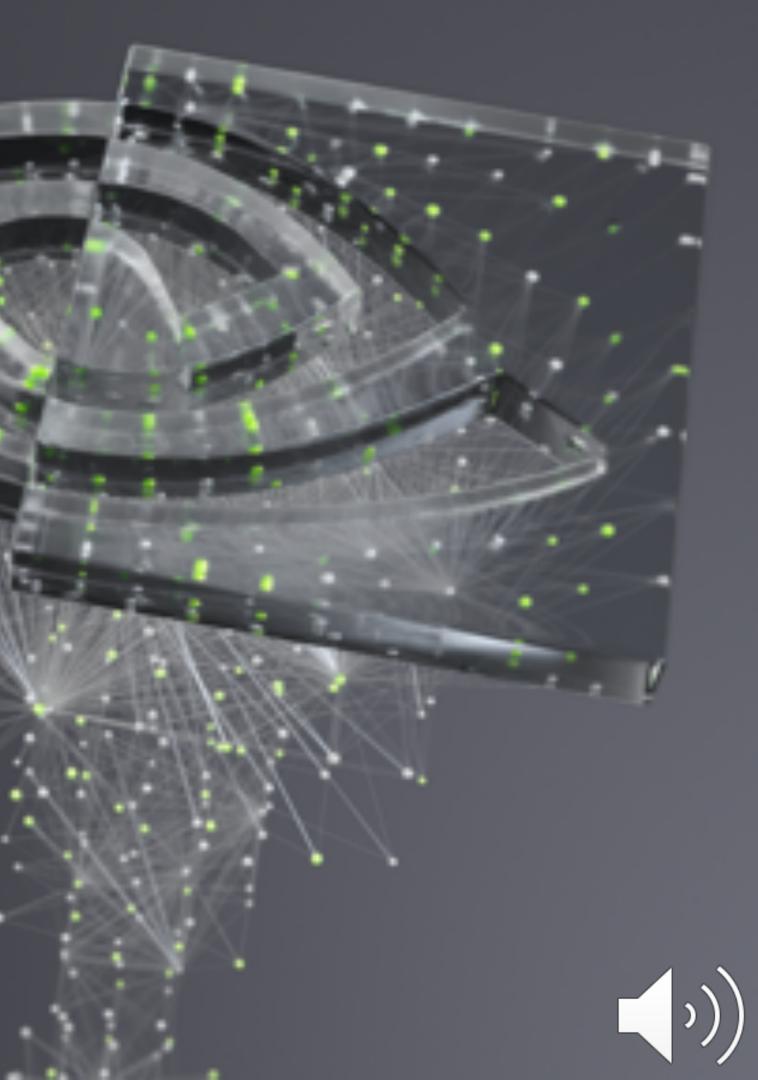


MACHINE LEARNING FOR WEATHER

David M. Hall Senior Solution Architect ECMWF-UEF May 2020



AGENDA

OVERVIEW

What is machine learning? And why is it useful?

TOOLS

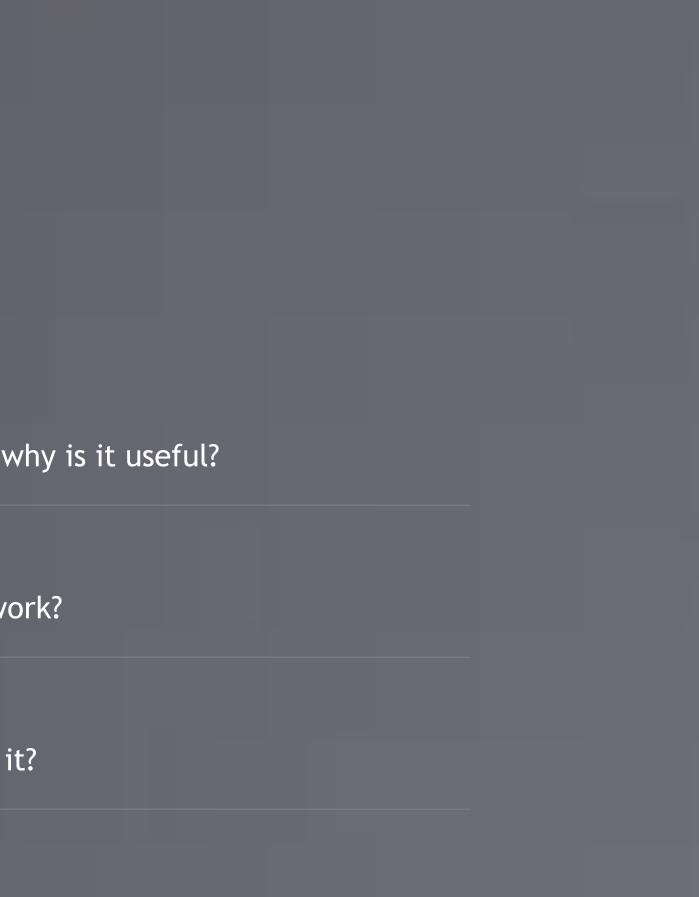
What do we need, to make it work?

APPLICATIONS

What precisely can we do with it?

CHALLENGES

What challenges remain, and how might they be addressed?

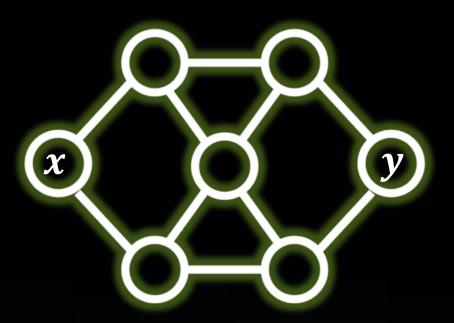


MACHINE LEARNING: A NEW SET OF TOOLS FOR SCIENCE

Machine learning provides a new approach for building software, by reverse-engineering functions from a set of examples. This approach complements traditional algorithm development, providing a means of devising algorithms too complex, subtle, or unintuitive to code by hand.

REVERSE-ENGINEERING FUNCTIONS FROM EXAMPLES

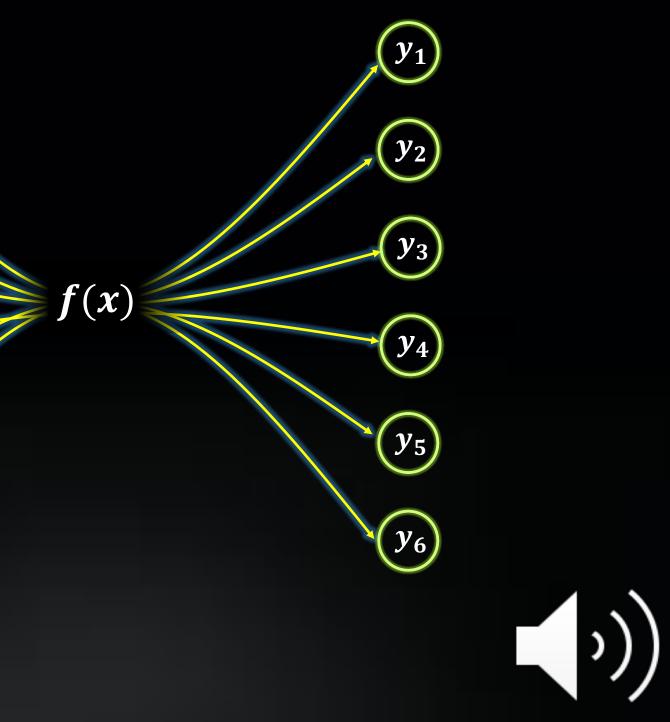
Find *f*, given *x* and *y*



MACHINE LEARNING

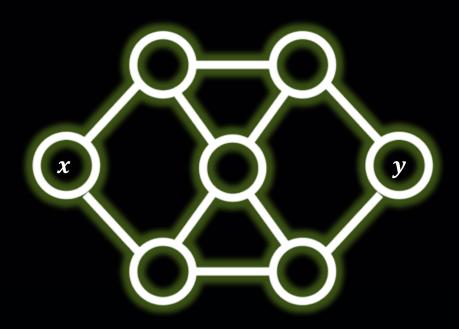
INPUTS x_1 x_3 *x*₄ x_5 x_6

OUTPUTS

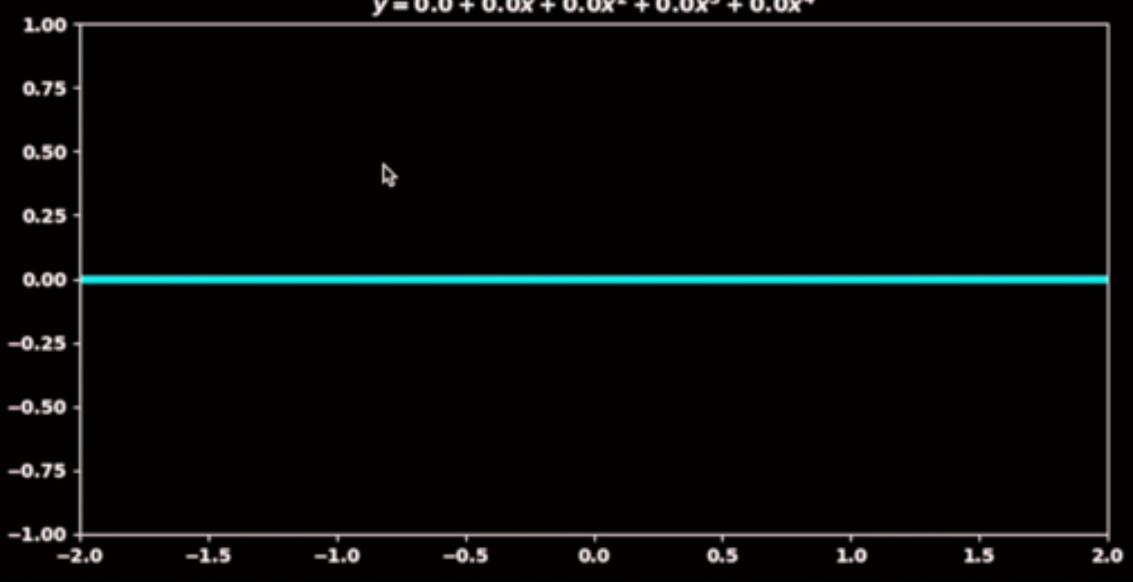


A GENERALIZATION OF CURVE FITTING

Find *f*, given *x* and *y*

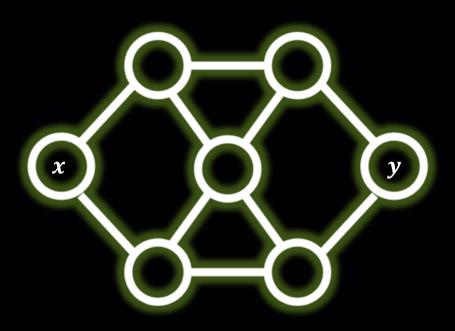


Machine Learning

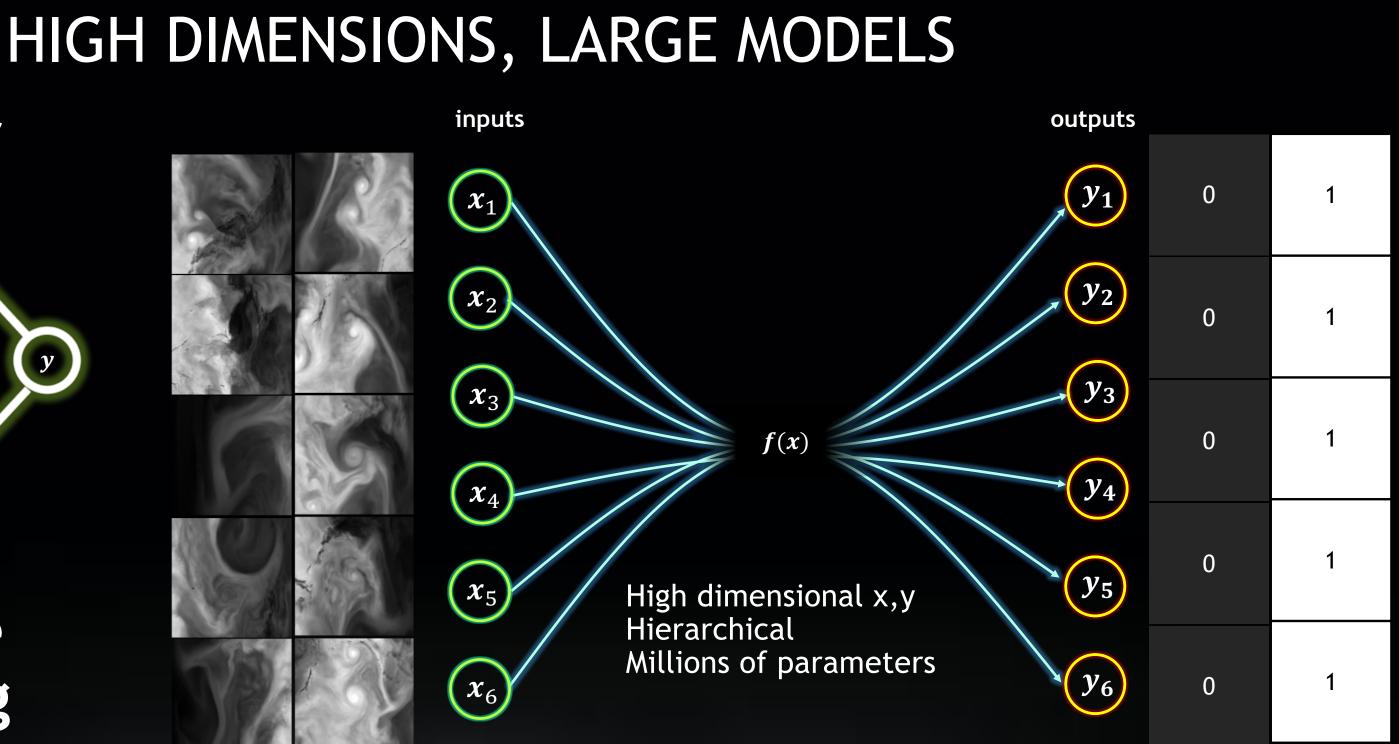


 $y = 0.0 + 0.0x + 0.0x^2 + 0.0x^3 + 0.0x^4$

Find f, given x and y



Machine Learning



MACHINE LEARNING IS THE NEXT STEP IN SOFTWARE ENGINEERING

HAND-WRITTEN FUNCTION

Function1(T,P,Q)

update_mass()

update_momentum()

update_energy()

do_macrophysics()

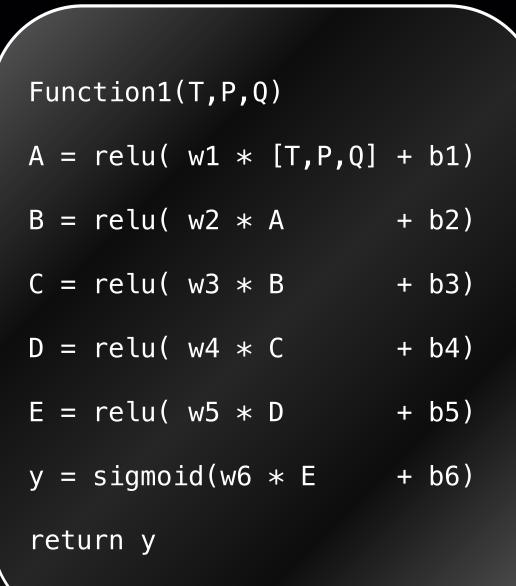
do_microphysics()

y = get_precipitation()

return y

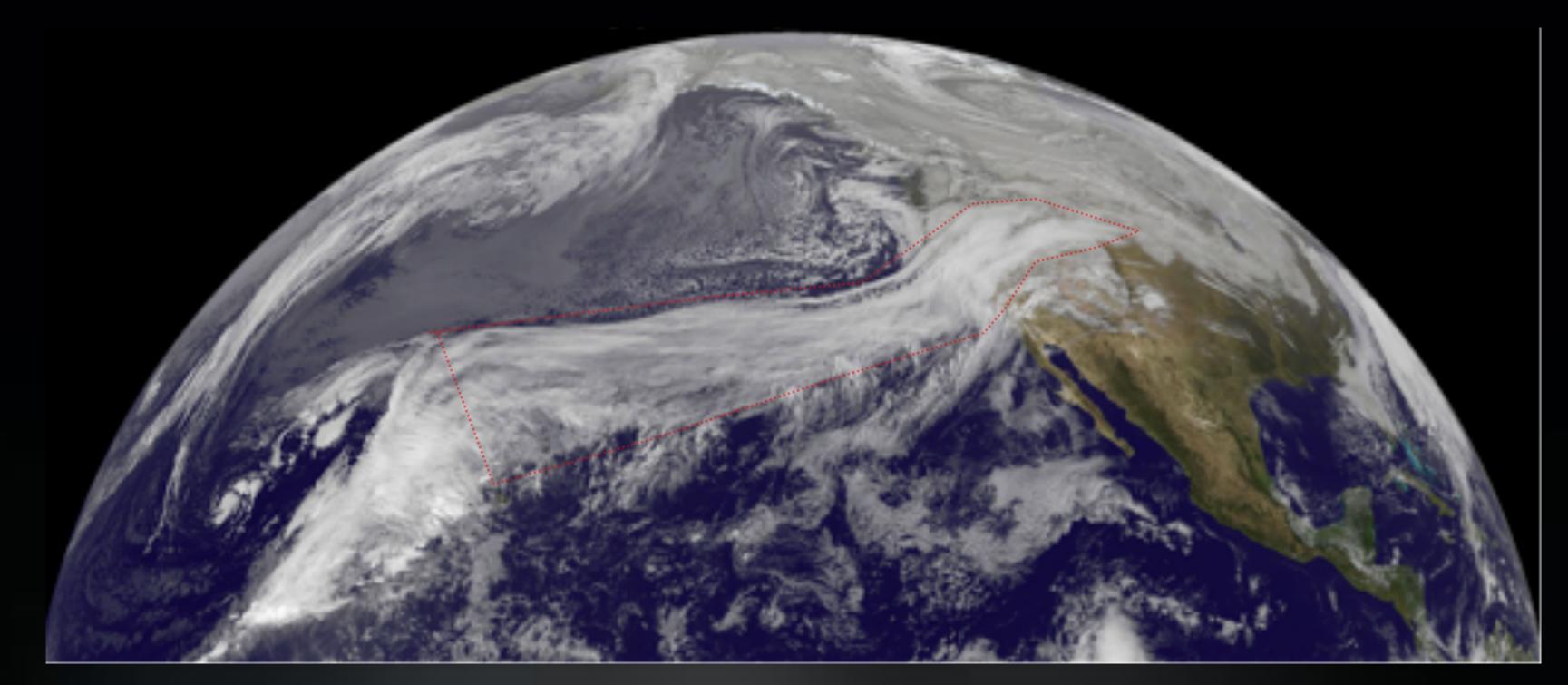
Convert expert knowledge into a function

