored in word 12 of the preliminary array) positive, the equations are shifted:-

IN = INT(
$$Log_2(ZMAX-ZMIN) + \varepsilon + IBIAS$$
)

where

$$IBIAS = 2^{IP-1} + 1$$

so
$$ZSCAL = 2^{(IBIAS+IP-1-IN)}$$

and
$$-2^{\mathrm{IP}-1} - 1 \leq \mathrm{Log}_2(\mathrm{ZMAX-ZMIN}) \leq 2^{\mathrm{IP}-1} - 1$$

giving

$$0 \leq S < 2^{IP}$$

(iv) For all fields except spectral coefficients of geopotential, subroutine IPACK4 is called, to pack the preliminary array and the data record, with the lowest 15 bits of 4 positive Cray integers packed into the lowest 60 bits of each Cray word. (It is because the preliminary array is packed, with each word to be represented by a 15-bit integer that levels are held in the non-standard units of pascals/10. 15 bits is not usually sufficient to represent low-level pressures in pascals).

For spectral coefficients of geopotential, subroutine IPACK3 is called to pack the preliminary array and the data record, with the lowest 20 bits of 3 Cray positive integers packed into the lowest 60 bits of each Cray word. The packed preliminary array occupies words 1 to 5, and the first third of word 6. The packed data begins in word 7.

For packing spherical harmonic coefficients, the real (m=o,n=o) coefficient, which represents the mean value of the field, may be much larger than the other coefficients. By finding the values of ZMIN and ZSCAL for all coefficients except the real (m=o, n=o) coefficient, their variation can be more accurately represented. Subroutines CODEREA or CODER3 (see (ii) above) are called to store the real (m=o, n=o) coefficient in words 13, 14 and 15 of the preliminary array.

NB For files produced directly by the post-processing package, the preliminary array is packed, as described above. However, the retrieval programs which extract data from the operational data banks or operational archives return the data with unpacked preliminary arrays.

10.	COMMERP	b]	ocks input data parameters				
Word	Type	ame	I	Where defined	Initial value	Where redefined	New value
1	Н	NSIZDD	length of first data descriptor record, in words	DATCOM OF OUTPAC OF DDANAL	925	Le segment Le segment transport	1 (100 km) 1 (100 km) 1 (10 km) 1 (10 km) 1 (10 km) 1 (10 km) 1 (10 km)
73	н	NPRELD	length of preliminary array, in words	* * * * * * * * * * * * * * * * * * *	24 - 24 - 24 - 24 - 3 - 3	ere John Parkers Viktory Parkers	
М	н	NSZDD2	length of next data description record	ngana Liberta Marka Marka	2005 2006 2008 2008	HYCNIT ()	fillion Abak Abak Abak Selati Long Abak Abak Abak Abak Abak Abak Abak Abak
4	н	MAXSIZ	length of maximum data record size		input grid dependent	OUT2D, OUTSHC OUTSHG	output grid dependent
Ŋ	н	NFRECD	record number of first data record	1 2 50 1 2 50 3 60 1 7 1 5		HACNAL	Airege , se Effe in da i in da i tradici se da ca ro
9	1—1	NCRDAT	creation date of out- put files	nderen ugʻdu Luma Leng	data dependent	nt HACNTL	owyst s actor actor ones actor
7	н	NCRTIM	<pre>creation time of out- put files</pre>	ingar Ngaran Ngaran	s ^{el} igos ngen ng pai	HACKITE OF THE STATE OF THE STA	actual time
ω	Ĥ	NDTYPE	data type	ediozat Palaca Akabaas Palacas	ard A sylvets the con	OUT2D, OUTSHC, OUTSHG, OUTDIA	<pre>2 for grid point fields 11 for spherical harmonic coefficients if geopotential is packed 3 values/word</pre>
			visak kilor kambio kipalor kilor	Pet Silbar La respira Astronomia	er av gajdo , daedo vegas	uselov sglov bolek sjlov slovi	12 for spherical harmonic coefficients if geopotential is packed 4 values/word
σ	н	NOREC	number of latitude rows of input grid	a ing kas A 2 12 was Domada 11 Sa a wata	overy J	Por es iowest ensembles ensembles rough	18 for diagnostics -

New value	INT((TWODT+0.5)/2)	format YYMMDD	format YYMMDD	i : : : : : : : : : : : : : : : : : : :	i i	
Where redefined	INISTP, DATCOM	DATCOM, SITOPR, HACNTL	DATCOM, SITOPR HACNTL	1 1	. 1	
Initial value	data dependent	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			= * * = * * * * * * * * * * * * * * * * * * *	# # # # # # # # # # # # # # # # # # #
Where defined	DATCOM OR OUTPAC OR DDANAL	=		= =		
STON Meaning (AT)	number of seconds/ common time unit (ctu)	date of data on output file	time of data on output file (ctu's from midnight) data of initial fore- cast or analysis data	time of initial fore- cast or analysis data (ctu's from midnight) north-west latitude of input grid (degrees	north-west longitude of input grid south-east latitude of input grid	south-east longitude of input grid (degrees)
Type For Name 1887 15.	NTIMST	NCDATA	NTDATA	NTBASE ANORTH	WEST	EAST
Туре	H:	н	н н	H _{3.7}	ద 보	ĸ #
Word	10	11	113 113	114	16 17 	18 19

