

ECMWF Research: a member state perspective

Sarah Jones, DWD

with contributions from all around Germany

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

... of ECMWF leading medium-range weather forecasting

Atmospheric physics Ocean reanalysis Assimilation Methods Atmospheric dynamics Atmospheric composition Data Assimilation ERA 20C Forecast evaluation Land ERA Interim Coupled Earth system reanalysis Modelling and Prediction Marine Climate Reanalysis Observations Quantifying forecast uncertainty

....and ECMWF atmospheric research at the cutting edge

Data Assimilation

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ECMWF leading the use of satellite data for NWP

 and pioneering soil moisture assimilation

Exchange and collaboration crucial for German Universities and DWD

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft DWD

Doppler wind lidar (DWL) assimilation in ECMWF & NOGAPS

- DWL observations showed significant impact in two modelling systems
- Representative observations
- \rightarrow comparably high impact

(Weissmann, Langland, Pauley, Rahm and Cardinali, 2012, QJRMS)

Hans-Ertel-Zentrum für Wetterforschung Deutscher Wetterdienst

Water vapour lidar (DIAL) assimilation at ECMWF

- Observations from 8 flights assimilated in ECMWF system
- Verification with independent dropsondes shows analysis improvement
- Weak forecast impact in most cases, but improvement in two events with modified downstream development

Data Assimilation

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Forecast sensitivity to observations developed at **FCMWF** (Cardinali 2009) inspired research in Hans Ertel Centre using ensembles to evaluate sensitivity

Keywords:

data assimilation; forecast sensitivity to observations; FSO

QUARTERLY JOURNAL

The aim of the present study is the accuracy and sensitivity assessment of a recently developed approximation method for observation impact, i.e. the contribution of observations to forecast-error reduction. The considered method uses an analysis and forecast ensemble for the approximation and does not require the adjoint model. The method is implemented for the first time in a convective-scale limited-area modelling system and its accuracy is assessed through comparison with results from a number of data denial experiments. It has been found that the difference from data denial is not significant and it is possible to assess the impact of subgroups of observations and detect disadvantageous or improperly used observations.

Theory and Numerical Methods

- Investigate variants of reduced dynamical models for atmospheric motions, such as fully compressible, anelastic and their mathematical properties
- test novel numerical integrators that properly incorporate the limiting behaviors reflected in these reduced equations

Rupert Klein, Freie Universität Berlin, ECMWF Fellow

2

Time [10's]

0

1

Physical Processes

ICON

Process	Authors	Scheme	Origin
Radiation	Mlawer et al. (1997) Barker et al. (2002)	RRTM (later with McICA McSI)	ECHAM6/IFS
	Ritter and Geleyn (1992)	δ two-stream	GME/COSMO
Non-orographic gravity wave drag	Scinocca (2003) Orr, Bechtold et al. (2010)	wave dissipation at critical level	IFS
Sub-grid scale orographic drag	Lott and Miller (1997)	blocking, GWD	IFS
	Doms and Schättler (2004)	sub-grid diagnostic	GME/COSMO
Cloud cover	Köhler et al. (new development)	diagnostic (later prognostic) PDF	ICON
Microphysics	Doms and Schättler (2004) Seifert (2010)	prognostic: water vapor, cloud water,cloud ice, rain and snow	GME/COSMO
Convection	Tiedtke (1989) Bechthold et al. (2008)	mass-flux shallow and deep	IFS
Turbulent transfer	Raschendorfer (2001)	prognostic TKE	COSMO
	Louis (1979)	1 st order closure	GME
	Neggers, Köhler, Beljaars (2010)	EDMF-DUALM	IFS
Land	Heise and Schrodin (2002), Machulskaya, Helmert, Mironov (2008, lake)	tiled TERRA + FLAKE + multi-layer snow	GME/COSMO
256 2.W. MOM			FOUND

Physical Parametrisations for ICON / COSMO

Physical Processes

ICON surface winds too strong over ocean

Introduced new Charnock coefficient using empirical formula to imitate wave model WAM in IFS

(Jean Bidlot and Peter Janssen, ECMWF)

Improvements in:

- ocean winds,
- Z, RH and T in atmosphere,
- wave height in off-line wave modell.

Lake Model FLake (Mironov 2008 ; Mironov et al. 2010) improves 2m T in regions with many lakes

Collaboration DWD – ECMWF

Operational DWD since 2010, 2012, 2015; now operational in IFS

Ensemble Forecasting

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Palmer (2006)

e.g. Palmer *et al.* (1993), Molteni *et al.* (1996), Vitart (2004), Buizza et al. (2007), Leutbecher and Palmer (2008), Vitart *et al.* (2008),

Singular Vectors for Extratropical Transition

Moist (TL255) 17.09.2006 12 UTC Dry (TL255)

(Lang, Jones, Leutbecher, Peng, Reynolds, 2011; Lang, Leutbecher, Jones, 2012)