LEARNED FUNCTION



Reverse-engineer a function from inputs / outputs

ML CAN DESCRIBE COMPLEX, REAL-WORLD PHENOMENA



EXAMPLE: ATMOSPHERIC RIVER

ML CAN IMPROVE EXISTING APPLICATIONS

Improve all stages of numerical weather prediction

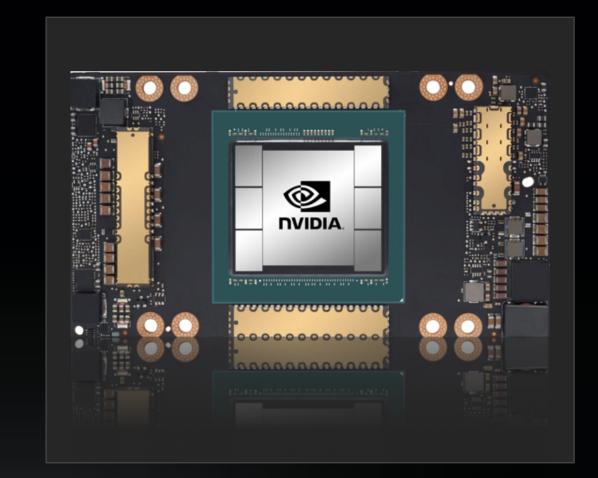
TOOLS

WHAT YOU NEED TO MAKE IT WORK

LARGE QUANTITIES OF DATA

ML FRAMEWORK

PYTORCH



GPU ACCELERATOR

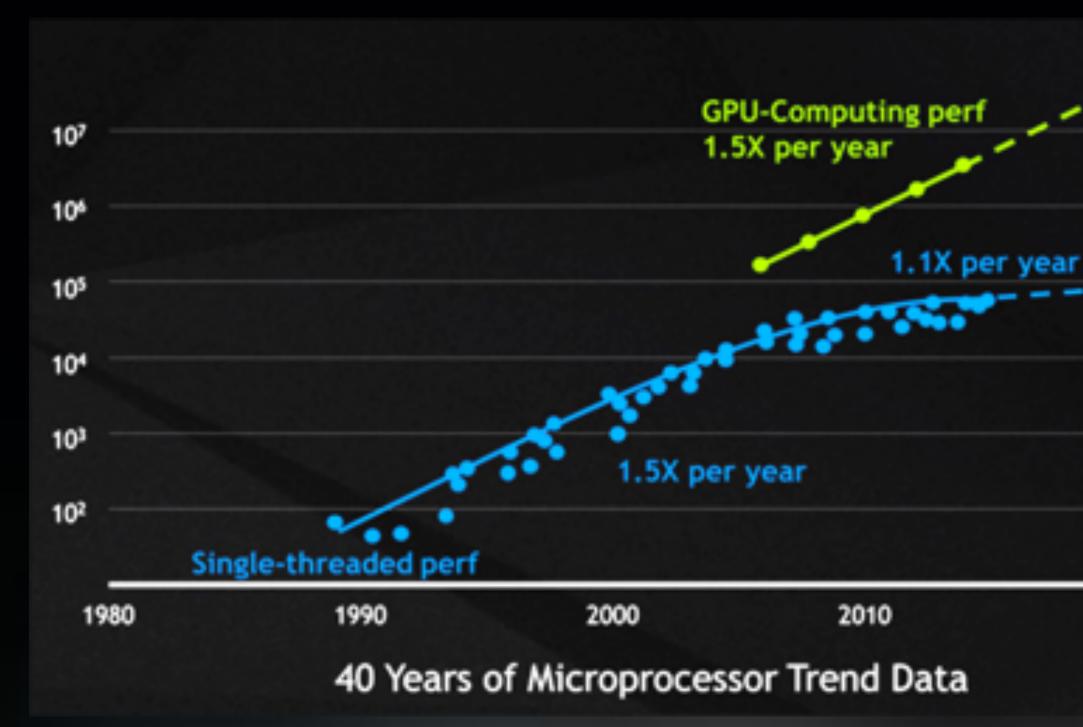
DEEP LEARNING FRAMEWORK

GPUs and Machine Learning

The Imagenet competition: Automatically classify images from 1000 different categories