New value	I	1 .	1	ı					- 1	
Where redefined	I	ı	ı	1	l	ı	model with and NLEV+1 evels, For an analysis pressure	s) IVTYPE=1	(a)	
Initial value	data dependent	=	25	725	च	data dependent	for a forecast model with NLEV g-levels, and NLEV+1 intermediate levels, - ILEV=2*NLEV+1. For an analysis file with NLEV pressure levels, ILEV=NLEV	forecast files - IVTYPE=2(g- levels) analysis files - IV (pressure levels)	$\sigma_{\rm A}$ (forecast file) of P (analysis file)	
Where defined	DATCOM Or OUTPAC Or DDANAL	=	=		E	=	· · · · · · · · · · · · · · · · · · ·	.		
Meaning	number of longitude points +2 of input data	number of fields in input data file	location of character description section (word number)	location of user area	record number	character description of initial data	number of vertical model levels in following words	type of vertical coord- inate system of initial data	to t	value of 3rd level
Мате	NLP2	NVECT	NCHAR	NUSER	NDDNOM	CHARS (700)	ILEV	IVTYPE	USER (3)	USER(5)
Type	Ĥ	H	н	н	н	Ħ	H	н	다 *** t	저 때
Word	20	21	22	23	24	25- 724	725	726	727	729

New value	I	
Ne		
where redefined	1	
value	gnlev+½ or Pnlev	
defined	DATCOM OF OUTPAC OF DDANAL	
Meaning	value of lowest level DATCOM or OUTPAC or DDANAL	spare
Word Type Name	USER (2+ILEV)	
Type	ద	
Word	726+ ILEV	727+ ILEV- NSIZDD

10.2	COM	COMSDO - Se	- Second data descriptor record	I	for output files		
Word	Type	z	Meaning			Where redefined	New value
₩	н	MSZSDO	length of second idata descriptor record, in words	PRESTP	3.4	I	ı
77	Н	MPRSDO	length of prelimin- ary array	=	34	ı	1
m	н	MNXSDO	length of next data descriptor record	Ξ	413	OUT2D or OUTSHC or OUTSHG	45 or 413 or 418 depending on output file type
4	ដ	MLPHYS	switch for physics in model	" deper " run alor	ends on mode (false for ne version)	l stand-	t .
വ	н	MLSIMP	switch for semi- implicit scheme	=	:	ı	ı
9	ц	MLVTMP	switch for virtual temperature	=	=	ı	ı
7	Ħ	MLHEM	switch for hemispheric version			ı	ı
ω .	ьì	МІРНЕС	switch for ECMWF physics	=	:	ı	ı
ر م	ы	MLRDEC	switch for ECMWF radiation	.	=	ı	
10	ц	MLKUO	switch for Kuo convection scheme		# pr	i i	
- -	i ii	MLEVAR	switch for evaporation of rain				

New value	I	1		į.	1	1	I		·	4
re ined								t (
Where redefined	odel - or version)			• · · · · · · · · · · · · · · · · · · ·	.	I				
Initial value	depends on model run (false for stand-alone vers	= "	=	# ***						
Where defined	PRESTP	para- "	=	=	**************************************	e	= ·			
Meaning	switch for radia- tion	switch for cloud pameterisation	switch for diural variation	<pre>switch for horiz- ontal diffusion (type 1)</pre>	<pre>switch for horiz- ontal diffusion (type 2)</pre>	switch for horiz- ontal diffusion (type 3)	space filter-filter dynamics tendencies only	space filter-chop dynamics tendencies only	space filter-total field chopping	space filter-total field filtering
Иате	MLNRAD	MLCLD	MLDIUR	MLSDFM	MLD2D4	MLHDIF	MLSPFL	MLSPCH	MLTFCH	MLTFF
Type	П	н	ы	Ħ	. 	.; Н.,	н	H		н
Word	12	13	14	₩	16	17	8°	0.1	20	21

Word	Type	Мате	Meaning	Where defined	Initial value	Where redefined	New value
22	ıı	MLTTCH	<pre>space filter-total tend- ency chopping</pre>	PRESTP	depends on model run (false for stand-alone version)	1	1 .
23	ħ	MLTTFI	space filter-total tend- ency filtering	Ξ,	=	ı	1
24	н	MNRAD	frequency of radiation time steps	=	(O for stand-alone version)	ı	ı
25	ಜ	CTWODT	2*time step (seconds)	=	(O for stand-alone version)	1	I
26	ρ4	CEPS	time smoothing constant	=		ı	1
27	ĸ	ССТНО	cos(latitude boundary for space filter)	=	= '	1	i
28	r r	CCRITT	CCRITT critical relative humidity for condensation scheme	" heme	=		
29	K K	CLASYM	CLASYM mixing length parameter	=	depends on model run (0 for stand alone version)	ì	I
30	K	CTPER	period for soil-heat transfer	=	. • • • • • • • • • • • • • • • • • • •	ı	I
ed E	떠	CIDIF	diffusion coefficient for soil processes	=	.	ı	1
32	4	CSSAT	soil-water saturation value		=	1	l .
33	ĸ	CZK	horizontal diffusion coefficient	= '	* *** *** *** *** *** *** *** *** ***	ı	ı
34	н	MRCSDO	MRCSDO record number		* The second section of the section of t	1	: 1 · · · · · · · · · · · · · · · · · ·

