Submitted or pre-published on arxiv
J. Ackmann, P. D. Dueben, T. Palmer, and P. Smolarkiewicz. Machine-learned preconditioners for linear solvers in geophysical fluid flows. https://arxiv.org/abs/2010.02866, 2020.
R. Adewoyin, P. D. Dueben, P. Watson, Y. He, and R. Dutta. Tru-net: A deep learning approach to high resolution prediction of rainfall. https://arxiv.org/abs/2008.09090, 2020.
J. Barre, I. Aben, A. Agusti-Panareda, G. Balsamo, N. Bousserez, P. D. Dueben, R. Engelen, A. Inness, A. Lorente, J. McNorton, et al. Systematic detection of local CH 4 emissions anomalies combining satellite measurements and high-resolution forecasts. Atmospheric Chemistry and Physics Discussions, pages 1–25, 2020.
Sherman Lo, Peter Watson, Peter Dueben, and Ritabrata Dutta. High-resolution probabilistic precipitation prediction for use in climate simulations, https://arxiv.org/abs/2012.09821, 2020.
Peer-reviewed publications
[46] P. Bauer, P. D. Dueben, T. Hoefler, T. Quintino, T. Schulthess, and N. Wedi. The digital revolution of earth-system science. Accepted in Nature Computational Science, 2020.
[45] P. Groenquist, C. Yao, T. Ben-Nun, N. Dryden, P. Dueben, S. Li, T. Hoefler: Deep Learning for Post-Processing Ensemble Weather Forecasts, Accepted in Phil. Trans. A, 2020
[44] S. Rasp, P. D. Dueben, S. Scher, J.A. Weyn, S. Mouatadid, N. Thuerey: WeatherBench: A benchmark dataset for data-driven weather forecasting, JAMES, 12(11):e2020MS002203, 2020
[43] N. P. Wedi, I. Polichtchouk, P. Dueben, V. G. Anantharaj, P. Bauer, S. Boussetta, P. Browne, W. Deconinck, W. Gaudin, I. Hadade, S. Hatfield, O. Iffrig, P. Lopez, P. Maciel, A. Mueller,S. Saarinen, I. Sandu, T. Quintino, F. Vitart: A baseline for global weather and climate simulations at 1.4 km resolution, JAMES, e e2020MS002192, 2020
[42] M. Kloewer, P. D. Dueben, T. N. Palmer: Number Formats, Error Mitigation, and Scope for 16‐Bit Arithmetics in Weather and Climate Modeling Analyzed With a Shallow Water Model, JAMES, 12(10):e2020MS002246, 2020
[41] P. D. Dueben, N. Wedi, S. Saarinen, C. Zeman. Global simulations of the atmosphere at 1.45 km grid-spacing with the Integrated Forecasting System. JMSJ, Ser. II, 2020
[40] L. Saffin, S. Hatfield, P. Dueben, T. N. Palmer. Reduced-precision parametrization: lessons from an intermediate-complexity atmospheric model. QJMRS, 146(729):1590–1607, 2020
[39] S. Hatfield, P. D. Dueben, A. McRae, T. N. Palmer. Single-precision in the tangent-linear and adjoint models of incremental 4D-Var. Monthly Weather Review, 148(4):1541–1552, 2020
[38] F. Cooper, P. D. Dueben, C. Denis, A. Dawson, P. Ashwin. The relationship between numerical precision and forecast lead time in the Lorenz’95 system. Monthly Weather Review, 148(2):849–855, 2020
[37] T. Benacchio, L. Bonaventura, M. Altenbernd, C. D. Cantwell, P. D. Dueben, M. Gillard, L. Giraud, D. Goddeke, E. Raffin, K. Teranishi, et al. Resilience and fault-tolerance in high-performance computing for numerical weather and climate prediction. Accepted in the International Journal of High Performance Computing Applications, 2020
[36] M. Bonavita, R. Arcucci, A. Carrassi, P. D. Dueben, A. J. Geer, B. Le Saux, N. Longepe, P.-P. Mathieu, and L. Raynaud. Machine learning for earth system observation and prediction. Bulletin of the American Meteorological Society, pages 1 – 13, 28 Dec., 2020