13

GPUS MAKE MACHINE LEARNING PRACTICAL

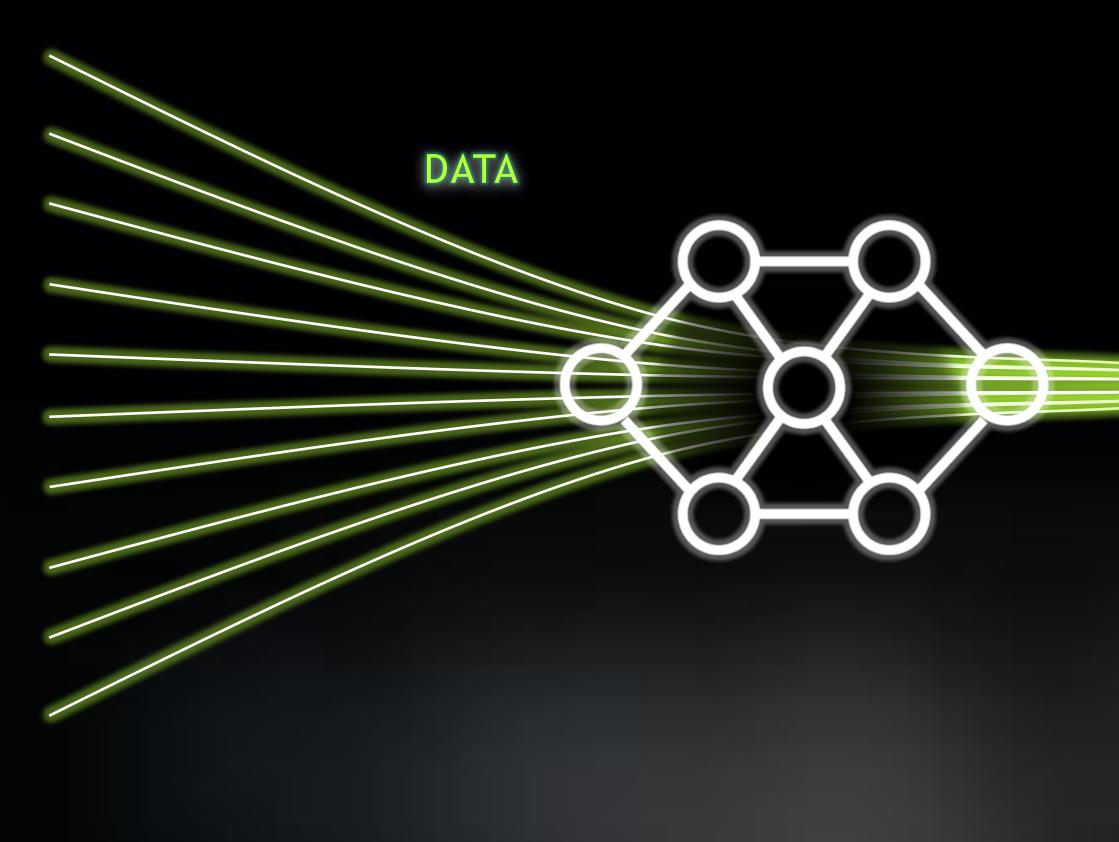


1000X by 2025

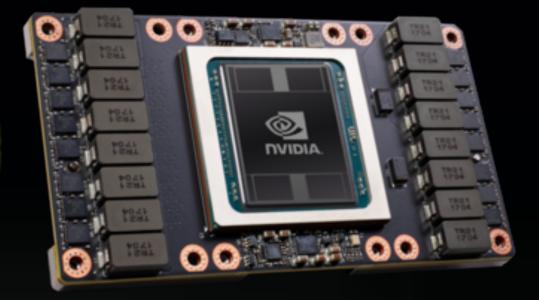
2020

14

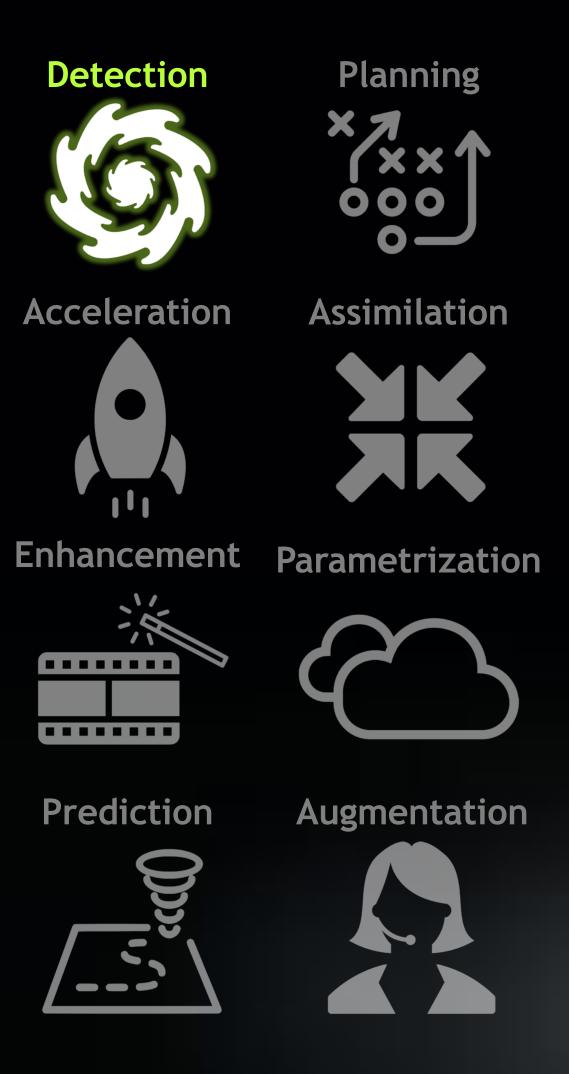
LEARNED FUNCTIONS ARE GPU ACCELERATED



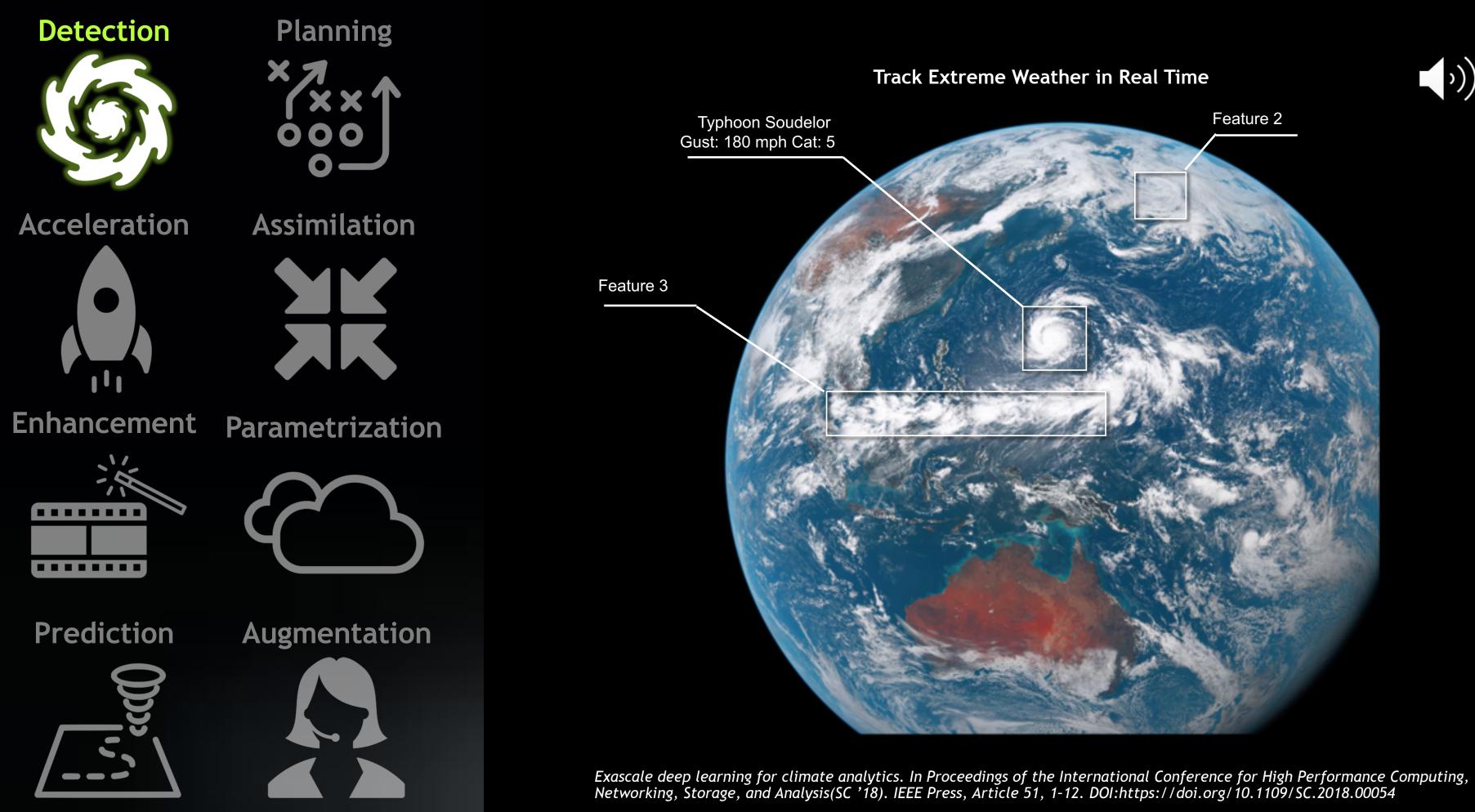
GPU ACCELERATED FUNCTIONS



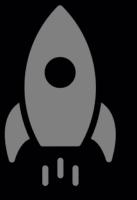
APPLICATIONS



Feature Detection



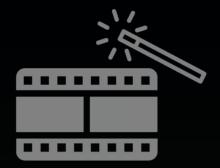
Acceleration



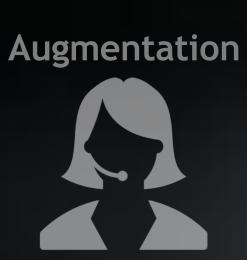
Assimilation

Planning

Enhancement Parametrization



Prediction

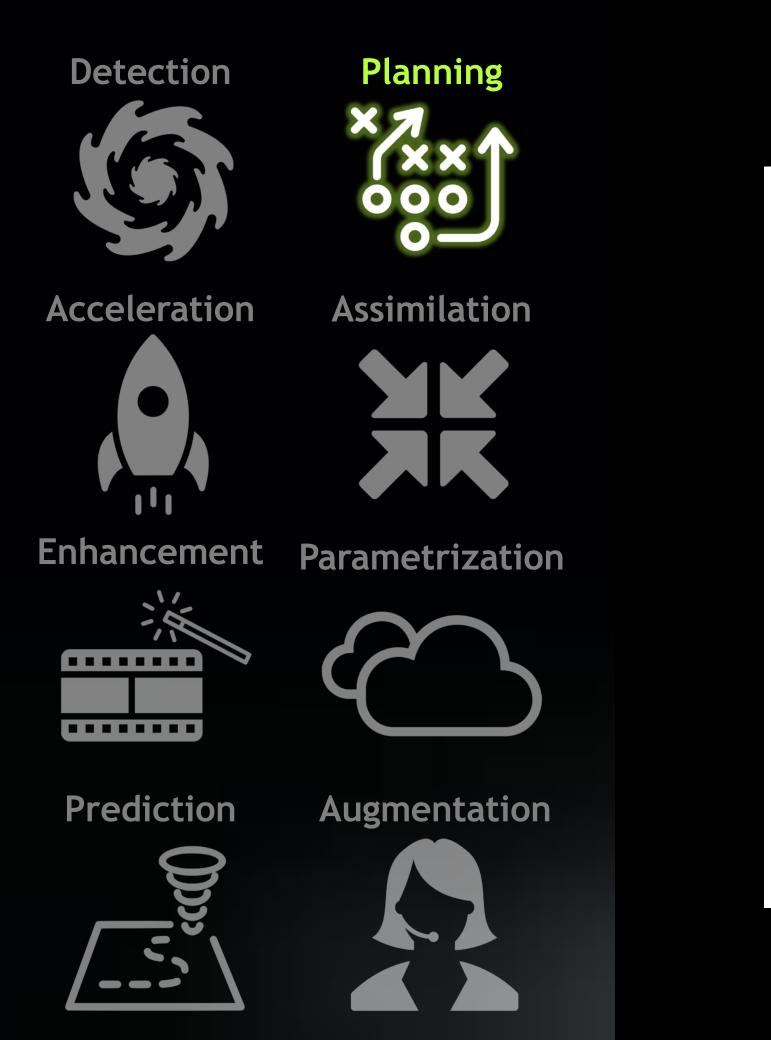


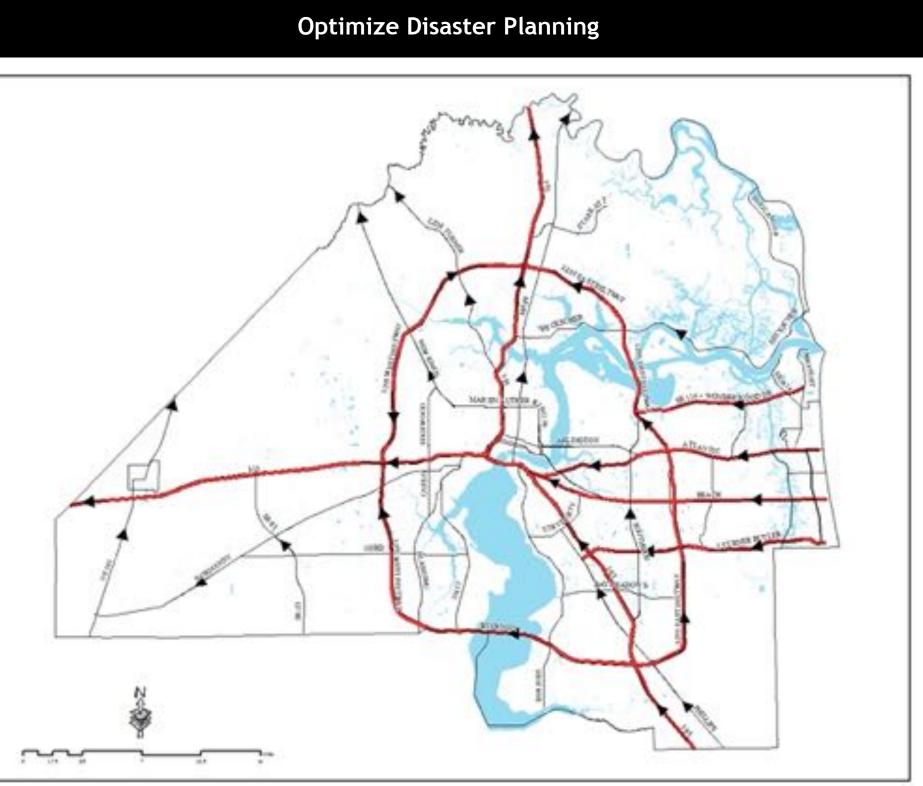
Helber, Patrick, et al. "Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12.7 (2019): 2217-2226.

Monitor Environmental Change



Strategy and Planning





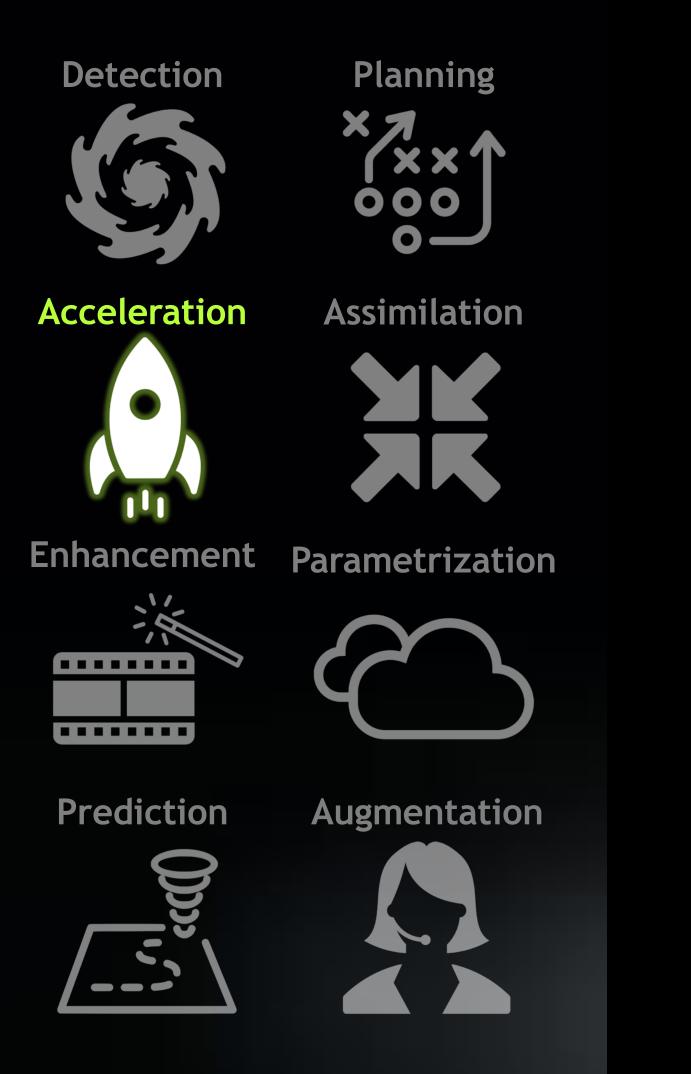
J. Sharma, P. Andersen, O. Granmo and M. Goodwin, "Deep Q-Learning With Q-Matrix Transfer Learning for Novel Fire Evacuation Environment," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, doi: 10.1109/TSMC.2020.2967936.

Detection Planning Acceleration Assimilation Enhancement Parametrization Prediction Augmentation

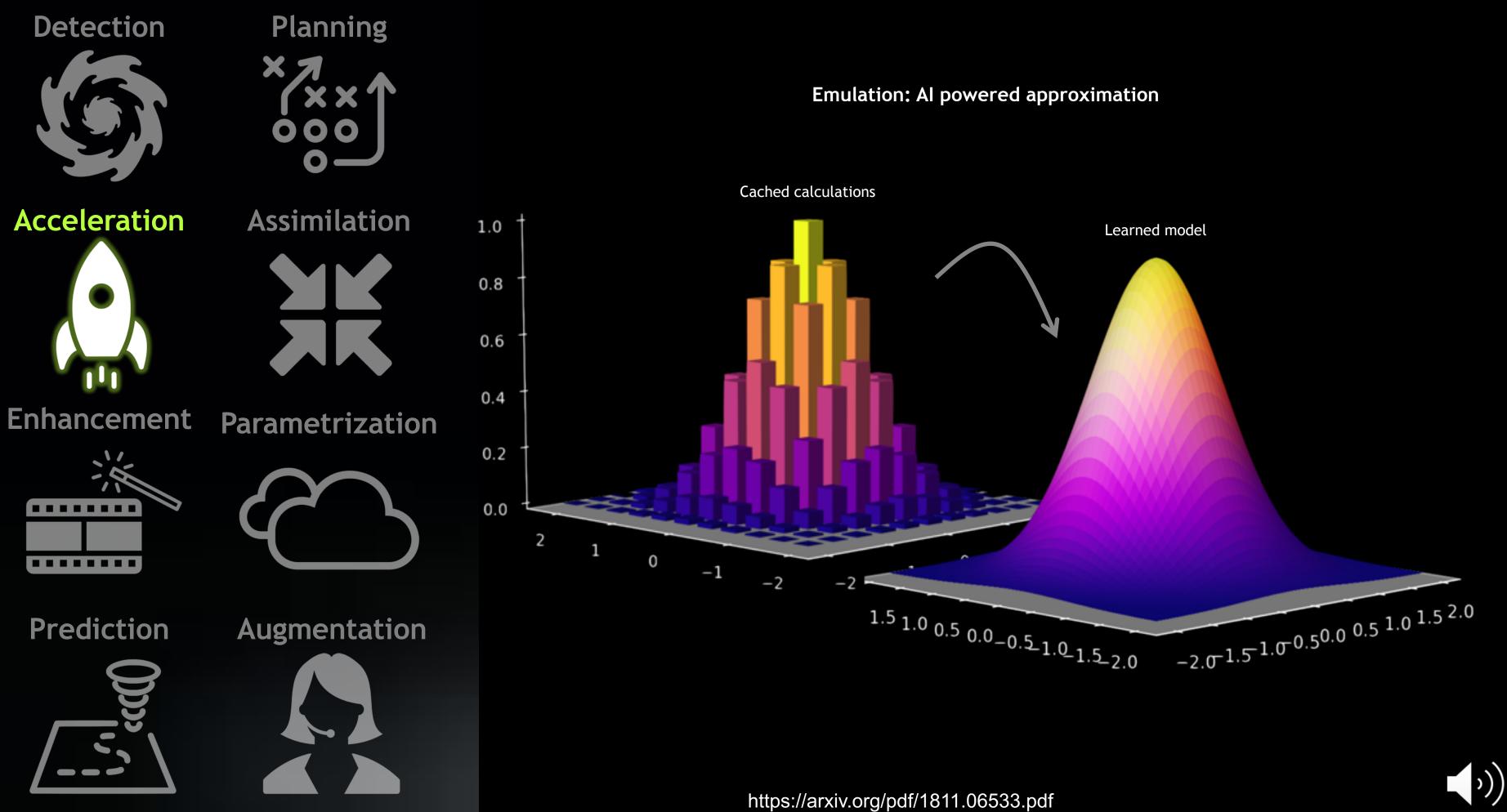
10.23919/OCEANS.2009.5422201.

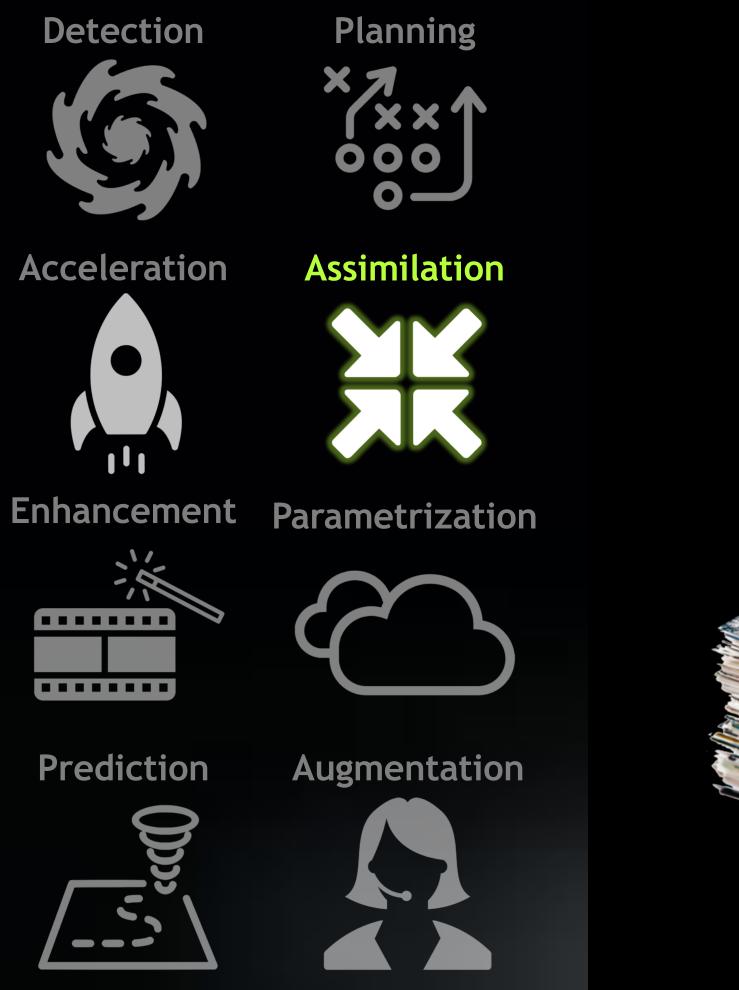
Autonomous Vehicles and Drones

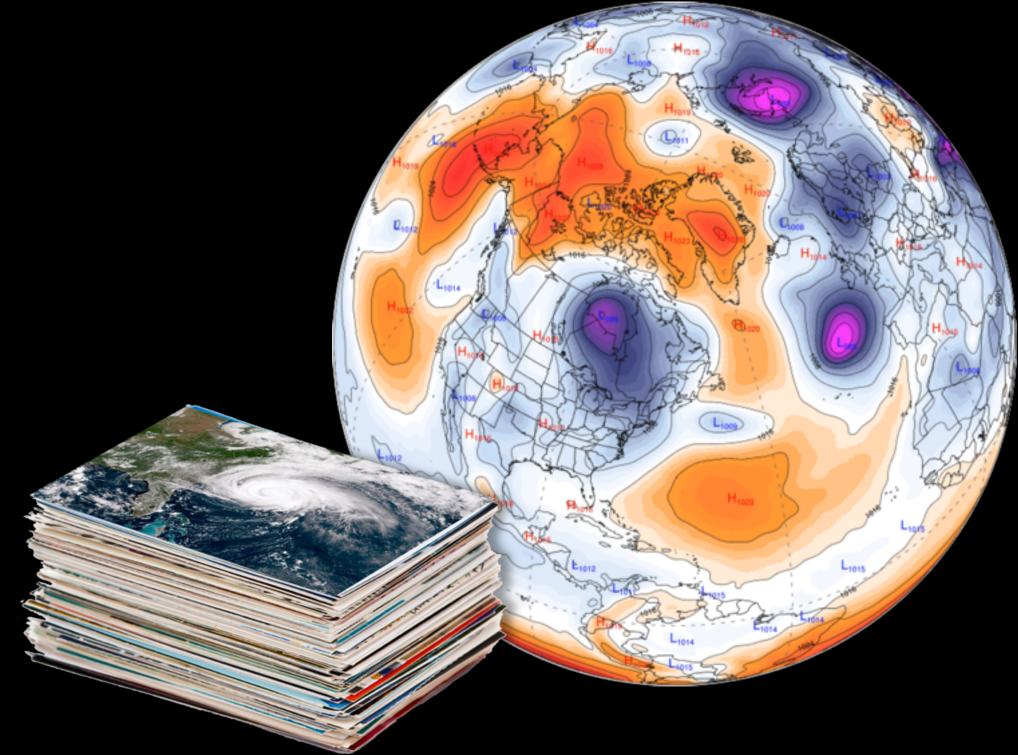
E. T. Steimle, R. R. Murphy, M. Lindemuth and M. L. Hall, "Unmanned marine vehicle use at Hurricanes Wilma and Ike," OCEANS 2009, Biloxi, MS, 2009, pp. 1-6, doi:



Accelerate Expensive Models

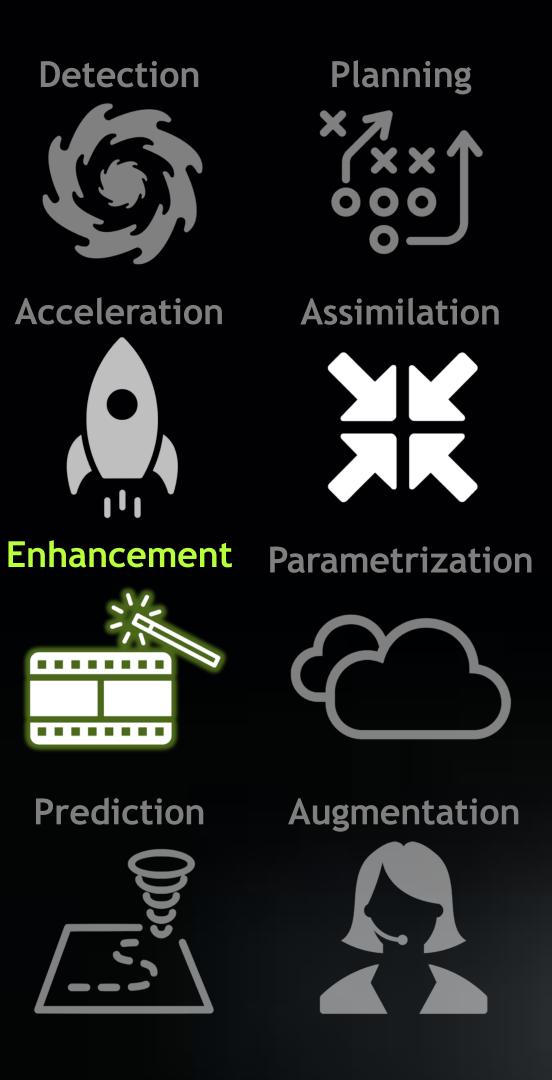




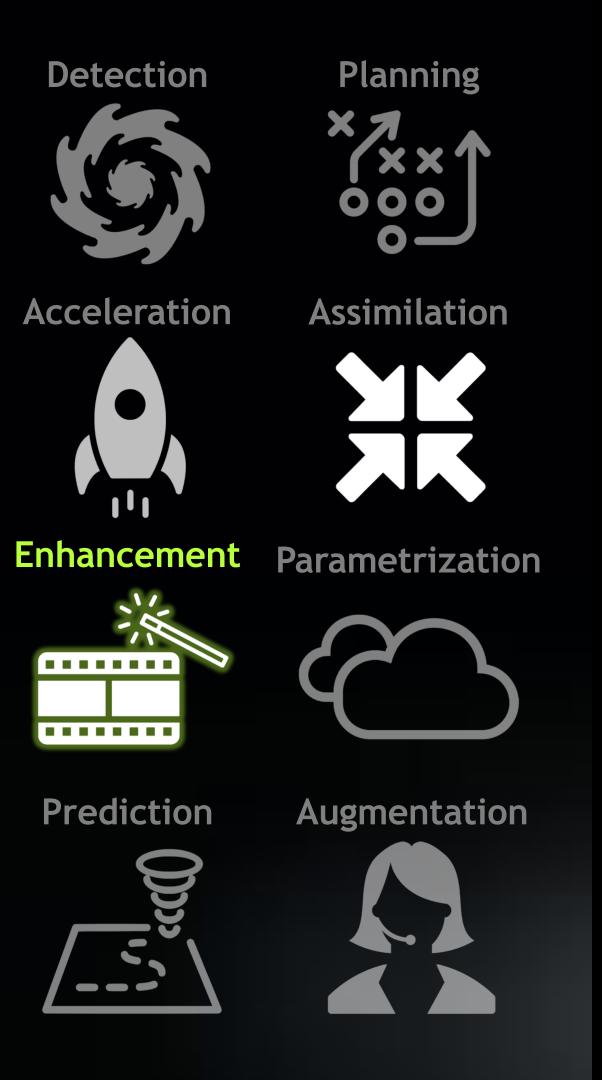


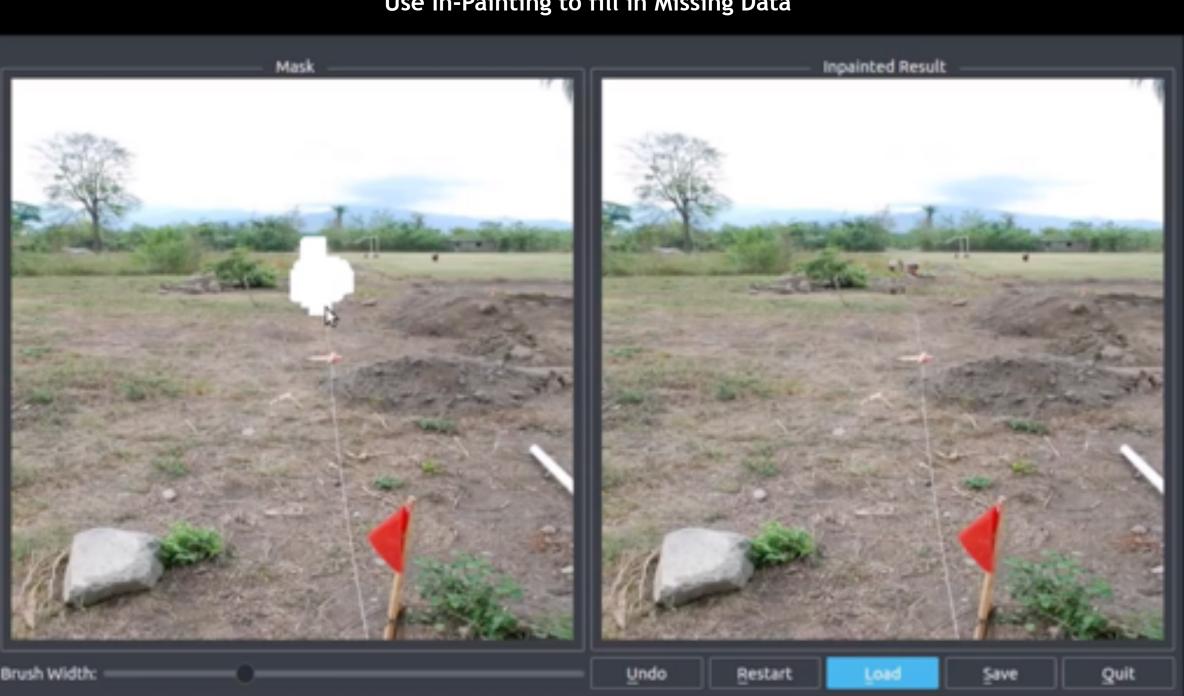
Dueben, Hogan, Bauer @ECMWF and Progsch, Angerer @NVIDIA

Accelerate Data Assimilation via Emulation



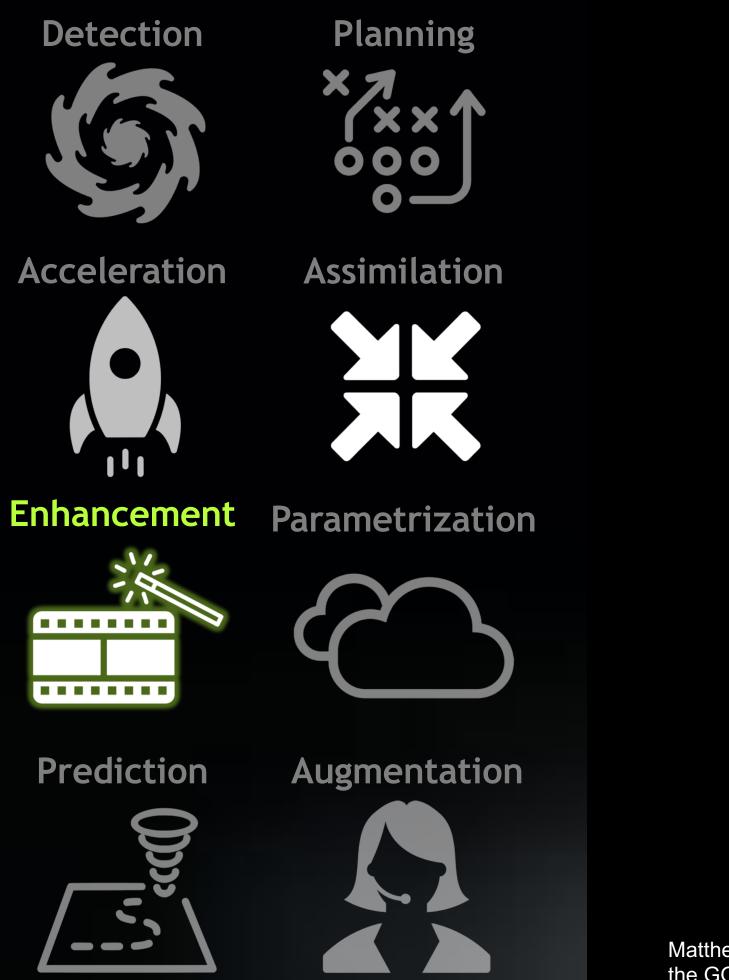
Enhance and Repair Your Data

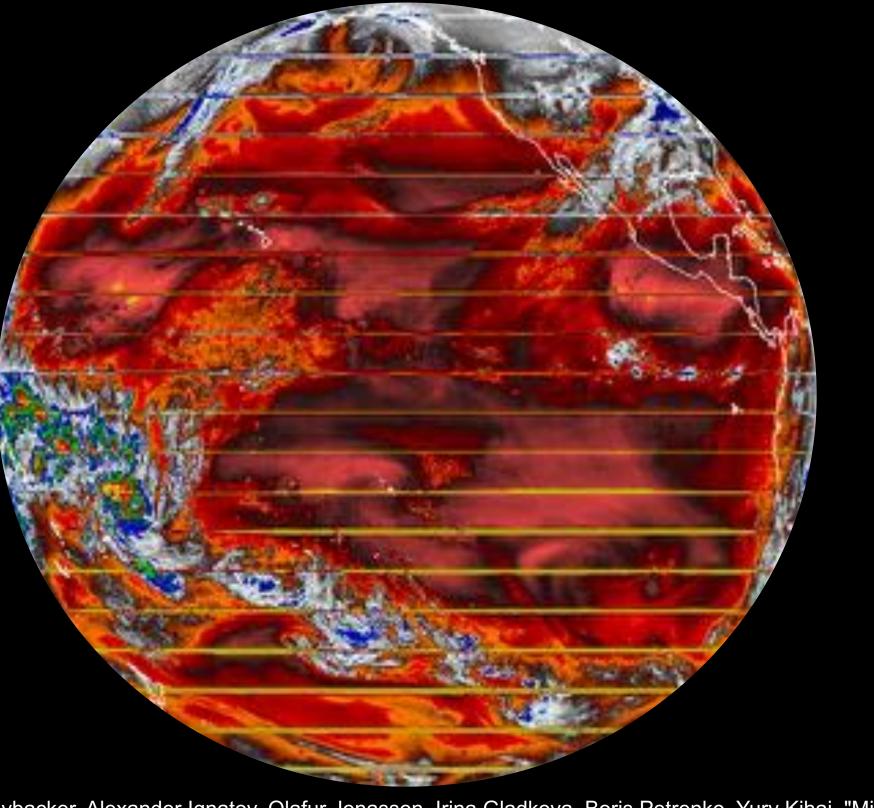




https://www.nvidia.com/research/inpainting/ https://arxiv.org/abs/1804.07723

Use In-Painting to fill in Missing Data



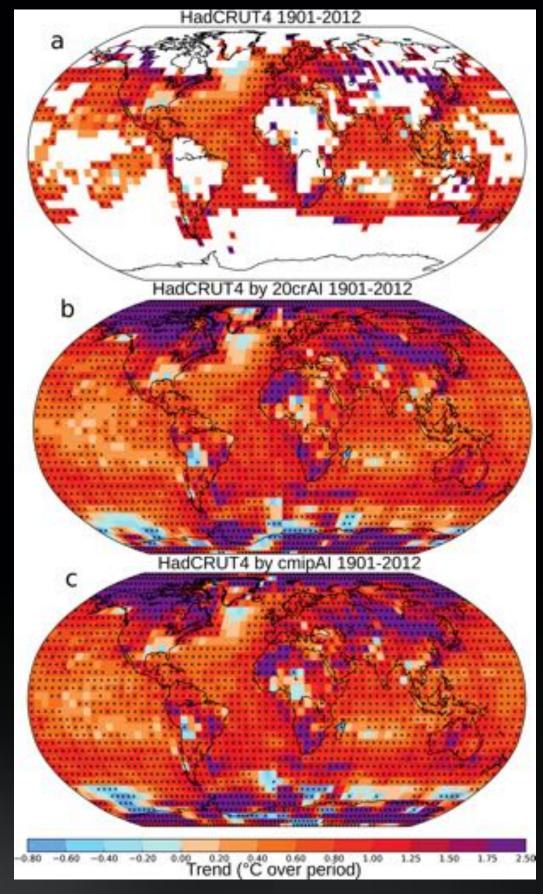


Matthew Pennybacker, Alexander Ignatov, Olafur Jonasson, Irina Gladkova, Boris Petrenko, Yury Kihai, "Mitigation of the GOES-17 ABI performance issues in the NOAA ACSPO SST products," Proc. SPIE 11014, Ocean Sensing and Monitoring XI, 110140Q (30 May 2019); https://doi.org/10.1117/12.2521051

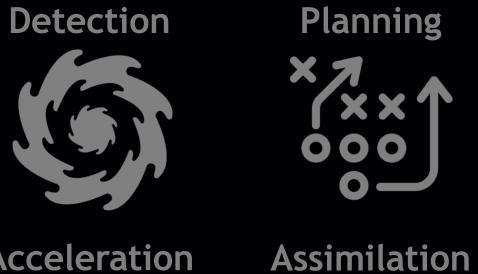
))

Use Inpainting to Repair Damaged GOES-17 Observations

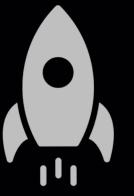
Use Inpainting to Reconstruct missing Climate Data

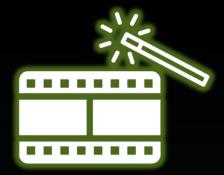


Artificial intelligence reconstructs missing climate information, Christopher Kadow, David Matthew Hall and Uwe Ulbrich Nature Geoscience