10.3		PH - 3rd	COMGPH - 3rd data descriptor record for uninterpolated fields	ninterpo	lated_fields		
Word	Word Type	Мате	Meaning	Where	Initial value	Where	New value
1	н	MSIZR2	MSIZR2 length of data descriptor record	PRESTP	45		. 1
2	н	MSIZP2	MSIZP2 length of preliminary array	:	45	t	1
e	н	MSIZD2	MSIZD2 length of first data record	=	- (NLON*NOREC+MPRELO)	1	1
4	н	N2D	number of uninterpolated fields	=	0	INISTR	user defined
5-44	н	NGPCL (2,20)	NGPCL(1,J)=code*of J th uninter- polated field	:	0,0	INISTP	user defined
			NGPCL(2,J)=level of J th uninter- nolated field (either pascals/10				
			or - 100 (surface) or - 200 (mean sea level))				
45	н	MREC2 D	MREC2D record number	=	. т	1	I .

SEE FIG. 3.5

COMSHH - 3rd data descriptor record for spherical harmonic coefficients or interpolated fields 10.4

	1						
Word	Type	Name	Meaning	Where defined	Initial value	Where redefined	New value
1	н	MSIZRS	length of data descriptor record	PRESTP	413	OUTSEC, OUTSEG	408 for s.h. coefficient file 413 for grid-point file
7	H	MSIZPS	length of preliminary array	= /	413	OUTSHC, OUTSHG	408 or 413
ю	н	MSIZDS	length of first data record	1 INISTP	- (NLONO*NLATO+ MPRELO)	OUTSHC, OUTSHG	- ((NTOUT+1)*(NTOUT+2)-1+MPRELO)or - ((NTOUT+1)*(NTOUT+4)-1+MPRELO)or - (NTONO*NTATO+MPRELO)
4	н	MFDOUT	number of data fields on output file	REORDR	data dependent	1	
5-404	н Н	NCL (2,200)	NCL(1,J)=code of J th field NCL(2,J)=level of J th field \in pascals/10), or model	PRESTP	0,0	REORDR	data dependent
405	н	NVINT	lf NVINT=# lation type ic spline on, fields	e " on o-levels)	3 3.	INISTP	user defined
406	н	NIIN	triangular truncation of spherical harmonics used to		0	INISTP	=
	٠.		fit data with Min and a fit	+ 3 + 25 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3			A STATE OF THE STA
407	н	TUOTN	triangular truncation of spherical harmonic coefficients written to output file	• 1 H	0	- 10 (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	user defined
408	H	MRECSC	record number for s-h coefficients output file	* 10 AS	8	1 - 27 - 1 - 3 - 1 - 1 - 1 - 1 - 1	1
409	H.,	NLATO	rows =Ø if	in " there	NOREC	A CALL STP AND	user defined
			are no output gird point	• /cnrar			

	New value	user defined			= · · · · · · · · · · · · · · · · · · ·	=	
Where	redefined	n GLISINI	18 25 172 ft. 173 ft. 174 ft.	=	=	•	1
Initial	value	NLON	ANORTH	WEST	SOUTH	EAST	m
/ Where	The second property defined to the second se	number of longitude points in output grid	<pre>latitude of north-west corner of output grid (degrees)</pre>	<pre>longitude of north-west corner " of output grid</pre>	latitude of south-east corner " of output grid	longitude of south-east corner " of output grid	record number for grid-point "fields output file
	Word Type Name	NLONO	GNLAT	GWLON	GSLAT	GELON	MRECSG
	Туре	H	K	æ	ద	<u>~</u>	н
	Word	410	411	412	413	414	415

10.5 COMSH1 - output package parameters

New value	I		1	1	1	:	ı	NPWTIM (NPPTR)	user defined	NPPTR=NPPTR+1
Where redefined	1	HACNTL)	I	f .	I		1	INISTP, LINEMS	INISTP	INISTP, LINEMS
Initial value	8716	60 (forecast-called version) or KOUT (stand alone version)	. 15	16	17	18		2-	7	
Where defined	PRESTP	PRESET, OUTPAC	=	=	on- " cer- oncs	con- "	con- " fields	PRESTP	=	
Meaning	length of COMSH1	unit number of work file	unit number of first spherical-harmonic constants file	unit number of file containing Legendre functions at output grid latitudes	unit number of output file containing grid point fields interpolated using spherical harmoncs	unit number of output file cc taining spherical harmonic coefficients	unit number of output file concontaining uninterpolated fields	forecast step at which output package is next to be called	all forecast steps at which output package is to be called	pointer to current element of NPWTIM
Name	NLNSH1	NPOUT	NZFILE	NNLEG	NGPOUT	NSHOUT	N2DOUT	NPSTEP	NPWTIM (200)	NPPTR
Type	н	н	н	н	н	:) H	H	н	H	H
Word	₽	7	ĸ	4	ഹ .	o :	7	ω	9-208	508