[35] B. Stevens, M. Satoh, L. Auger, J. Biercamp, C. Bretherton, X. Chen, P. Düben, F. Judt, M. Khairoutdinov, D. Klocke, C. Kodama, L. Kornblueh, S.-J. Lin, W. Putman, S. Ryosuke, P. Neumann, N. Röber, B. Vannier, P.-L. Vidale, N. Wedi, L. Zhou. DYAMOND: The DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains. Progress in Earth and Planetary Science, 6(1):61, 2019
[34] M. Satoh, B. Stevens, F. Judt, M. Khairoutdinov, S.-J. Lin, W. Putman, P. D. Dueben. Global Cloud-Resolving Models. Current Climate Change Reports, 5(3):172–184, 2019
[33] S. Hatfield, M. Chantry, P. D. Dueben, T. N. Palmer. Accelerating high-resolution weather and climate models with deep-learning hardware. PASC Proceedings, Best Paper Award, 2019
[32] M. Kloewer, P. D. Dueben, T. N. Palmer. Posits as an alternative to floats for weather and climate models. Proceedings of the Conference for Next Generation Arithmetic CoNGA, 2019
[31] A. C. Subramanian, S. Juricke, P. D. Dueben and T. N. Palmer. A Stochastic Representation of Sub-Grid Uncertainty for Dynamical Core Development. Bulletin of the American Meteorological Society, 100(6):1091–1101, 2019
[30] P. Neumann, P. D. Dueben, P. Adamidis, P. Bauer, M. Bruck, L. Kornblueh, D. Klocke, B. Stevens, N. Wedi, and J. Biercamp. Assessing the scales in numerical weather and climate predictions: will exascale be the rescue? Philosophical Transactions of the Royal Society A, 377(2142):20180148, 2019
[29] M. Chantry, T. Thornes, T. Palmer, and P. D. Dueben. Scale-selective precision for weather and climate forecasting. Monthly Weather Review, 147(2):645–655, 2019
[28] P. D. Dueben, M. Leutbecher, and P. Bauer. New methods for data storage of model output from ensemble simulations. Monthly Weather Review, 147(2):677–689, 2019
[27] P. D. Dueben. A new number format for ensemble simulations. Accepted in Journal of Advances in Modeling Earth Systems, 10(11):2983–2991, 2018.
[26] P. D. Dueben and P. Bauer. Challenges and design choices for global weather and climate models based on machine learning. Geoscientific Model Development, 11, 10, 3999-4009, 2018
[25] S. E. Hatfield, P. D. Dueben, M. Chantry, K. Kondo, T. Miyoshi, T. N. Palmer. Choosing the optimal numerical precision for data assimilation in the presence of model error. Journal of Advances in Modeling Earth Systems, 10, 2177-2191, 2018
[24] T. Thornes, P. Dueben, T. N. Palmer. A Power Law for Reduced Precision at Small Spatial Scales: Experiments with an SQG Model. Quarterly Journal of the Royal Meteorological Society, 144:1179-1188, 2018
[23] S. E. Hatfield, A. Subramanian, T. N. Palmer, P. D. Dueben. Improving weather forecast skill through reduced precision data assimilation. Monthly Weather Review, 146 (1), 49-62, 2018
[22] A. Dawson, P. D. Dueben, David MacLeod and Tim Palmer. Reliable low precision simulations in land surface models. Climate Dynamics, 51(7-8):2657–2666, 2018
[21] F. P. Russell, P. D. Dueben, X. Niu, W. Luk, T. N. Palmer. Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures. Computer Physics Communications, 221, 160-173, 2017
[20] J. S. Targett, P. D. Dueben, W. Luk. Validation optimisations for chaotic simulations, Field Programmable Logic and Application (FPL), pages 1-4, 2017
[19] A. Dawson and P. D. Dueben. rpe v5: An emulator for reduced floating-point precision in large numerical simulations. Geoscientific Model Development, 10 (6), 2221-2230, 2017
[18] S. Jeffress, P. D. Dueben, T. N. Palmer. Bitwise Efficiency in Chaotic Models. Proceedings A of the Royal Society A, 473 (2205), 20170144, 2017