Acceleration

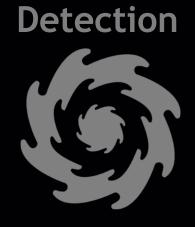




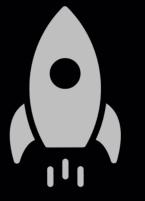
Prediction

Enhancement Parametrization

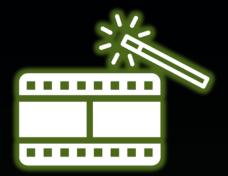
Augmentation



Acceleration



Enhancement



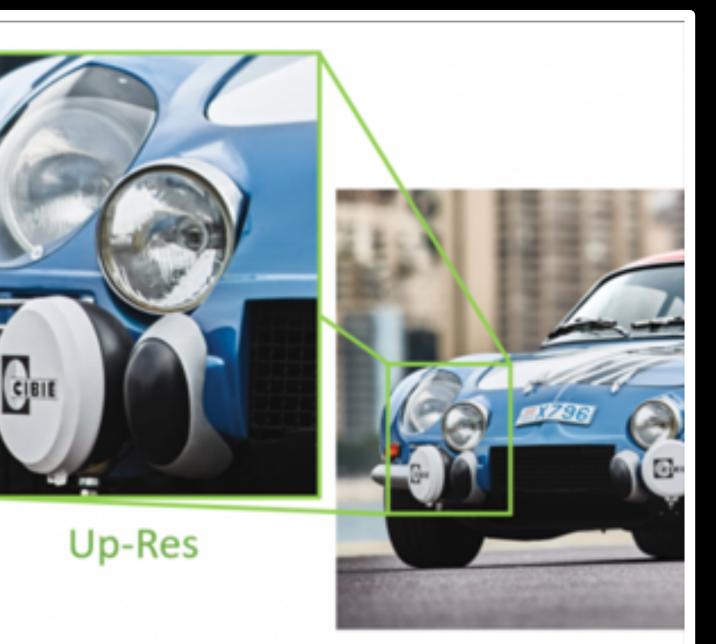
Planning

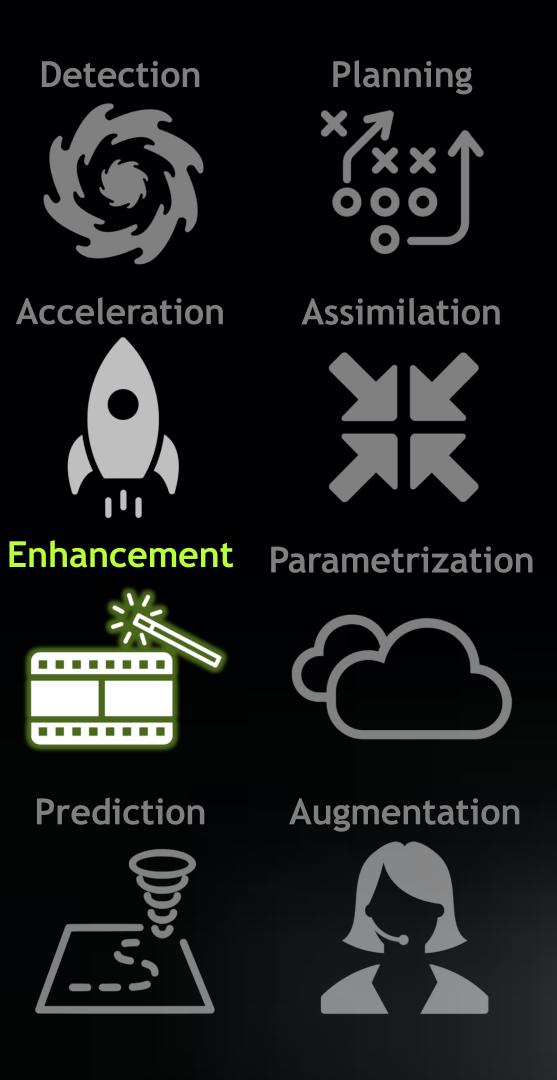
Assimilation

Deep Learning Super Resolution to Fill in Details

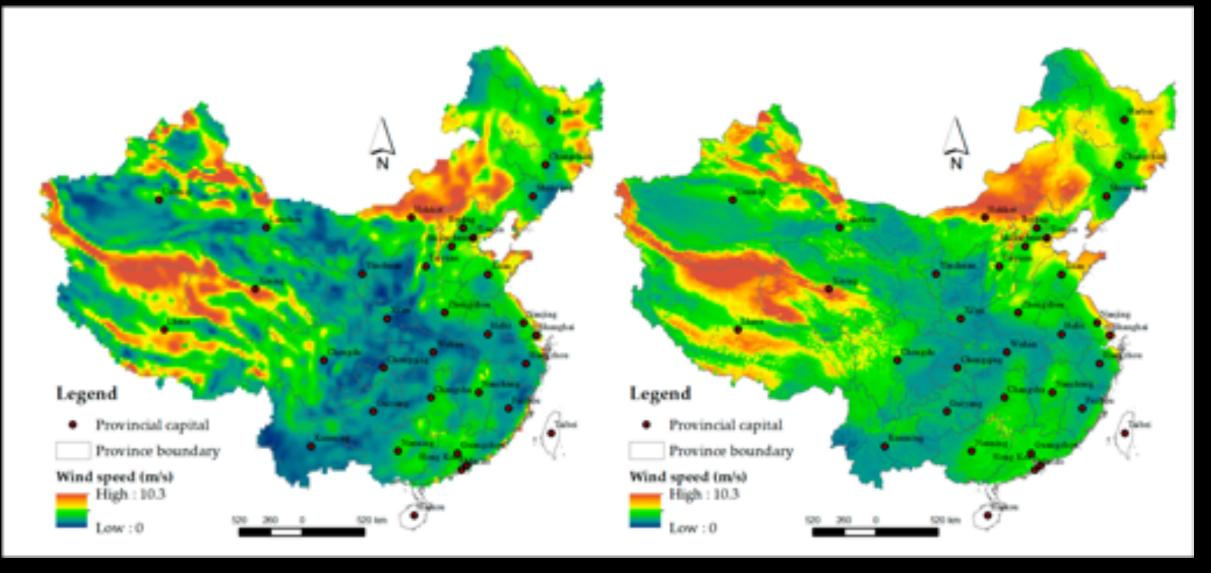
Bicubic Filtering

Image above: Up-Res provides improved image clarity over Bicubic filtering.

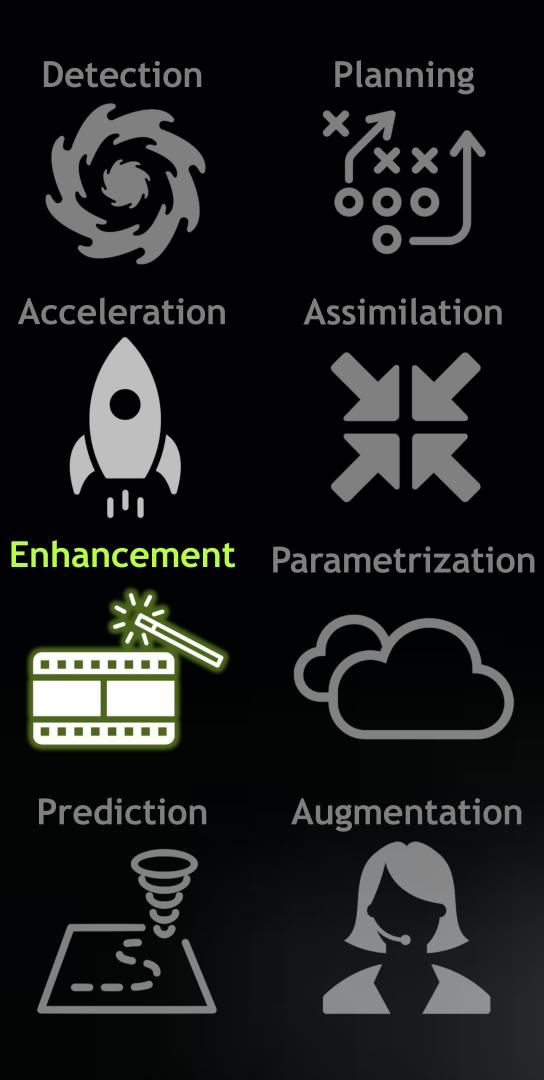




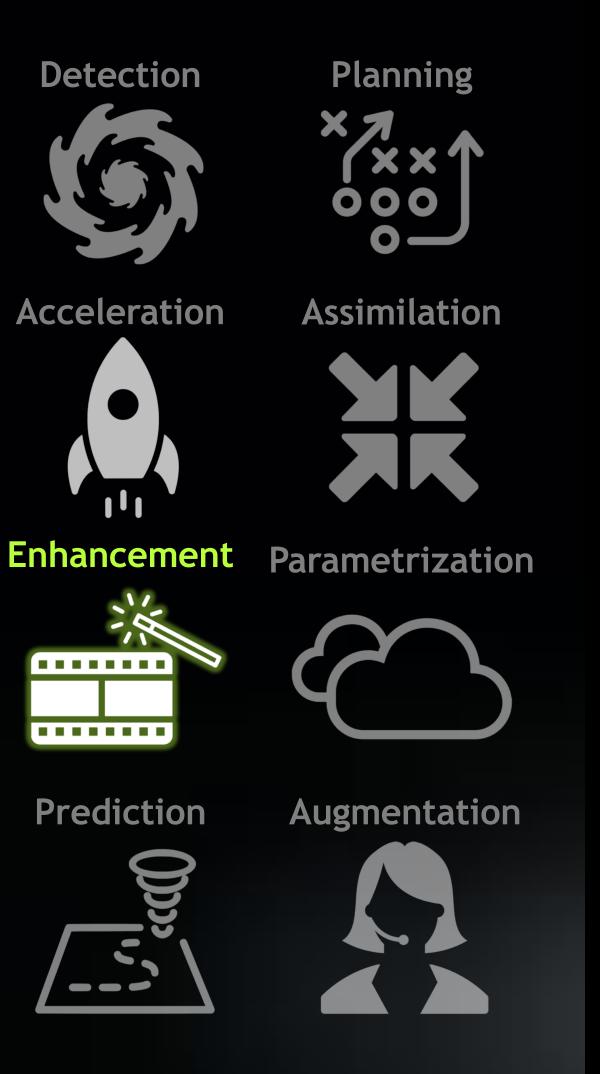
Super Resolution techniques for More Accurate Downscaling

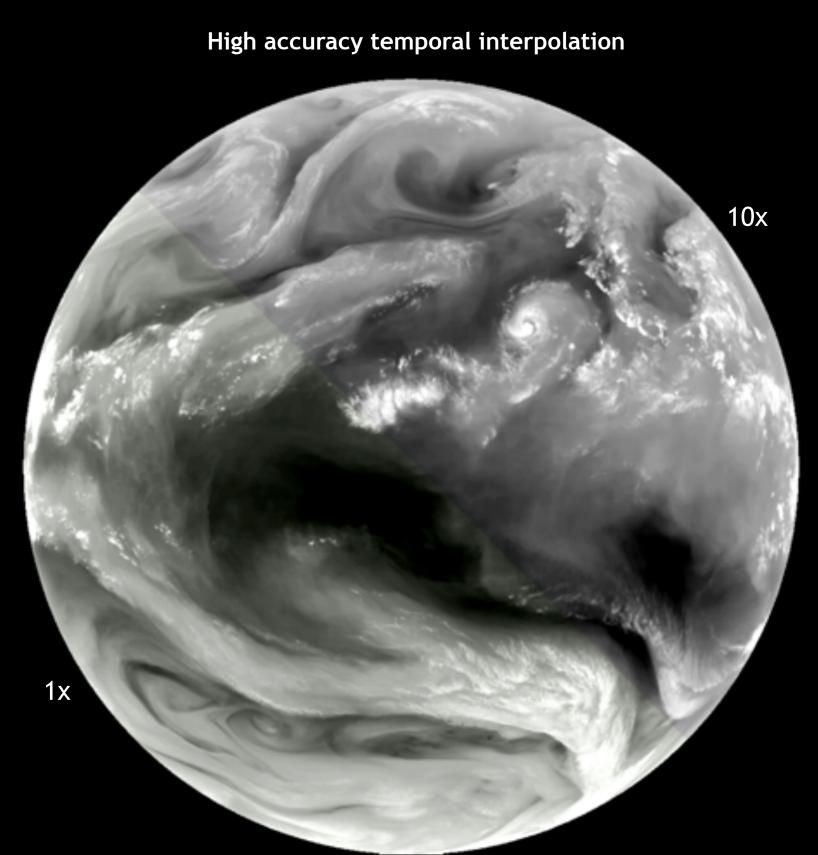


Remote Sens. **2019**, *11*, 1378; doi:10.3390/rs11111378

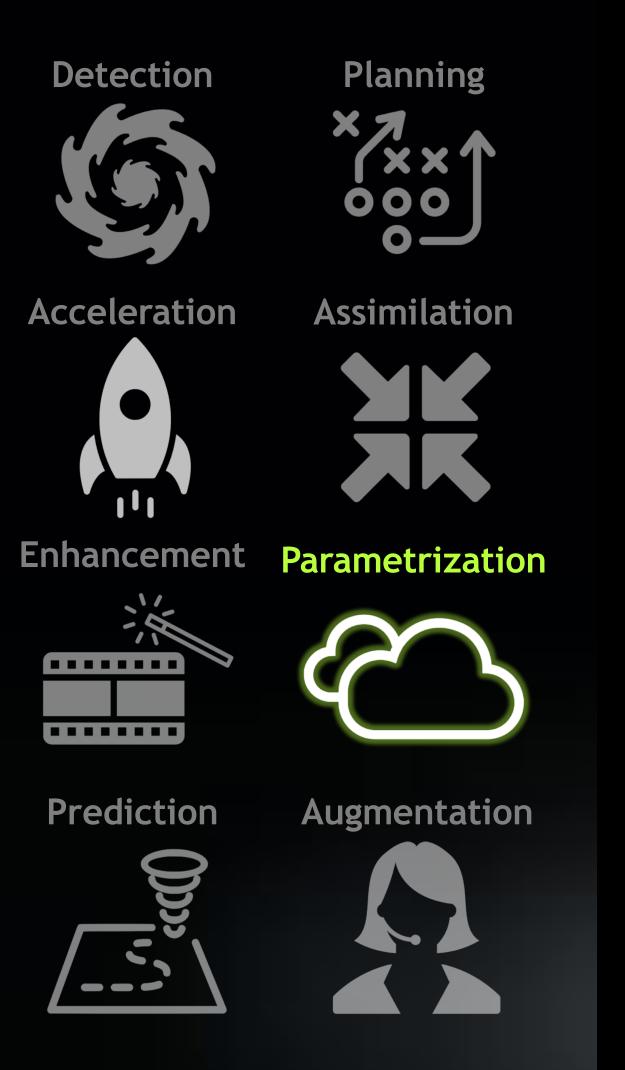


Slow-motion interpolation of video

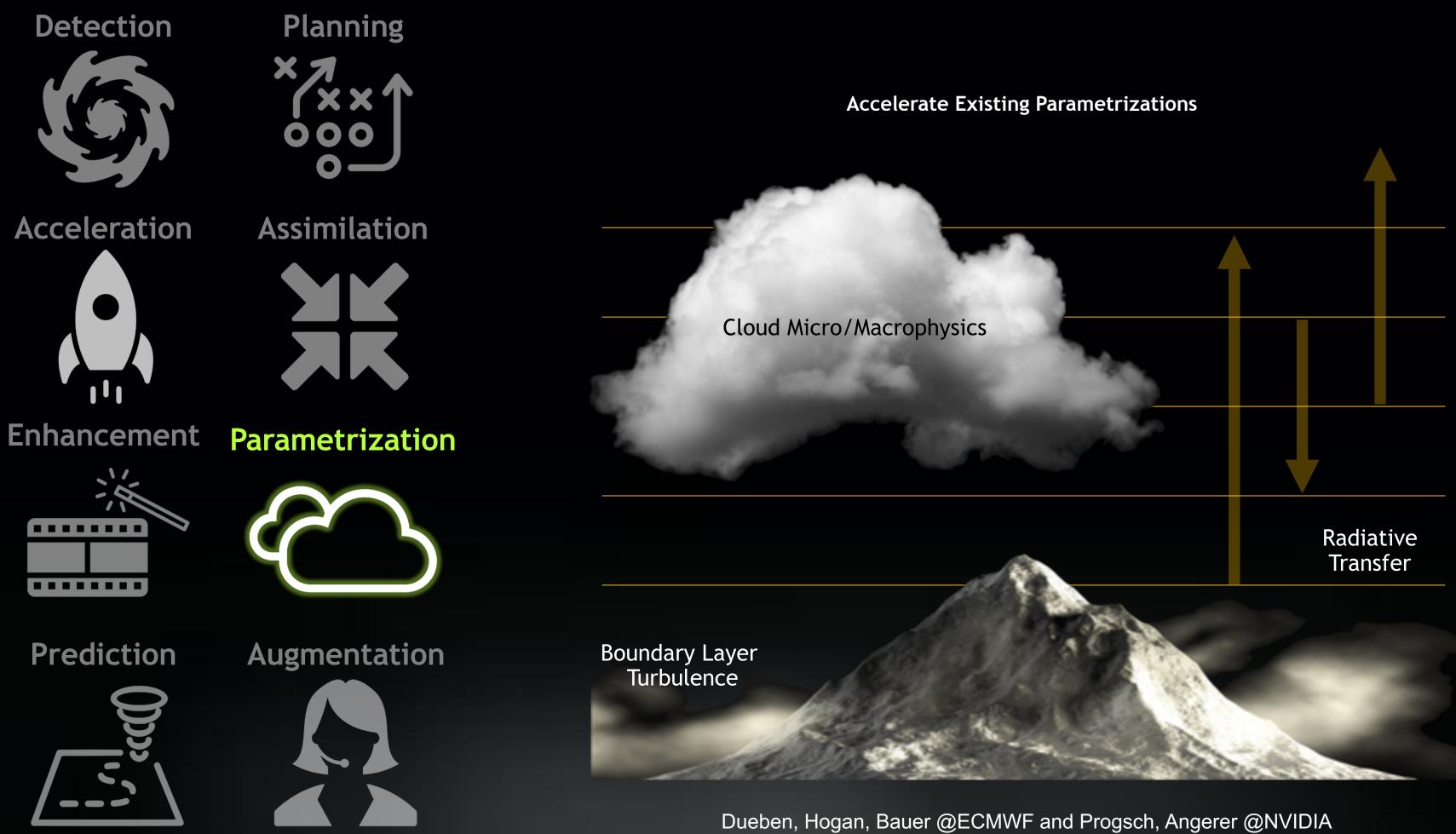


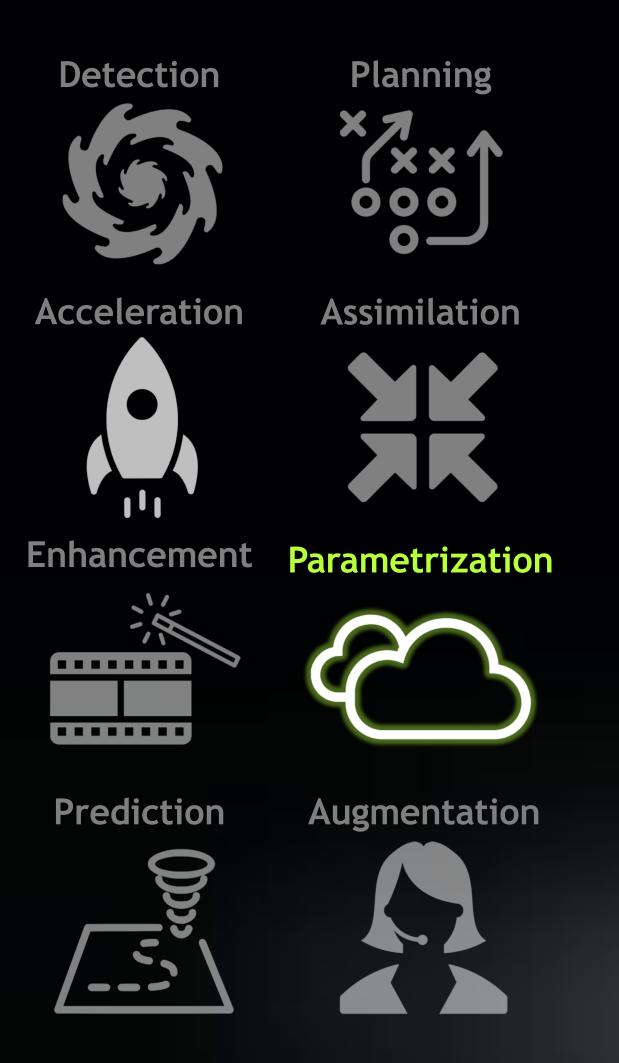


Temporal Interpolation of Geostationary Satellite Imagery with Task Specific Optical Flow, Thomas Vandal, Ramakrishna Nemani, https://arxiv.org/abs/1907.12013