New value	NMLV or 1	T	user defined	=	-	F ,	=	= .		The state of the s
Where redefined	INISTP, SITOPR HACNTL	1	INISTP	=	=	•	.	.	= "	# 10 mm
. Initial value	0	NOREC/2+1	700 000	## Company of the Com	0	0 %	O a	0	0 10 10 10 10 10 10 10 10 10 10 10 10 10	0
. Where defined	PRESTP	SYMASY	PRESTP	.	=	=	=	:	5	E (2000)
Market and the Market and Market	number of vertical levels in current group of fields	number of rows between pole and equator on input grid	length of blank common available for work space	start address in blank common of work space	number of multi-level fields to be interpolated using spherical harmonics	codes of multi-level fields	number of pressure levels at which multi-level fields are to be output	levels of multi-level fields (pascals/10); or model σ-level numbers if NVINT=Ø	number of single-level fields to be interpolated using spherical harmonics	codes of single-level fields
Name	NPLEV	NPE	NSPACE	NSTADD	NMFD	NFDML (10)	NMLV	(30)	NSFD	NFDSL (30)
Type	l A H	H	н %	н		H	H (2)	H, (1)		H
Word	210	211	212	213	214	215- 224	225	226- 255	2561	257– 286
٠,		100			1					· Line

1										operat- Y name		
New value	user defined	1	t	1	1	: •	1	## 17 Property of the Property		depends on operational family name	i .	
Where	INISTP	1	ı	. ! 	t	ı	ı	1	↓	EXFAMD		
Initial value	0	data dependent	=	a .	a 4 ³	grid dependent	data dependent	data dependent	false (PRESET) or true (OUTPAC)	false	II/ (NOREC-1)	11/ (NLATO-1)
Where defined	PRESTP	REORDR	= v ₁	# 1	= ω	HAFFT	# ************************************	PRESET or OUTPAC	PRESET OF OUTPAC	PRESTP or OUTPAC	INISTP	=
Meaning	levels of single-level fields (pascals/10); or model σ -level numbers if NVINT= \emptyset	codes of reordered fields on work file	codes of fields to be output	number of input fields to be interpolated using spherical harmonics	control array describing groups of scalar and velocity fields on work file	constants for fft on input grid	constants for fft on outptut grid	true if initial data is an analysis file, false for forecast data	true for stand-alone version, false for forecast-called version	true for $\sigma ext{-level}$ analysis files	latitudinal grid interval of input grid (radians)	latitudinal grid interval of output grid
Name	NLVSL (30)	MHAIN (200)	MHAOUT (200)	MFDIN	NPTAR (50)	NFAXI (10)	NFAXO (10)	NLANAL	NLSTAL	NLINI	ртнета	DLATO
Type	н	н	H	H	H	н	H	ы	H	ı	H H	ra Ca
Word	287– 316	317- 516	517- 716	717	718- 767	768- 777	778 - 787	788	789	790	791	792

	ew value	.1			I		ı	I	1				,	
Where	redefined New value	ı			· ·		ł	ı	1					100 mg/s 100
				,		,								1 (SE)
Initial	value	$DD = -\left(\frac{n^2 - m^2}{2}\right)^{\frac{5}{2}}$	$-mn$ $\left(4n^2-1\right)$ n		E C	SS nn n(n+1)	ָּרְ מָרְ נְיִּגְּיָלְ תְּיִּבְּּרְ תְּיִבְּיִּגְּרְ תְּיִבְּרָ תְּיִבְּרָ תְּיִבְּרָ תְּיִבְּרָ תְּיִבְּרָ תְּ	nementan prif			data dependent			1. No. 10 1. No.
wnere	defined	MAKEDS					田山村	THE E			RECEDE			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	Meaning a constraint of the second of the se	DD(3402) constants used in spherical	harmonic interpolation			Harmonic incerporación	constants for fft on input	grid	constants for fft on output	grid	NOTITY (1.1) = COJE OF T	field on work file	NCLIN(2,J)=level of J th	field on work file
	Type Name	DD (3402)			SS (3402)		TRIGSI	(360)	TRIGSO	(360)	NT.TM	(2,200)		
	Type	ĸ		1	K		Ж		¢		, , -	4		
	Word	793-	4194	. · L	4195-	050/	757 7-	7956	7957-	8316	R317_	8716		, e