TIGGE: a dedicated research dataset

Hurricane lke, IT:10.09.08, 12 UTC % of members contributing to cluster 100 90 80 70 60 50 40 30 20 10 0 Australia China Canada ECMWF UK NCEP Japan Brazil Cluster 2 Cluster 3 Cluster 4 Cluster 1 📕 Cluster 5 📃 Cluster 6 🔲 No Cluster

Properties of TIGGE Multimodel EPS during extratropical transition (ET)

Keller et al. (2011)

Statistical Postprocessing

Tilman Gneiting, Uni Heidelberg, ECMWF Fellow

"the development of the ECMWF ensemble system has motivated and shaped much of my group's research on statistical post-processing "

e.g. Hemri, Scheuerer, Pappenberger, Bogner, and Haiden (2014)

Green dots: difference in skill between the raw ensemble and the postprocessed forecasts has remained about the same since 2002

Reanalysis

Dee et al. 2011 (QJ) Heini Wernli (Uni Mainz, ETH Zürich) The ERA-Interim data set is a gold mine for case studies, climatologies →Allowed production of feature-based climatologies of cyclones, warm

conveyor belts, stratosphere-troposphere exchange, temperature

Example: climatology of warm conveyor belt starting points in DJF

Regional Reanalysis

Hans Ertel Centre Climate Monitoring Branch: Uni Bonn, Uni Cologne, DWD

Standard Köppen-Geiger map of Europe after Kottek et al. (2006) (left) and as obtained from the European reanalysis COSMO-REA6 for the period 2007–2012, indicating a finer and slightly different distribution of the standard climate zones based on the regional reanalysis.

Lateral boundaries for COSMO-REA6 fro ERA Interim

Learning from Forecast Evaluation

Heini Wernli (Uni Mainz, ETH Zürich)

Rodwell et al. (2013): The mean Z500 verifying analysis anomaly averaged over 584 European bust events → Motivates process-based studies on flow situations leading to large forecast errors

Model validation

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Met. Obs. Lindenberg: Energy Fluxes Over Different Surfaces

Met. Obs. Hohenpeißenberg: Atmospheric Composition (GAW)

Data Targeting System

Data Targeting System

Super Typhoon Jangmi: Targeting Time 28 Sept. 2008 00 UTC, Verification time 30 Sept. 00 UTC

ECMWF Forecasts and Analyses in Field Campaigns

Comparison of observed and forecast water vapor observed over the UK using Differential Absorption Lidar WALES auf HALO during the ML-CIRRUS campaign in 2014.

- good representation of oberved water vapor structures
- Structures differ near the tropopause

Met3D – visualisation for flight planning

Courtesy of Marc Rautenhaus, TU Munich; Collaboration with DLR, ETH Zürich, ECMWF

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ECMWF Scientific Expertise

... and other advisory boards & review panels

ECMWF Training courses

- - -

- -

CECMWF	About Forecasts Computing Research Learning Sarah Jones Search site Go		
	Training		
Training Training course: Numerical	ECMWF has an extensive education and training programme to assist Member States and Co-operating States in the training of scientists in numerical weather forecasting, and in making use of the ECMWF forecast products and computer facilities.		
Training course=Use-and Interpretation of ECMWF products 2015	ECMWF training courses are freely available to Member and Co-operating States. The numerical weather prediction training courses are open to everyone, participants from international organisations and non-member states are required to pay a course fee and priority is		
Training course: Use of Computing Facilities 2015	given to member and co-operating state applications. 		
Workshops and seminars	The courses are typically several days in length, though delegates can choose to study the various		
Education material	modules over several years.		
	2015		
	anuary 26-30 Training Course: Use and interpretation of ECMWF Products		
	February 2-6 Training Course: Use and interpretation of ECMWF Products		
	February Computer User Training Course: Introduction to ecFlow 11-13		
	February Computer User Training Course: GRIB API: Library and tools 24-27		

March 2-6 Computer User Training Course: Introduction for new users/MARS

About Forecasts Computing Research Learni

Important Training for new staff of operational centers and Universities

- DWD regularly sends staff there
- Good opportunity for exchange and networking

Training

Workshops and seminars 2014 annual seminar

2014 informal seminars 2014 workshops

Copernicus Climate Projections Workshop Visualisation in Meteorology week 2015 Workshop on sub-seasonal predictability

loation material

Seminar 2014: Use of Satellite Observations in Numerical Weather Prediction

The 2014 Seminar was held from September 8 September 12 (finishing lunch time).

Topics covered included a discussion of the value of current and forthcoming satellite observations, with particular foci both on new types of observation and on which variables are under-observed at present. The status of assimilation of cloud-affected observations and observations over land and sea ice will be represented and progress towards a fuller exploitation of the potential of the hyperspectral sounders is addressed.

User Support is excellent

	About Forecasts Computing Research Learning Sarah Jones Search site Go	0
ECMWF	About Forecasts Computing Research Learning Sarah Jones Search site G	
	Fault reporting/operational matters/all other inquiries	
	To report connectivity problems or a suspected fault, to make an operational query, or for any other inquiry, contact our Call Desk which is available 24/7.	
	+44 118 9499 303 calldesk@ecmwf.int	

ECMWF Research:

Here's to another 40 years!!!!!!!