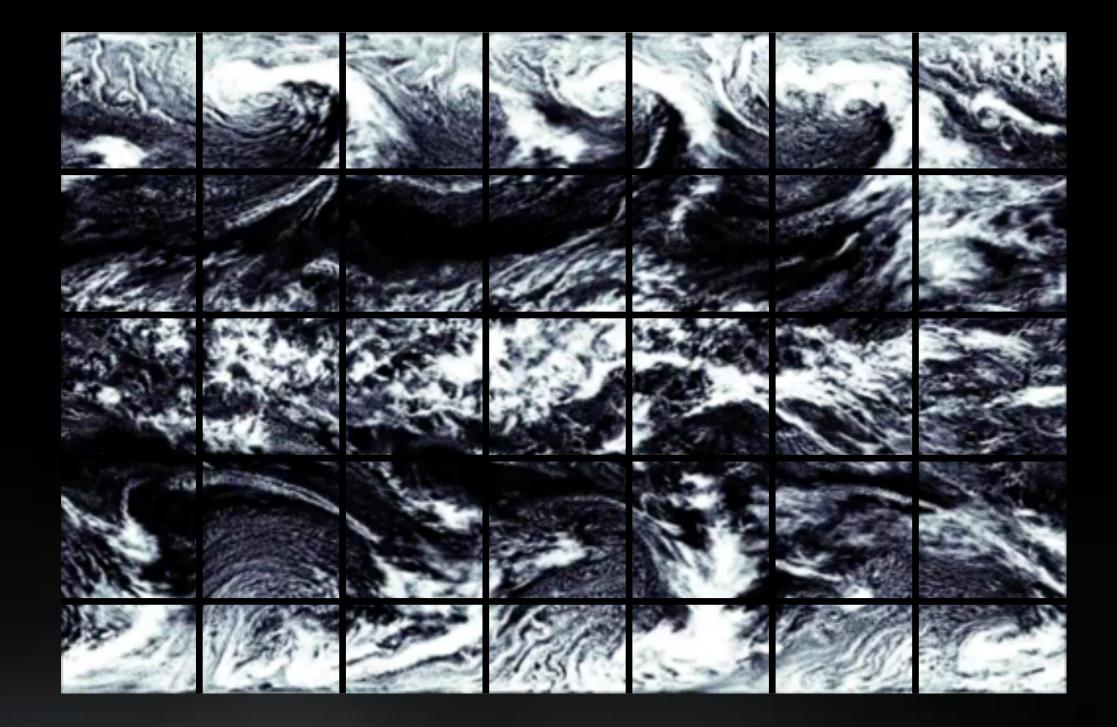


Accelerate and Improve **Physical Parametrizations**

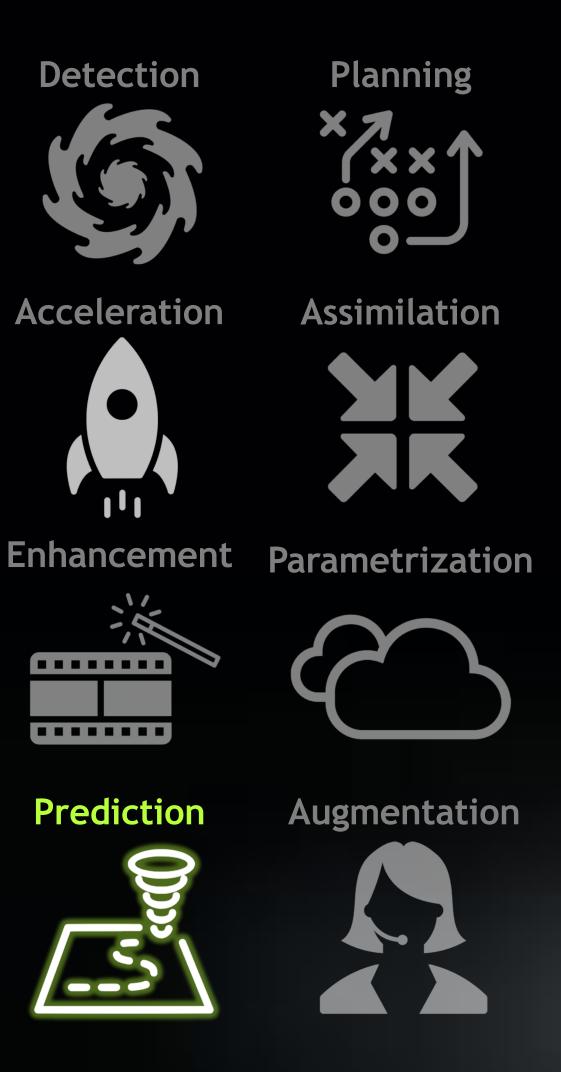




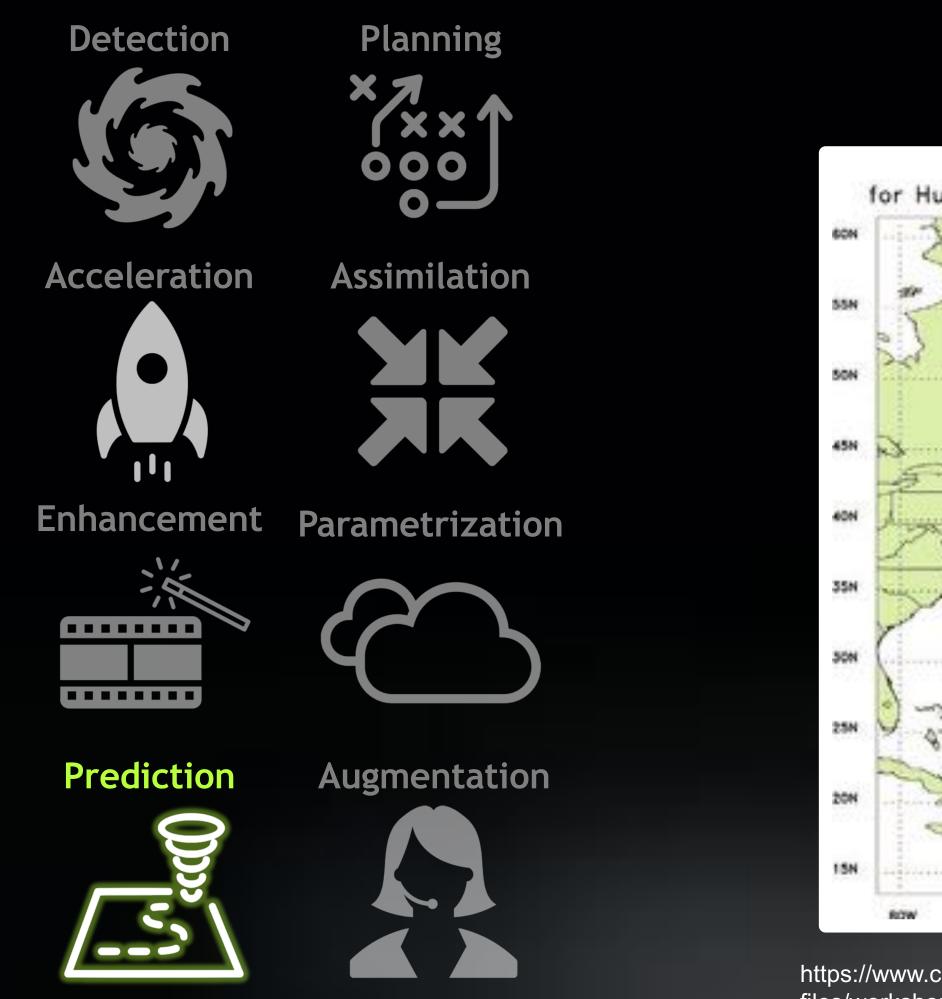
Parametrizations from high-res simulations

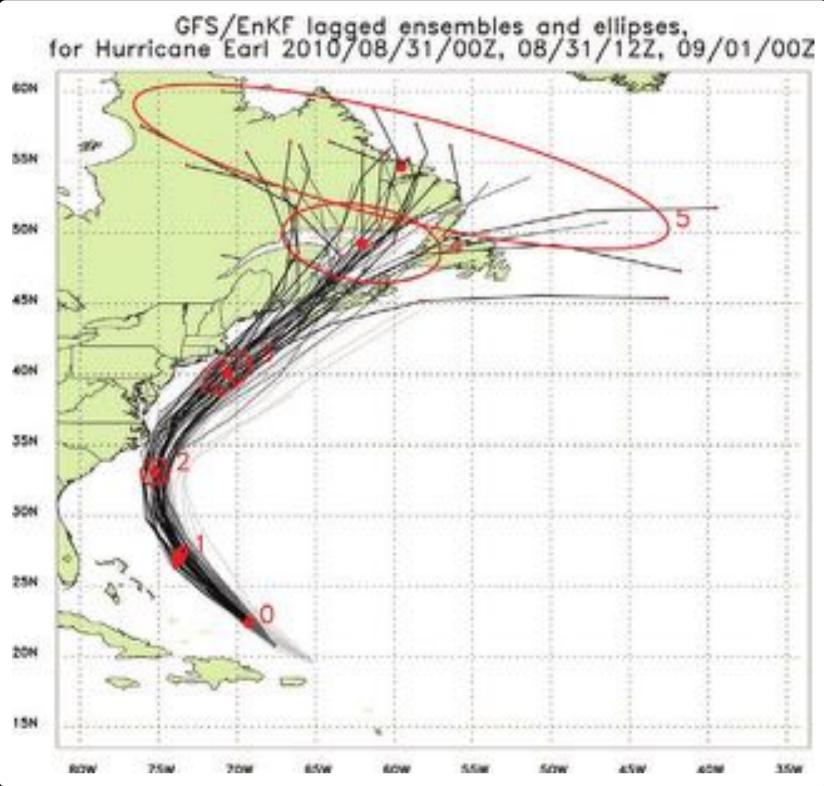


Noah Brenowitz and Cristopher Bretherton, University of Washington



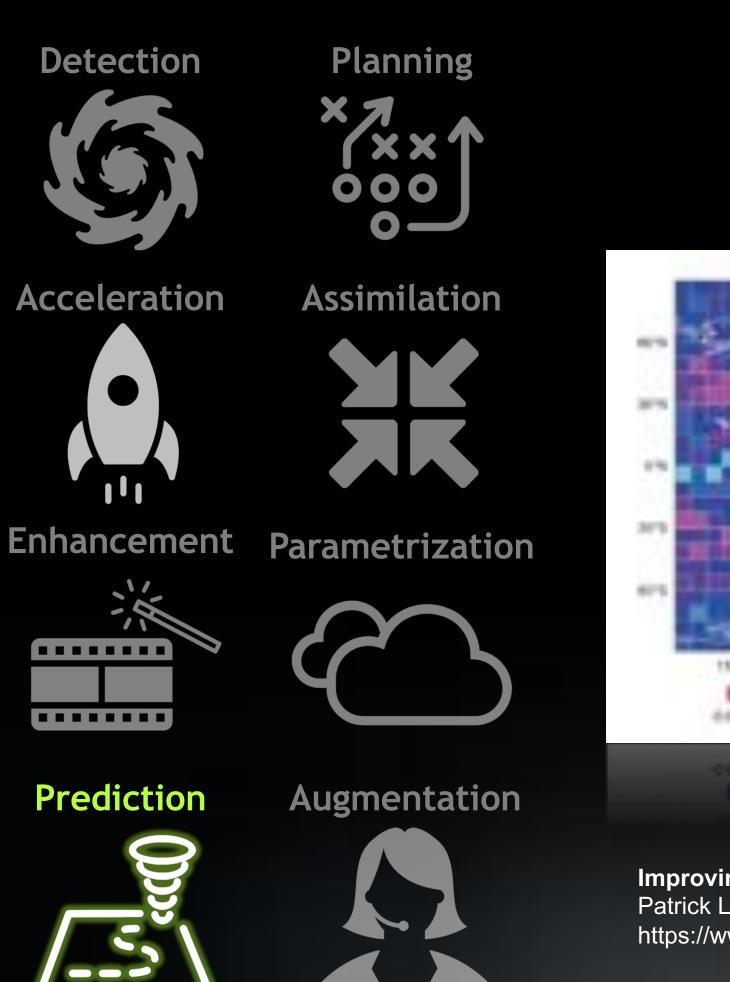
Create More Accurate **Time-Series Predictions**

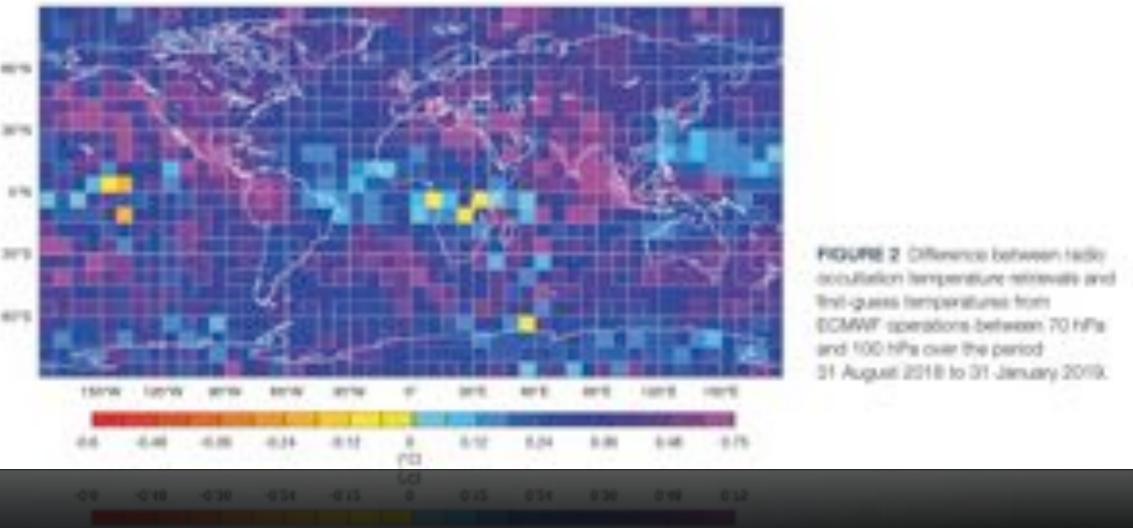




https://www.colorado.edu/faculty/claire-monteleoni/sites/default/files/attachedfiles/workshop_nips_2018_preprint_0.pdf

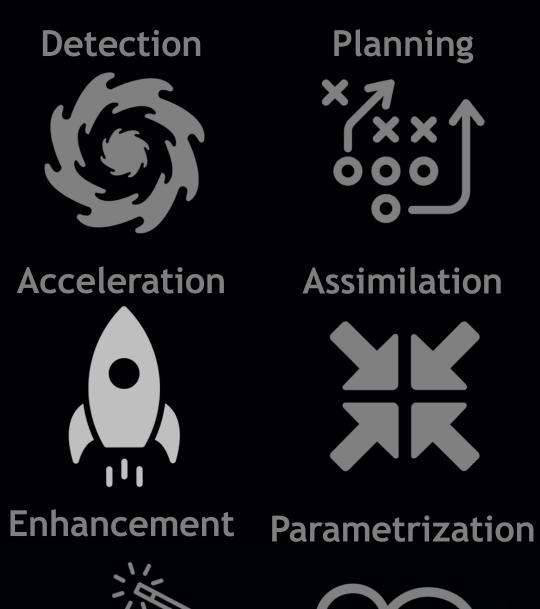
Improve storm track / intensity forecasts





Improving the handling of model bias in data assimilation Patrick Laloyaux, Massimo Bonavita Peter Dueben, Thorston Kurth, David Hall https://www.ecmwf.int/sites/default/files/elibrary/2020/19508-newsletter-no-163-spring-2020.pdf