MLEVUP+NOLV or MLEVUP+1 or 1 data dependent redefined HACNTL HACNTL HACNTL Where 1 space dependent space dependent data dependent data dependent data dependent data dependent NSCAL+NVEL Initial value NFSH REORDR, HACNTL defined HACNTL HACNTL REORDR, REORDR, Where SPANAL SPANAL HACNTL SPANAL SPANAL HACNTL maximum number of scalar fields number of scalar fields at each level number of first level in maximum number of levels which number of fields at each level COMSH2 - output package parameters at each level in current scan number of velocity fields to be written to output file at first field to be processed each level of current group on work file at each level which can be processed in number of velocity fields processed in current scan which can be processed in actual number of levels level in current group could be processed in Meaning in current group current scan current scan current scan current scan MLEVUP NVELO Name NSCAL MNOLV NOLV NVEL NSC NF1 Ħ TypeН Н Н Н Н н Н 10.6 Word N m 'n o α σ

value

New

New value	data dependent	1					1	· I		A STATE OF S	NPASS=NPASS+1 or NPASS=0
Where redefined	HACNTL				i k i n		F. S.	1	Î.		HACNTL
Initial value	space dependent	NLP2* (NOREC+1)/2	(NTIN+1) * (NTIN+2) /2	(NTIN+1) * (NTIN+4)/2	data dependent		NLP2* (MFDIN+N2D)	data dependent			
Where	SPANAL	DISINI	B	1. ≢2. 1.	25 121 121 121	3 4 44	SPANAL	DISINI	=		HACNTL
Meaning	<pre>type of scan (1=all fields at each level, 2=scalar fields at current level, 3=velocity fields at current level)</pre>	(complex) length of a field of data on the input grid	(complex) length of a field of scalar spherical harmonic coefficients	(complex) length of a field of velocity spherical harmonic coefficients		in (complex) blank common	space required to read a work file record	(complex) displacement in blank common of each grid point field to be processed in current scan	(complex) displacement in blank common of each field of s.h. coefficients to be processed	in current scan	number of group of fields currently being processed
Name	YTN	NLENG	NLENHS	NLENHV	NHAST		NRSP	NDISGR (100)	NDISSH (100)		NPASS
Туре	· H	н	Н	н	н	-	Н	Н С	н		H
Word	10	11	12	13	14		15	16-115	116- 215		216

	in t			-		ELO	•
New value	data dependent		1	NFSH=NFSH+NSCAL+NVEL	data dependent	NFOSH=NFOSH+NSCAL+NVELO	NF2D=NF2D+N2D1
Where redefined	HACNTL		1	HACNTL	HACNTL	HACNTL	HACNTL
Initial value	data dependent		data dependent	€	space dependent	G	
Where defined	HACNTL one ed		DISINI	t HACNTL	SPANAL	HACNTL	HACNTL
Meaning	control parameter for handling Euuninterpolated fields (0=no uninterpolated fields; 1=uninterpolated fields to be done at a later stage, 2=uninterpolated fields currently being processed)	no longer used	start address in blank common of uninterpolated fields	element of MHAIN containing first HACNTL input field of current group	number of uninterpolated fields being processed in current scan	element of MHAOUT containing first output field of current group	first uninterpolated field to be processed in current scan
Name	N2DST	NR2D	NDIS2D	NFSH	N2D1	NFOSH	NF 2D
${ m TYpe}$	н	н	н	н	н	н	н
Word	217	218	219	220	221	222	223

COMHDO - preliminary array for data records on output files 10.7

New value	MPRELO+NLON*NOREC or MPRELO+ (NTOUT+1) * (NTOUT+2) -1 MPRELO+ (NTOUT+1) * (NTOUT+4) -1 MPRELO+NLONO*NOREC MPRELO+NDIAWK*NOREC	I	data dependent	NLON or NTOUT+1 or NTOUT+2 or NLONO or NDIAWK	NOREC or NTOUT+1 or NLATO or NOREC	1, 3, 5, 2 or 4	field dependent	level dependent	· · · · · · · · · · · · · · · · · · ·
Where redefined	OUT2D, OUTSHC, OUTSHG OF	I	OUTSD, OUTSEC, OUTSEG	OUT2D, OUTSHC, OUTSHG OUTDIA	OUT2D, OUTSHC, OUTSHG	OUT2D, OUTSHC, OUTSHG	OUT2D, OUTSHC,	OUTSHG OUTDIA OUTSD, OUTSHC,	OUTDIA
Initial value	MPRELO+NLON+NOREC	16	MSIZDO	NLON	NOREC	2	Ċ	. 0	
Where	PRESTP	=	=	=	E	l fields, " lated 3=spher- 4=diagnostics,	coefficients packed in this record "	= 121.1	•
Meaning	MSIZDO total (unpacked) data record length	length of preliminary array	length of next data record	maximum subscript of first dimension	maximum subscript of second dimension	data type (1=uninterpolated fields, " 2=grid point fields interpolated using spherical harmonics, 3=spherical harmonic coefficients, 4=diagnostics	5=spherical harmonic coefficien 3 values/word)	f field output in this	
Name	MSIZDO	MPRELO	MNXDO	MX1DO	MX2DO	мтуро	CCTM	MLEVO	
Type	н	H	н	н	Н	н	F	4 ' H''	
Word	1	2	m	4	ហ			ω	