[17] P. D. Dueben and A. Dawson. An approach to secure weather and climate models against hardware faults. Journal of Advances in Modeling Earth Systems, 9 (1), 501-513, 2017
[16] P. D. Dueben, A. Subramanian, A. Dawson and T. N. Palmer. A study of reduced precision to make superparametrisation more competitive using a hardware emulator in the OpenIFS model. Journal of Advances in Modeling Earth Systems, 9 (1), 566-584, 2017
[15] T. Thornes, P. D. Dueben, and T. Palmer. On the use of scale-dependent precision in Earth System modelling. Quarterly Journal of the Royal Meteorological Society, 143: 897-908, 2017
[14] F. Váňa, P. D. Dueben, S. Lang, T. Palmer, M. Leutbecher, D. Salmond, and G. Carver. Single precision in weather forecasting models. Monthly Weather Review, 145 (2), 495-502, 2017
[13] P. D. Dueben, F. P. Russell, X. Niu, W. Luk, and T. N. Palmer. On the use of programmable hardware and reduced numerical precision in earth-system modeling. Journal of Advances in Modeling Earth Systems, 7(3):1393–1408, 2015
[12] P. D. Dueben and S. I. Dolaptchiev. Rounding errors may be beneficial for simulations of atmospheric flow: Results from the forced 1D Burgers equation. Theoretical and Computational Fluid Dynamics, 29(4):311–328, 2015
[11] P. D. Dueben, J. Schlachter, Parishkrati, S. Yenugula, J. Augustine, C. Enz, K. Palem, and T. N. Palmer. Opportunities for energy efficient computing: A study of inexact general purpose processors for high-performance and big-data applications. Design Automation and Test in Europe (DATE), pages 764–769, 2015
[10] F. P. Russell, P. D. Dueben, X. Niu, W. Luk, and T. N. Palmer. Architectures and precision analysis for modelling atmospheric variables with chaotic behaviour. IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 171–178, 2015
[9] J. Targett, S. Jeffress, X. Niu, F. Russell, P. D. Dueben, and W. Luk. Lower precision for higher accuracy: Precision and resolution exploration for shallow water equations. Proceedings of the International Conference on Field Programmable Technology (FPT), 2015
[8] P. D. Dueben and T. N. Palmer. Benchmark tests for numerical weather forecasts on inexact hardware. Monthly Weather Review, 142:3809–3829, 2014
[7] P. D. Dueben, J. Joven, A. Lingamneni, H. McNamara, G. De Micheli, K. V. Palem, and T. N. Palmer. On the use of inexact, pruned hardware in atmospheric modelling. Philosophical Transactions of the Royal Society A, 372(2018), 2014
[6] P. D. Dueben and P. Korn. Atmosphere and ocean modeling on grids of variable resolution - a 2d case study. Monthly Weather Review, 142:1997–2017, 2014
[5] T. Palmer, P. D. Dueben, and H. McNamara. Stochastic modelling and energy-efficient computing for weather and climate prediction. Philosophical Transactions of the Royal Society A, 372(2018), 2014
[4] P. D. Dueben, H. McNamara, and T.N. Palmer. The use of imprecise processing to improve accuracy in weather & climate prediction. Journal of Computational Physics, 271(0):2–18, 2014
[3] P. D. Dueben, P. Korn, and V. Aizinger. A discontinuous/continuous low order finite element shallow water model on the sphere. Journal of Computational Physics, 231(6):2396–2413, 2012
[2] P. D. Dueben, D. Homeier, G. Münster, K. Jansen, and D. Mesterhazy. Monte Carlo approach to turbulence. 27. International Symposium on Lattice Field Theory, Beijing, China, 41, 2009
[1] P. D. Dueben, D. Homeier, K. Jansen, D. Mesterhazy, G. Münster, and C. Urbach. Monte Carlo simulations of the randomly forced burgers equation. Europhysics Letters, 84(4):40002, 2008