ERA5-Land: dedicated land surface reanalysis

Joaquín Muñoz Sabater
with contributions of many colleagues
Climate Change

Dedicated land reanalysis - added value

Why do we need land-only reanalysis?

> Climate reanalysis does not occur very often.
> Need to bring rapid land model developments to long, consistent time series in a cost-effective way
. Provide consistent land initial conditions to weather and climate models.

- Support hydrological studies addressing global water resources
> Climate reanalysis often produce inconsistencies on land fields
> Provide dedicated datasets to support and encourage land applications

ERA5-Land in a simple diagram

Lapse-rate adjustment

. Correct for differences in orography due to different model resolutions.

T2m RMSE(corrected)- RMSE(no corrected) (K)

E. Dutra, J. Muñoz-Sabater, S. Boussetta, T. Komori, S. Hirahara and G. Balsamo, 2020: "Land surface downscaling of ERA5 and the role of the lapse rate correction: An application to ERA5." Earth and Space Science, https://doi.org/10.1029/2019EA000984

Change		ERA-Int	Era-Int/Land	ERA5	ERA5-Land
	Period covered	Jan 1979 - Jul 2019	$\begin{gathered} \text { Jan } 1979-\text { Dec } \\ 2010 \end{gathered}$	Jan 1950 - NRT	Jan 1950 - NRT
	Spatial resolution	~79km / 60 levels	79 km	~32 km / 137 levels	~9 km
	Model version	IFS (+TESSEL)	HTESSEL cy36r4	IFS (+HTESSEL)	HTESSEL cy45r1
	LDAS	cy31r1	NO	cy41r2	NO
	Uncertainty estimate	-	-	Based on a 10member 4D-Var ensemble at 62 km	Based a 10-member atmospheric forcing at 31 km (?)
	Output frequency	6-hourly Analysis fields	6-hourly Analysis fields	Hourly (three-hourly for the ensemble)	Hourly (three-hourly for the ensemble)
		Copernicus \quad Eurpear			

ERA-Int/Land vs ERA5-Land inventory of fields

Soil Temperature (4 layers)
Skin Temperature
Volumetric soil moisture (4 layers)
Snow density
Snow Water Equivalent
Snow Fall
Snow Albedo
Snow Melt
Temperature snow layer
Forecast Albedo
Surface and sub-surface runoff
Surface Latent Heat flux
Surface Sensible Heat flux
Surface net solar radiation
Surface net thermal radiation
Total Precipitation
Evaporation

2 m temperature \& dew point Accumulated CO2 (Reco, GPP, NEE) Lakes (Bottom Temperature, Ice depth, ice Temperature, mix-layer depth, mix-layer temperature, shape factor, total layer temperature) LAI (low/high vegetation) Runoff
Skin reservoir content
U,V surface wind components Surface Pressure
Snow Depth
Snow cover fraction
Snow evaporation
Canopy evaporation
Soil evaporation
Vegetation transpiration
Surface solar radiation downwards
Surface Thermal radiation downw

Evaluation - River discharge

Modified Kling-Gupta Efficiency Skill Score (KGESS) for GloFAS-ERA5L river discharge reanalysis against the GloFAS-ERA5 benchmark across 1285 observation stations. Optimum value of KGESS is 1. Blue (red) dots show catchments with positive (negative) skill.

- Figure produced by S. Harrigan -

Data availability \& way forward

Climate Change

- Available in the CDS
- 1981 to present
- Hourly and monthly fields
- $0.1^{\circ} \times 0.1^{\circ}$

Coming up:

- ERA5-LandT by Q3/Q4-2020
- 1950-1980 by Q4-2020
- Paper in preparation

ERA5-Land hourly data from 1981 to present

Overview Download data Documentation
ERAS-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERAS climate reanalysis. Reanalysis combines data that goes several decades back in time, providing an accurate description of the climate of the past.
ERAS-Land uses as input to control the simulated land fields ERA5 atmospheric variables, such as air temperature and air humiditity. This is called the atmospheric forcing. Without the constraint of the atmospheric forcing, the model-based estimates can rapidly deviate from reality. Therefore, while observations are not directly used in the production of ERAS-Land, they have an indirect influence through the atmospheric forcing used to run the
simulation. In addition the input air temperature air humidity and pressure used to run ERA5--Land are corrected to account for the altitude simulation. In addition, the input air temperature, air humidity and pressure used to run ERAS-Land are corrected to account for the altitude difference between the grid of the forcing and the higher resolution grid of ERAS-Land. This correction is called "lapse rate correction"-

The ERAS-Land dataset as any other simulation, provides estimates which have some degree of uncertainty. Numerical models can only provide a more or less accurate representation of the real physical quality atmospheric forcing is lower. ERAS-land parameter fields can currently be used in combination with the uncertainty of the equivalent ERA5 fields.
The temporal and spatial resolutions of ERAS-Land makes this dataset very useful for all kind of land surface applications such as flood or drought forecasting. The temporal and spatial resolution of this dataset the period covered in time, as well as the fixed grid used for the data distribution at any period enables decisions makers, businesses and individuals to access and use more accurate information on land states.
More details about the products are given in the Documentation section.
DATA DESCRIPTION
Data type
Horizontal coverage

Horizontal resolution	Global
$0.1^{1} \times 0.1^{\circ}$; Native resolution is 9 km.	

Contact copernicus-support@ecmwf Licence Licence to use Copernicus prin

Publication date

European Commission

Thank you!

© @j_munoz_sabater

C3S: https://climate.copernicus.eu/
Climate Data Store: https://cds.climate.copernicus.eu/
ERA5-Land: https://www.ecmwf.int/en/era5-land