New value	data dependent	data dependent, or O	
Where redefined	OUT2D, OUTSHC, OUTSHG OUTDIA	OUT2D, OUTSHC, OUTSHG OUTDIA	OUT2D, OUTSHG OUTDIA
Initial value	0	0	
Where defined	PRESTP		= .
Meaning	minimum value of field, stored by method described in Section 9.1	MINO scaling factor for packing routines MSHOO1 real (m=o,n=o) spherical MSHOO2 harmonic coefficient, MSHOO3 stored by method described in Section 9.1 [undefined for grid point fields]	record number
Name	MZM1 MZM2 MZM3	MINO MSHOO1 MSHOO2 MSHOO3	MRECDO
Type	ннн	н ннн	H
ord	9 10 11	12 113 15	16

10.8 COMDIA - diagnostics constants

									gale (13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		septie			
New value			75 (14 164) 164) 164) 164	data dependent	ESS Market Halles Halle	data dependent	1.00 12.00 11.00 11.00 11.00 11.00 11.00	Harris Sala Sala Sala Sala Sala Sala Sala Sal	data dependent - Holiston - Holiston - Holiston - Holiston - Holiston - Holiston - Hol		ABTIN ABTIN A	 1 188 3 1 188 4 1 18 5 2 18 5 2 18 6 2 18 7 2 1	NFDIA=NFDIA+NDISCN	data dependent	1
Where redefined		i	1	OUTDIA	I	HACNTL	ſ	I .	HACNTL	1	REORDR	1	HACNTL	HACNTL	I
Initial value	415	415	- (NLEV*MAXROW+ MPREIO)	48	48	<i>'</i>	D.	е	Ø	23	Ø	64		space dendent	data dependent
Where defined	PRESTP	=		• (= \$3.00.8		E	=	s sed	REORDR	PRESTP	1 (1 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4	HACNTL	SPANAL	DISINI
Meaning	Length of data descriptor record	Length of preliminary array	Length of first data record	number of non-zero diagnostics fields written to output file	number of input diagnostics fields	6 codes for each group of diagnostics fields	number of land points in J ^{un} latitude row	record number	control parameter for handling diagnostic fields (\$\parphi\$=no diagnostic fields 1=diagnostic fields to be done later 2=diagnostic fields to be processed on this scan)	diagnostic code	<pre>length of diagnostic data in work file = NDIAWK*NLP2</pre>	unit number for output diagnostic file	first diagnostic field to be processed in current scan	number of diagnostic fields being processed in current scan	start address in block common of diagnostic fields
Name	MSZDIA	MPRDIA	MNXDIA	NDIFDS	NDIMAX	MDIACD (6,48)	MLAND (121)	MRCDIA	NDIAST	MCDIN	NDIAWK	NDIOUT	NFDIA	NDISCN	NDISDI
Type	Н	Н	н	н	н	н	H	Н	н		н	H	н	Н	Н
Word	1	2	m	4	ហ	6-293	294-414	415	416	417	418	419	420	421	422

11. Sample programs

Three sample programs are given. Fig. 11.1 is an example of the forecast-called version of the first part of the output package. Fig. 11.2 shows the stand-alone version of the first part of the package taking as input an analysis file. Fig. 11.3 is an example of the second part of the post-processing package.

References

Machenhauer, B. and Daley, R.

1972

"A baroclinic primitive equation model with a spectral representation in 3-dimensions"

Haseler, J. and Burridge, D.

1977

"Documentation for the ECMWF grid point mode" ECMWF Internal Report No.9

POSTIN - namelist input to post-processing

Name	Meaning	Default
ILPOST	.TRUE. for post processing	.FALSE.
NLATO	number of latitude rows in output grid (if NLATO=0, no output grid point fields will be produced)	NOREC
NLONO	number of longitude points in output grid	NLON
GNLAT	latitude (degrees) of northern boundary of output grid	ANORTH
GWLON	longitude (degrees) of western boundary of output grid	WEST
GSLAT	latitude of southern boundary of output grid	SOUTH
GELON	longitude of eastern boundary of output grid	EAST
NTIN	triangular truncation of grid point to spherical harmonic transformation	Ø. 1819
NTOUT	truncation of spherical harmonics coefficient to be output	Ø
NVINT	vertical interpolation type (1=linear, 3=spline. If NVINT= \emptyset , fields are not interpolated vertically but are left on σ -levels)	3
NPWTIM(200)	Post-processing step numbers $(\mathtt{J}^{ ext{th}}$ post-processing is at step $\mathtt{NPWTIM}(\mathtt{J})$	200*-2
NSPACE	work space available for second part of post-processing package (in words)	700 000
NSTADD	start address in blank common of work space for second part of output package	
NMF ⁱ D	number of fields at multiple levels	Ø
NFDML(10)	codes for multi-level fields	10*0
NMLV	number of levels for multi-level fields	0
NIVML(30)	levels for multi-level fields (units=pascals/10), or model \u00f3-level numbers if NVINT=0	30*0
NSFD	number of single level fields	0
NFDSL(30)	codes for single level fields	30*0
NLVSL(30)	levels for single level fields (units=pascals/10), or model σ -level numbers if NVINT=0	30*0
N2D	number of uninterpolated fields	0
NGPCL(2,20)	J th uninterpolated field has code NGPCL(1,J) and level NGPCL(2,J), with the level in units=pascals/10 or -100 for surface fields, or -200 for fields at mean sea level.	40*0
NLCALC	<pre>If NLCALC = .TRUE., calculate spherical harmonic constant files.</pre>	.FALSE.