Forecast Bias Correction

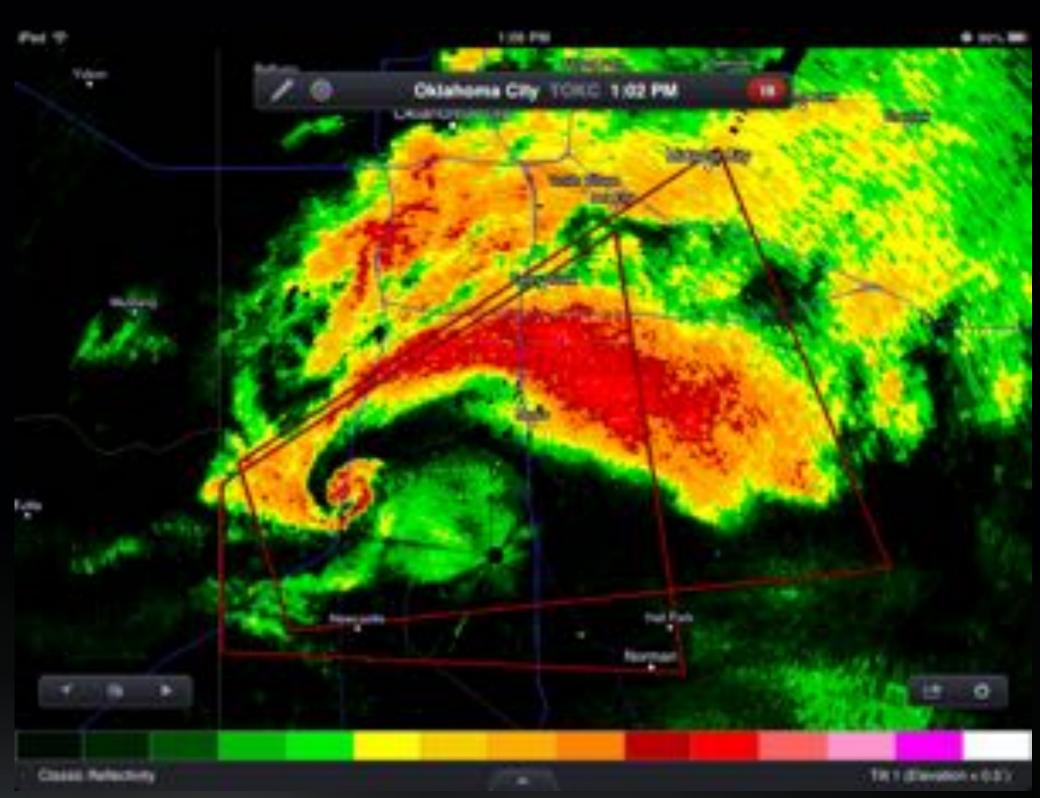


Planning

 \mathbf{O}

Assimilation

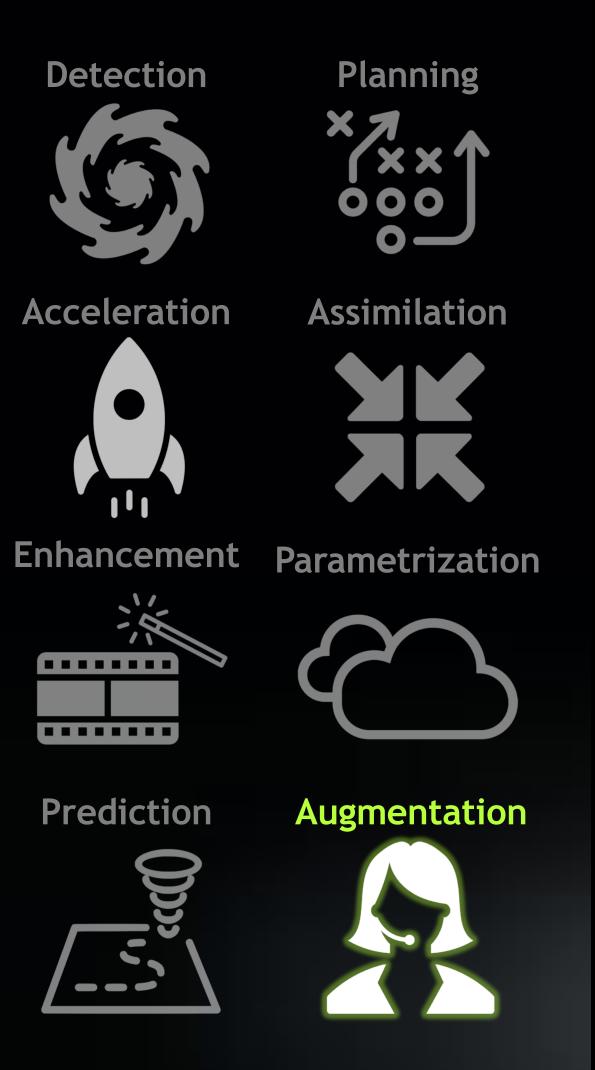
.......



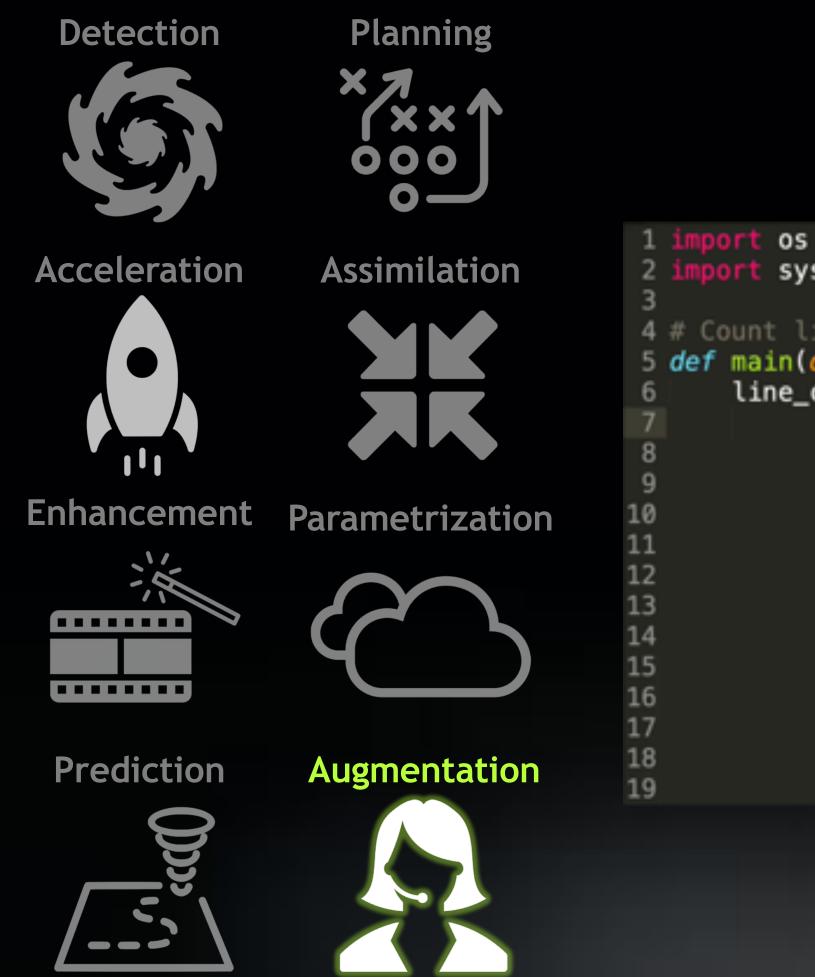
MetNet: A Neural Weather Model for Precipitation Forecasting https://arxiv.org/abs/2003.12140

Al powered Nowcasting

))



Augment your tools and get intelligent assistance

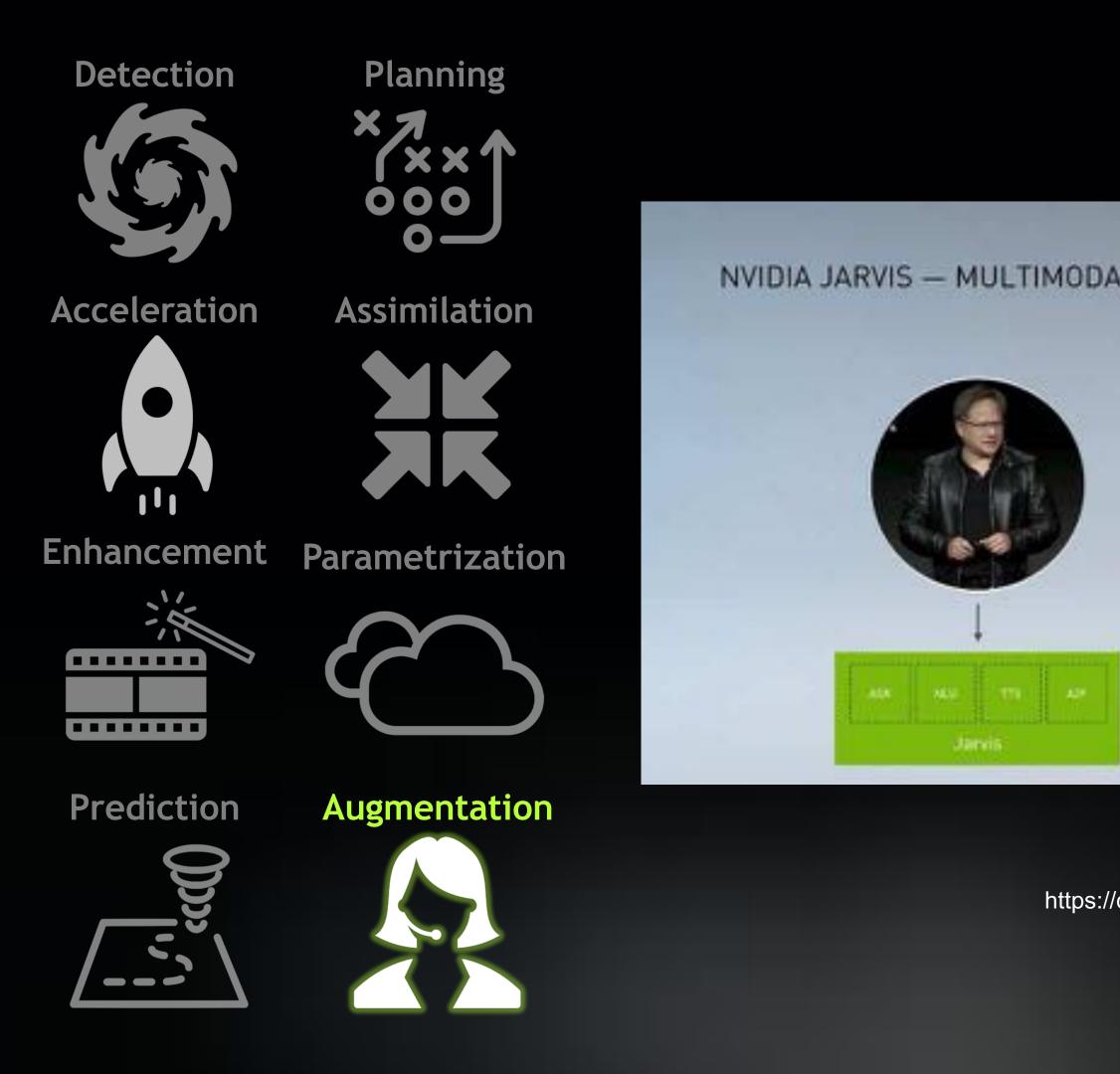


```
2 import sys
5 def main(directory):
      line_count = {}
```

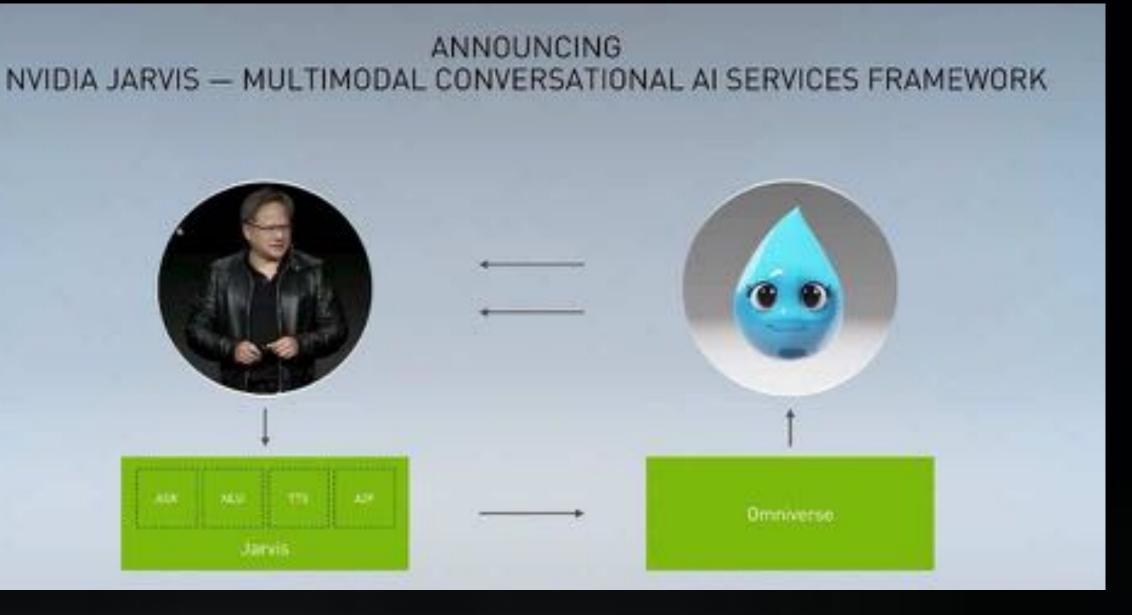
https://tabnine.com/blog/deep

Build AI powered tools

Count lines of code in the given directory, separated by file extension



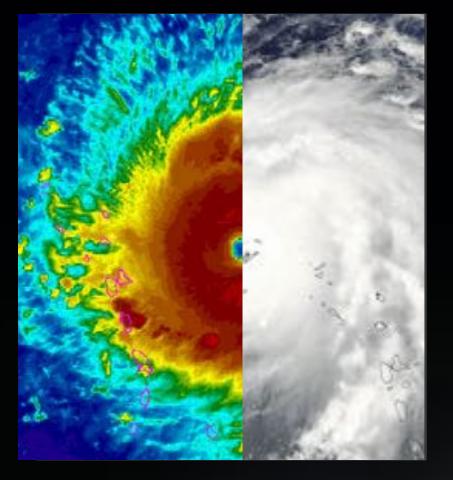
JARVIS



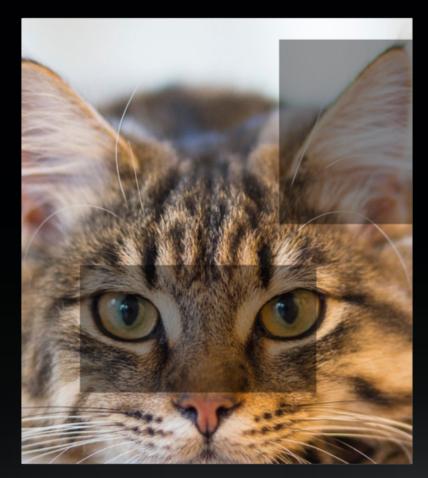
https://developer.nvidia.com/nvidia-jarvis

CHALLENGES AND POTENTIAL SOLUTIONS

LABELLING LARGE QUANTITIES OF DATA How can we overcome the need for manual labelling?