	જ																										1.42,7.2
	nic			only	only																						
	ĽГШО	_																									
	ha.	only		ysi	.ysi		41										ditu.										:10/
	ica]	ı		analysis	analysis		sure								i i i i						W.J.						
	oe spherical harmonics) ield)	ntia					pressure										Mitte.		40.7								
		ote	ທ	cit	cit	Ø	는 전	ure	ທ		Ø	ហ	ធ	B	5	ر ت	ゴ	a	,	Þ	ਾ _ ਸ	,		Ħ	Þ		3.17% - - 1
	ty by	geopotential		relo	velocity,		level	pressure											7.4				40				- 17%
	sing cted clat			ė,			rt									ista Listo						ave in Ogsum					
	ost-processing ty s=field fitted by u=uninterpolated	s,[u-surface		u-surface velocity,	u-surface		mean se	surface														. f. (-	ngi Gal				SKORTS -
	Post-processing (s=field fitted u=uninterpolate	s,[u-		s, u-	s, u-		1	n - n					i į	21. V. 16. H			511 881 52				land. Sett	.4	1715 1913 1914				20 A = 91
ssing													·	ia dia Lin		20					. In.,					(g. 8)	i Darke
post-processing	-file	only]															a Geri		20 ° 80 C							£1.1.	
ost-	is d- file)	ial												hieri Newy						o <mark>s</mark> i dal							STEELE .
		ent												44.0								ina in Mara					, -
for	type or analysis pressure fi	geopotential																									က
available	type or a		 Z:	₫:	 ⊄:		⊿!				₫:	⊲:	₫:					a' -			٠.						ප් (
ail	I	ace	F, A	F,A	F,A	ĮŦį	F,A		[1 4		F, A	F,A	F, A	[E4	ĬΉ	[z.	F	ĮΣĄ	<u> </u>	Ē	ĪΞι	Ŀ	ĒΉ	阵	<u>г</u> н ,		H H
	field ecast	A-surface																				ter.	X s				
Fields	Input field (F=forecast A=analysis	A-8																							100		
띮	Inj (F.	F,ĺ											es de la companya de La companya de la companya de														
																					els.						
	-																	143									9.29
											ant								Con	Lux	. 54						
						0					ont							77 3	pat	ii L	£1m		ជ				
						ati					ў.		re						ssi	hea	at		tio	top			
						ıg r			ity		vate		att			in	n		i di	ole.	; he	70	dia	å			
	יס	al	a)			ixir			eloc		le v		mpe.	SS		E,	raj		aye.	nsik	tent	ress	T K	ion	ທ		
	Field	nti	tur	ity	ity	ill Z	ø		Ä		tab	ţζ	te	tne	pth	cal(ive	11	V L	S (9)	la.	S C	ne.	iat	tic		
	174	oote	era	loc	loc	dit	sur		ica	1	ipi	ici	ace	we.	de /	e S	rect	ı fa	ıdar	ace	ace	ace	ace	rad	nos	ı	
		geopotential	temperature	u-velocity	v-velocity	humidity mixing ratio	pressure		vertical velocity		precipitable water content	vorticity	surface temperature	soil wetness	snow depth	large scale rain	convective rain	snow fall	boundary layer dissipation	surface sensible heat flux	surface latent heat flux	surface stress	surface net radiation	net radiation at top	diagnostics		
		•	•	-		_	,,		_		_	•	<i>3,</i>		~.	•	-		_				0,	-	•		
	Code	T	7	m	4	5	9		7	ω	O	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	

Post-processing type	(s=field fitted by	file) u=uninterpolated field)	· · · · · · · · · · · · · · · · · · ·	v	, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	v	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	n's	W	S.	vs ,	co.		F	p	n e e e e e e e e e e e e e e e e e e e	(1)	
Input field type	or analys	A=analysis pressure	oity for the A factor of the	F,A	F, A	A	F, A	国 (基础)	A	A.	A	K	rors	F				
	Field - William State of Free Company		u-velocity gridpoint field, vorti	v-velocity gridpoint field, divergence spectral field	divergence	height	relative humidity	surface pressure tendency	n-errors	V-errors	geopotential errors	thickness errors	precipitable water content error	cloud cover	u at 10 metres	v at 10 metres	2 metres	
	ode		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	

NAJANS TSOOS STERAS CMSOOS	Post-processing launched from forecast
1851GN, DN#FT10, DV#DD-19-20, BS#22. ASSIGN, DN#FT11, DV#DD-19-32, BS#22. ASSIGN, DN#FT12, DV#DD-19-40, BS#22.	forecast work file s
ASSIGN, DN=FT24, DV=DD=19-41. ASSIGN, DN=FT25, DV=DD=19-41. ASSIGN, DN=FT27, DV=DD=19-21. ACQUIRE, DN=FT30, PDN=N48SDS, ID=NAJ, DF=TR, UQ.	Start data set
CFI. ACCESS.DN=FT20.PDN=AINI800922000.ID=DI000. ACQUIRE.DN=N48.PDN=N48CRAYDBJ.ID=EWP3.DF=TR. ACOHIDE.DN=TITB.DDN=N48CAIDBJ.ID=EWP3.DF=TP.ME=CV.	forecast initial data
LORALIB HA48: ECLIB: ANGLIB: SBLOF T=PPMAP. SAVE, DN=FT60, PDN=P60, ID=NAJ. SAVE, DN=FT62, PDN=P61, ID=NAJ. SAVE, DN=FT63, PDN=P63, ID=NAJ.	post-processing work files
COMMON B(30000) CALL MASTER STOP	
GEAL) END OPERATIONAL GRID POINT MODEL J6 DYNAMICS — SEMI IMPLICIT E.C.M.W.F. PHYSICS E.C.M.W.F. PATTON	label cards for forecast run
	take default forecast variables
N LPGST=.T.,NTIN MFD=4,NFDML=1, SFD=1,NFDSL=6,	input data for post-processing
eens	100° (

CCT COMES CCTC	stand-alone post processing on analysis pressure-level
ACCOUNTS ECREGG.	file
ACCESS, DN=FT20, PUN=APPF800922000, ID=DA000. ACQUIRE, DN=N48, PDN=N48CRAYUBJ, ID=EWP3, DF=TR. ACQUIRE, DN=CAL, PDN=N48CALUBJ, ID=EWP3, DF=TR.	input analysis file
LDR, LIB=N481ECLIB:NAGLIB;DN=SBLD:CAL. SAVE, DN=FT60, PDN=P60, ID=NAJ. SAVE, DN=FT61, PDN=P61, ID=NAJ. SAVE, DN=FT62, PDN=P62, ID=NAJ. SAVE, DN=FT63, PDN=P63, ID=NAJ.	post processing work files
CEOR) PROGRAM GPMODEL COMMON B(700000) CALL DUTPAC(20,60,5,6) STOP	
CECE) END FILE 1 FOR THE SPOSTIN FOR THE SPOSSIN FOR THE SPOSTIN FOR THE SPOSTIN FOR THE SPOSTIN FOR THE SPOSSIN FOR THE SPOSTIN FOR THE SPOSTIN FOR THE SPOSTIN FOR THE SPOSSIN FOR THE SPOSTIN FOR THE SPOSTIN FOR THE SPOSSIN FOR THE SPOSS	F for pressure file (T for sigma file)
ILPDST==T.pNTIN=80pNTDUT=80p NMFD=3pNFDML(1)=3p4p28p NMLV=2pNLVML=5000p10000p N2D=3pNGPCL=6p-100p6p-200p11p-100p	input data for post-processing
SEND AND THE PROPERTY OF THE P	A CONTRACTOR OF THE STATE OF TH
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	

//// END OF LIST ////

NAJPTD5 NAJPTD5

second part of post-processing	constants files	post-processing work files	output grid point field output spherical harmonic coefficients output uninterpolated fields output diagnostics fields		unit number of first post processing work file
NAJAN, CM500,STCRA, T20. ACCOUNT, ECRMGG.	DN=FT15,PDN=RZZ80N60,ID=NAJ,DF=TR, VSN(T=1996F)LABEL(T;R,NORING,D=GE,LeRZZ80N60): DN=FT16,PDN=RLEG80N48,ID=NAJ,DF=TR, VSN(T=96R)LABEL(T,R,NORING,D=GE,L=RLEG80N48): DN=GUT,PDN=N48CRAYOBJ,ID=EWP3,DF=TR,	Naffels PonePeos IDenals Naffels PonePeos IDenals Naffels PonePeos IDenals Naffels PonePeos IDenals	DISPOSE, DN=FT17, SDN=SBLD=CAL. DISPOSE, DN=FT17, SDN=GRID, ID=NAJ, DC=ST, DF=BB. DISPOSE, DN=FT18, SDN=SHCDEFFS, ID=NAJ, DC=ST, DF=BB. DISPOSE, DN=FT19, SDN=UNINTERP, ID=NAJ, DC=ST, DF=BB. DISPOSE, DN=FT64, SDN=DIAG, ID=NAJ, DC=ST, DF=BB. (e.c.) PROGRAH GPMODEL	MHDN X(5),B(700000) LL HACNTL DP	NPOUT