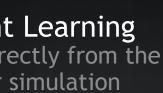


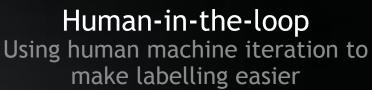
Data Fusion Using one data source as the label for another

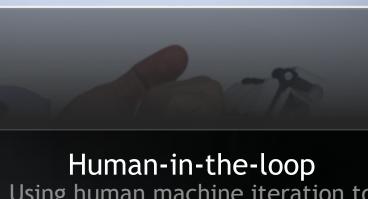


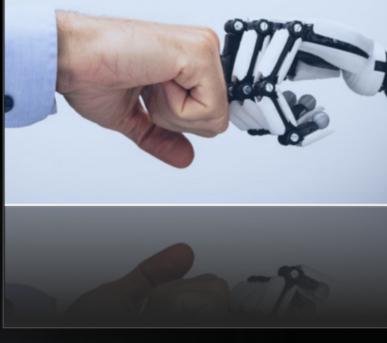
Self-Supervised Learning Predicting input B from input A

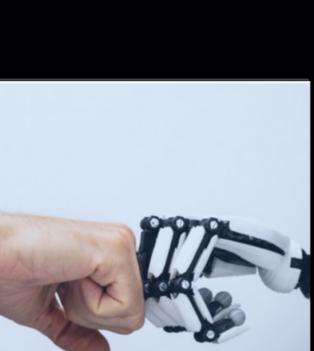
Reinforcement Learning Obtaining labels directly from the environment or simulation



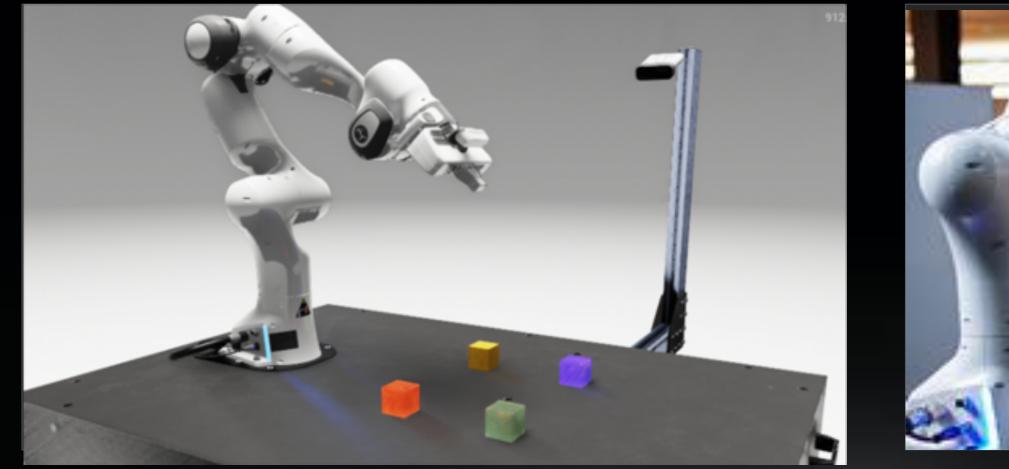




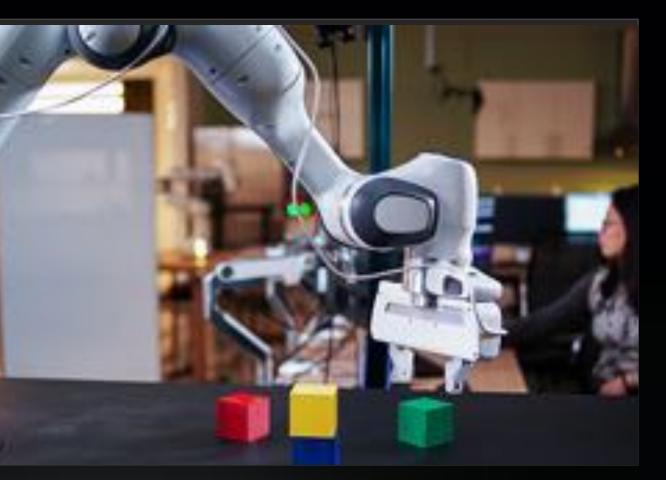




TRANSFER LEARNING: DON'T START FROM SCRATCH

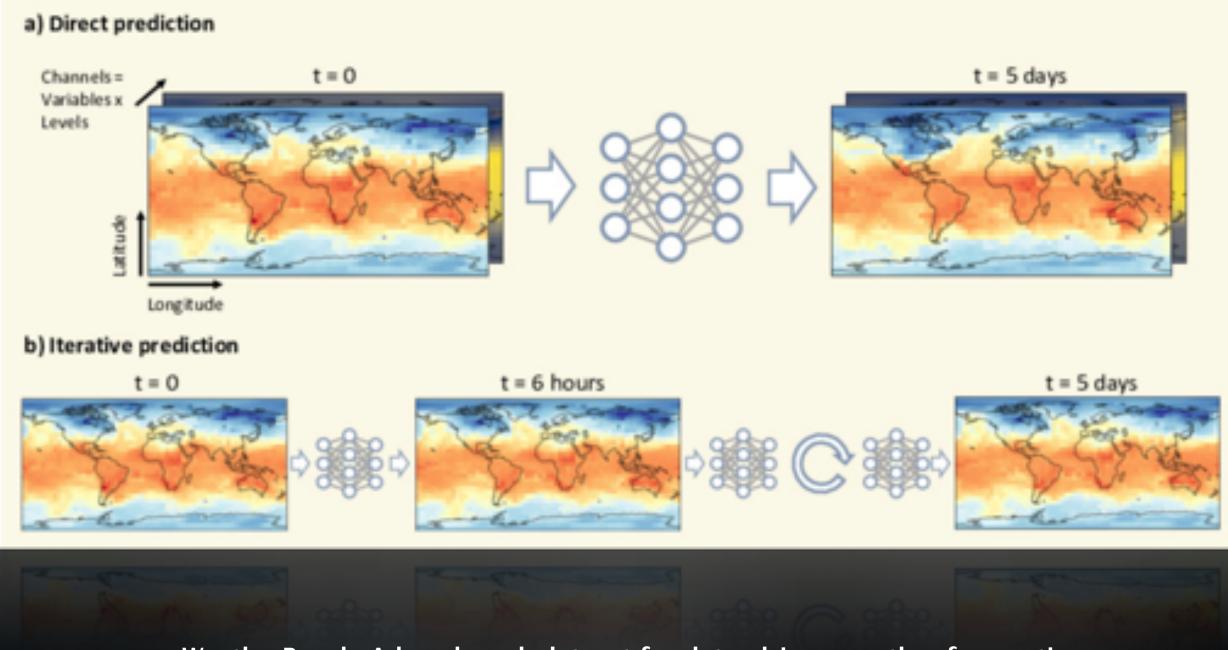


Train on simulated or related data



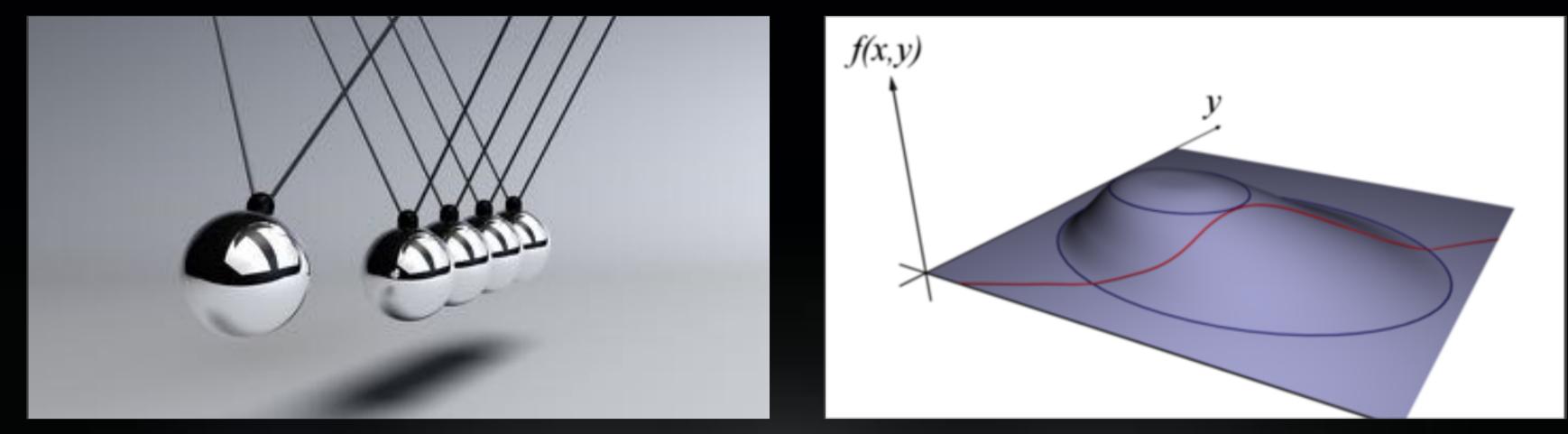
Fine-tune on the real data

BENCHMARKS: THE NEED FOR A COMMON GOAL



WeatherBench: A benchmark dataset for data-driven weather forecasting Stephan Rasp, Peter D. Dueben, Sebastian Scher, Jonathan A. Weyn, Soukayna Mouatadid, Nils Thuerey https://arxiv.org/abs/2002.00469

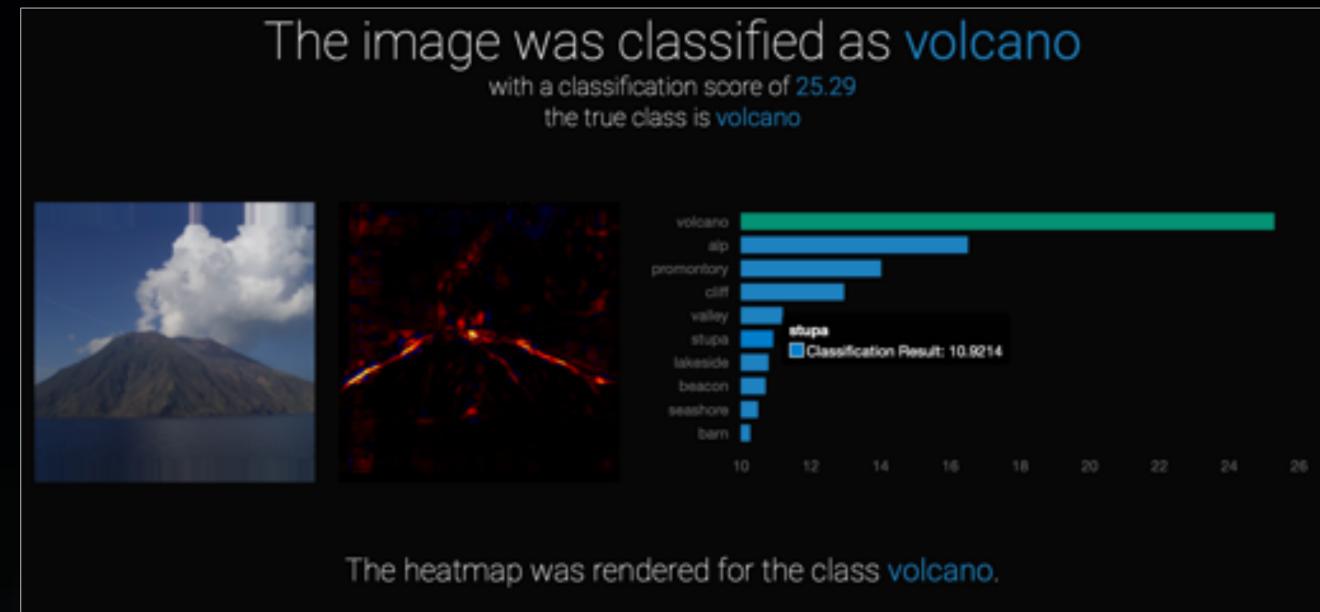
ENFORCING PHYSICAL CONSTRAINTS



Conservation of Mass, Momentum, Energy, Incompressibility, Turbulent Energy Spectra, Translational Invariance Lagrange multipliers (penalization), Hard Constraints, Projective Methods, Differentiable Programming

INTERPRETABILITY: EXPLAINABLE AI

the true class is volcano

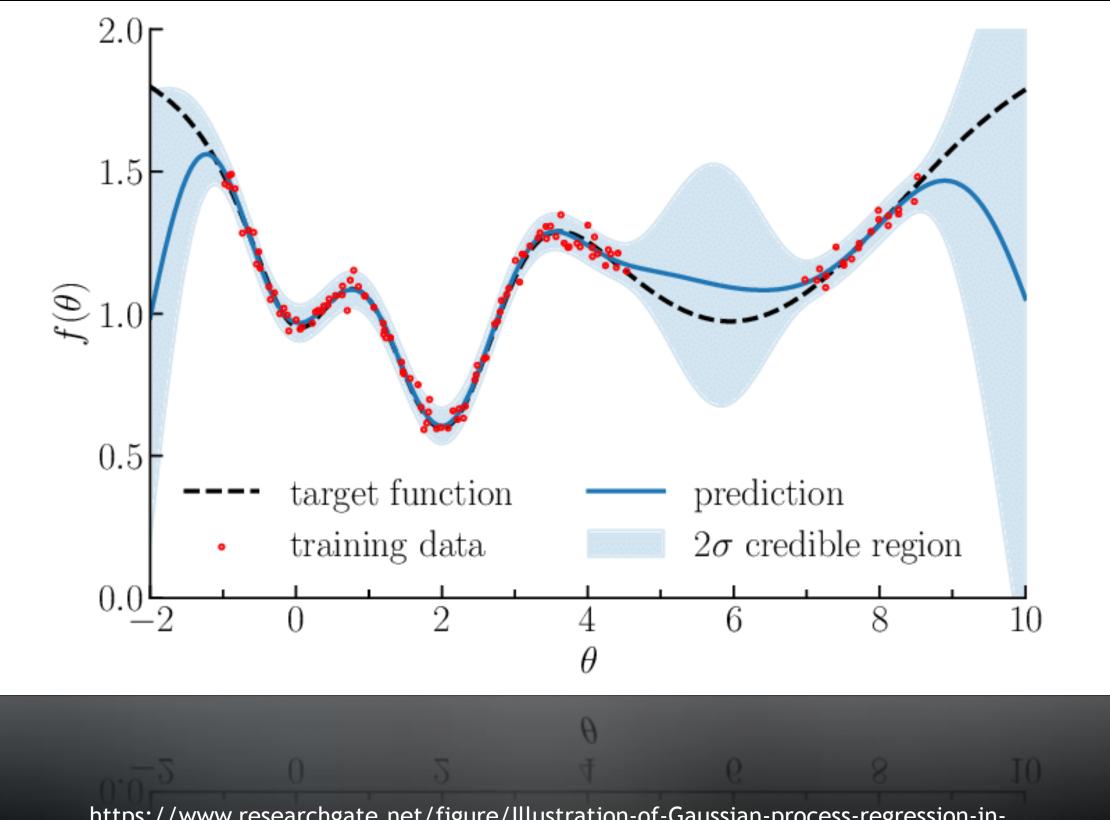


Layer-wise Relevance Propagation

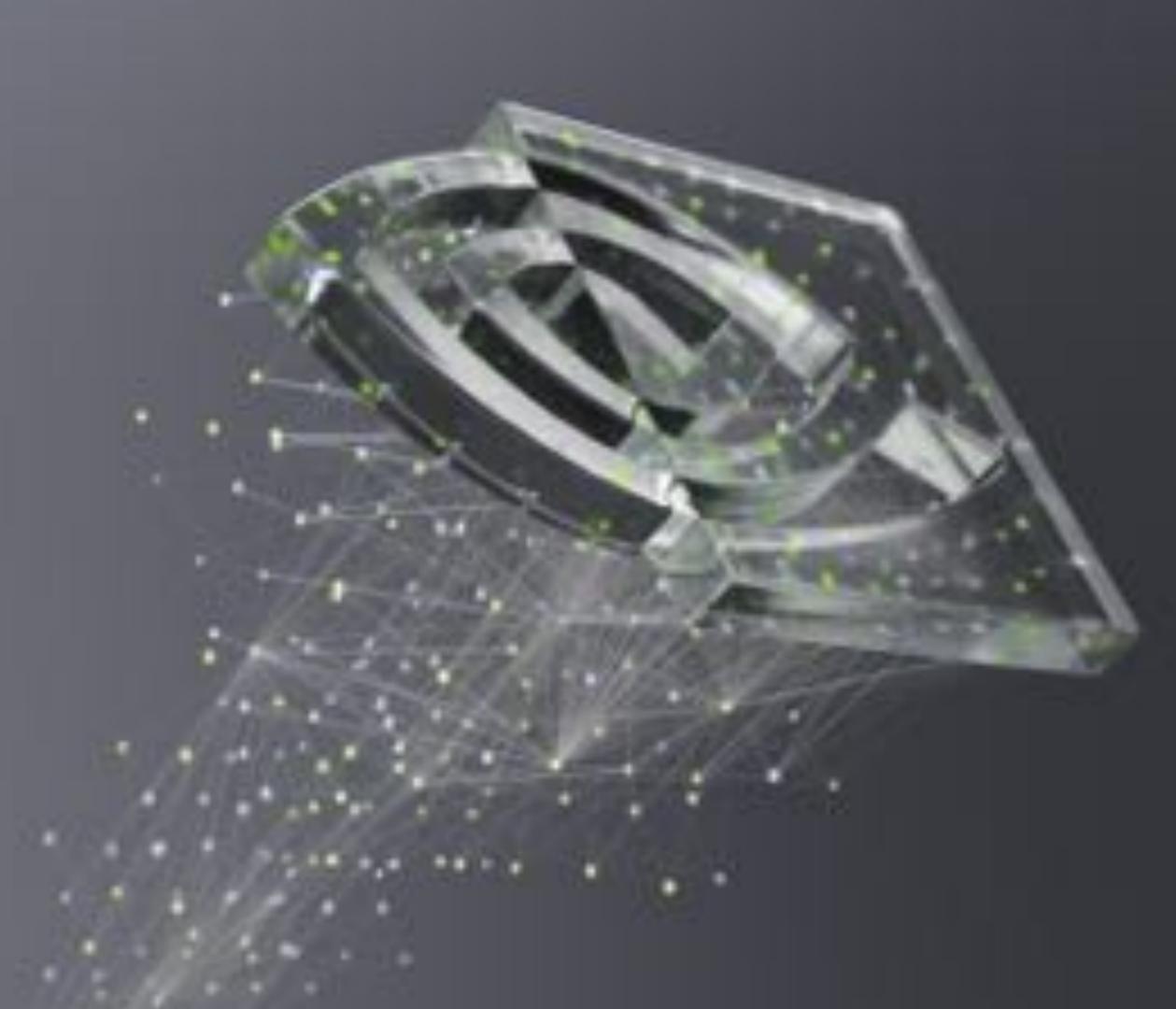
https://lrpserver.hhi.fraunhofer.de/image-classification

))

UNCERTAINTY ESTIMATION



https://www.researchgate.net/figure/Illustration-of-Gaussian-process-regression-inone-dimension-for-the-target-test_fig1_327613136



- ML tools provide a powerful new way to build software
- I expect many breakthroughs will from this direction in the near future.
- GPUs makes ML practical, while ML makes GPUs more accessible.
- ML of tomorrow might be radically different than today. Tools and hardware are evolving rapidly.
- Challenges exist. These tools are new. But we have barely scratched the surface of their potential.

dhall@nvidia.com

